

www.cypress.com Document No. 001-44168 Rev. *I 1

AN44168

PSoC® 1 Device Programming using External Microcontroller (HSSP)

Associated Project: Yes

Associated Part Family: CY8C21x23, CY8C21x34, CY21x45, CY8C22x45, CY8C23x33,
CY8C24x23, CY8C24x94, CY8C27x43, CY8C28xxx, CY8C29x66,

CY8CTST1xx, CY8CTMG1xx, CY8CTMA120

Software Version: PSoC Designer™ 5.4 SP1

Related Documents: For a complete list, click here.

AN44168 shows you how to implement PSoC
®
 1 device programming with an external microcontroller by using

modular C code. In this process, called Host Sourced Serial Programming (HSSP), the host microcontroller programs

PSoC 1 through the In-System Serial Programming (ISSP) interface. The C code is written so that it can be ported to

any microcontroller with minimal changes, speeding up HSSP application development for PSoC 1. The code is built

based on the programming procedure explained in the PSoC 1 ISSP Programming Specifications.

Contents

1 Introduction ... 1
2 HSSP Firmware Architecture 2

2.1 ISSP Protocol Physical Layer 2
2.2 ISSP Protocol Packet Layer............................. 2
2.3 HSSP Programming Steps 2

3 Hardware Connections for PSoC 1 HSSP
 Programming ... 4

4 Porting the HSSP Application to a Host Programmer
 4

4.1 Files that must be ported 4
4.2 Code Changes Required While porting 5
4.3 Property Selection ... 5
4.4 Low-Level Driver Modifications 6
4.5 Loading Data into the RAM Buffer 7

5 Modifying Flash Block Sequence or Quantity 7
6 Verifying Flash Write Time with Built-In Test Points . 7
7 UART Debugging Messages 9
8 Constraints ... 9
9 Summary .. 10
10 Related Documents .. 10
A Appendix A: Port Bit Manipulation Functions 11
Document History .. 12
Worldwide Sales and Design Support 13
Products .. 13
PSoC

®
 Solutions ... 13

Cypress Developer Community....................................... 13
Technical Support ... 13

1 Introduction

Cypress’s Programmable System-on-Chip (PSoC) is easy-to-use and flexible, with a cost-effective mix of
reprogrammable analog and digital resources. These features provide many opportunities for creative designs, one of
which is programming the PSoC serially by an on-board host processor. This method is used to install or update
firmware in field, or reprogram the PSoC for a different function.

The HSSP source code was created by Cypress to give system designers a starting point to create their own serial
programming software. The designers must make minimal modifications to the code to make it compatible with their
specific host programmer. The source code covers a wide range of PSoC devices and provides a high level of
abstraction. The devices covered by this application note are listed in 'Associated Part Family’. For more information
on ISSP, see the PSoC 1 ISSP Programming Specifications at www.cypress.com/?rID=2907 and
www.cypress.com/?rID=2908. See the application note AN59389 for HSSP application for the CY8C20xx6,
CY8CTMG2xx, and CY8CTST2xx devices. AN59389 implements the programming procedure explained in the ISSP
Programming Specifications - CY8C20045, CY8C20055, CY8C20065, CY8C20xx6A, CY8C20xx7.

http://www.cypress.com/?rID=2907
http://www.cypress.com/?rID=2907
http://www.cypress.com/?rID=2908
http://www.cypress.com/?rID=42958
http://www.cypress.com/?rID=42958
http://www.cypress.com/?rID=40048
http://www.cypress.com/?rID=40048

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 2

Differences between Bootloader and HSSP:

In embedded applications, bootloaders update the system firmware over a standard communication interface. In
addition to supporting bootloaders, PSoC 1 allows in-system programming using an HSSP application. The key
differences between HSSP and bootloading are explained in this section. Choose the method that best meets your
requirements.

 Partial firmware update versus complete programming of the device: HSSP supports only complete programming
of the flash memory in PSoC 1 and not a partial firmware upgrade. However, a bootloader can be used to update
only a specific portion (bootloadable area) of the flash memory. A portion of the flash memory (bootloader area)
is reserved for doing the bootloading operation and this portion cannot be updated.

 Communication interface between the external host and PSoC 1: The bootloaders use one of the many standard
communication interfaces, including USB, I

2
C, UART, and SPI, to upgrade the PSoC 1 firmware. HSSP in

PSoC 1 always uses the ISSP protocol to do the programming.

2 HSSP Firmware Architecture

HSSP for PSoC 1 is implemented in multiple layers using modular C code. These layers are as follows:

1. ISSP protocol physical layer

2. ISSP protocol packet layer

3. HSSP programming steps layer

See Figure 1 for the flow of control among these layers.

2.1 ISSP Protocol Physical Layer

File that constitutes the ISSP protocol physical layer is described below:

Source Files Description

ISSP_PHYSICALLAYER (.C) This file contains macros and functions to manipulate the programming pins - SDA and SCL,
and control the target device’s reset and power pin. Bit banging is done to generate signals at
these pins. The functions in this file are called by higher level functions from the packet layer.

The firmware, in this file, is written for PSoC 1 CY8C29466 as the host microcontroller. You should modify all the
functions and macros appropriately for a different host microcontroller.

2.2 ISSP Protocol Packet Layer

File that constitutes the ISSP protocol packet layer is described below:

Source Files Description

ISSP_PACKETLAYER (.C) This file use the functions defined in ISSP_PhysicalLayer to send out the ISSP vectors. ISSP
vector is nothing but a sequence of bits representing a set of instructions. These instructions
are sent by host processor for the target device to execute. There are various vectors defined
for different stages of programming. For details on the ISSP vectors, refer PSoC 1 ISSP
Programming Specifications. The functions in this file are responsible for reading data and
writing vector packets to the target device. The functions defined in this layer are called directly
by the functions in the ISSP_PROGRAMMINGSTEPS.C file.

2.3 HSSP Programming Steps

File that constitutes the HSSP Programming Steps is described below:

Source Files Description

ISSP_PROGRAMMINGSTEPS (.C) This file contains the top level functions of the HSSP application. The details of each
step are in the PSoC 1 ISSP Programming Specifications.

http://www.cypress.com/?rID=2907
http://www.cypress.com/?rID=2907
http://www.cypress.com/?rID=2907

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 3

Figure 1. PSoC 1 HSSP Firmware Architecture

Initialize Target

Verify Silicon ID

Erase All Flash

Program Flash

Verify Flash

Program Protection

Settings

Verify Protection Settings

Verify Checksum

End

HSSP Implementation

Flow

1.

2.

3.

4.

5.

6.

7.

8.

9.

MAIN.C

Main application code

ISSP_PROGRAMMINGSTEPS.C

HSSP Programming Steps

ISSP_PACKETLAYER.C

ISSP Protocol Packet Layer

ISSP_PHYSICALLAYER.C

ISSP Protocol Physical Layer

Target

PSoC 1

SDATA

SCLK

XRES*

*For power cycle mode programming,

device power rails need to be toggled

instead of the reset (XRES) pin

Host Programmer

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 4

3 Hardware Connections for PSoC 1 HSSP Programming

Figure 2 shows the basic hardware connection required between the host programmer and the target PSoC 1 device.
PSoC devices are programmed in two different modes: reset and power cycle. Reset mode, which is the preferred
programming mode, is used when the PSoC device has an XRES pin. Devices without an XRES pin must be
programmed in Power Cycle mode. In this case, HSSP microcontroller switches device power ON and OFF. In each
programming mode, the host requires three I/O pins. These are serial data (SDATA), serial clock (SCLK), and
external reset (XRES) in the reset mode, and SDATA, SCLK, and PSoC power (PWR) control in the power cycle
mode. These pins are manipulated from the firmware.

The SDATA pin on the host processor must be bi-directional. The host must be able to change the properties of this
pin; strong drive while writing and high-Z state while reading.

For more information on programming modes, Programming interface connections, and Programming specifications,
see the PSoC 1 ISSP Programming Specifications at www.cypress.com/?rID=2907 and
www.cypress.com/?rID=2908.

Figure 2. Basic Host/Target Connections

VDD

SDATA

SCLK

XRES

GND

VDD

SDATA (P1[0])

SCLK (P1[1])

XRES*

GND

VDD
Host

Programmer Target PSoC

* toggle VDD pin of the target

PSoC that do not have a XRES pin

4 Porting the HSSP Application to a Host Programmer

The project provided with this application note, uses PSoC 1 CY8C29466 as the host programmer. In the HSSP
application, the host programmer can be any other microcontroller. This section explains the changes required to port
the HSSP application code to the specific host used to program the target device.

4.1 Files that must be ported

Table 1 shows the files that must be ported to the host device of the system.

Table 1. Files to be Ported

Header Files to be ported Source Files to be Ported

ISSP_DEFS.H ISSP_PHYSICALLAYER.C

ISSP_DELAYS.H ISSP_PACKETLAYER.C

ISSP_DIRECTIVES.H ISSP_PROGRAMMINGSTEPS.C

ISSP_ERRORS.H

ISSP_REVISION.H

ISSP_VECTORS.H

http://www.cypress.com/?rID=2907
http://www.cypress.com/?rID=2908

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 5

4.2 Code Changes Required While porting

Table 2 shows updates required in the source files while porting the attached HSSP application code to any host
programmer other than PSoC 1.

Table 2. Code Changes

File Description Changes required

ISSP_DEFS.H This file contains number of banks, blocks
per bank and security bytes per bank
information for all PSoC 1 devices.

No change required

ISSP_DELAYS.H This file contains timer setting for wait and
poll event, XRES assertion and power
cycling the target device.

Adjust the delay counts based on the host
processor execution speed.

ISSP_DIRECTIVES.H This file provides option to the user to
select the target PSoC 1 device,
enable/disable the debugging code
(UART, test point), select target voltage
and programming mode – reset or power
cycle.

See section Property Selection.

ISSP_ERRORS.H This file contains #define statements for
the different errors during programming
process.

No change required

ISSP_EXTERN.H This file contains function and variable
prototypes.

No change required

ISSP_REVISION.H This file is for revision control. No change required

ISSP_VECTORS.H This file contains vectors for all ISSP
instructions.

No change required

ISSP_PHYSICALLAYER.C This file contains low level drivers for
communicating with the target device.

See section Low-Level Driver Modifications.

ISSP_PACKETLAYER.C This file contains functions to create vector
packets for various stages of
programming.

Code updates required for getting the program
data. See section Loading Data into the RAM
Buffer.

ISSP_PROGRAMMINGSTEPS.C This file contains code which calls
individual functions for each stage of the
programming process.

No change required

4.3 Property Selection

The designer must set the three properties Property, Label, and Description. To do this, comment or uncomment
certain #define statements in the ISSP_DIRECTIVES.H file. These #define statements are clearly marked with

’User Attention Required’ and are easy to find. You can also do a page search for individual labels. An explanation for
each property and its label follows.

Property: UART Debug

Label: USE_TX

Description: Comment out this #define statement to disable the code which sends out messages over UART;

uncomment to enable execution of UART functions.

Property: Test Point

Label: USE_TP

Description: Comment out this #define statement to disable execution of code which bit bangs the test pin. This

pin is used for debugging purpose. It is not required in the end design.

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 6

Property: Target supply voltage

Label: TARGET SUPPLY VOLTAGE

Description: Comment out this #define statement if the target runs at 3.3 V; uncomment it if the target voltage is

5 V.

Property: Programming mode

Label: PROGRAMMING MODE

Description: Comment out this #define statement if power cycle mode is used. Uncommenting the #define

causes the target to be programmed in reset mode.

Property: Target PSoC Device

Label: TARGET PSOC

Description: Select the target PSoC in this section. Only one device is enabled at any time and every other device is

commented out. If the device is not on the list, contact Cypress Technical Support.

4.4 Low-Level Driver Modifications

The designer must provide host-specific code to manipulate the pins involved in programming the target PSoC.
These APIs are marked ‘Processor Specific’ and ’User Attention Required’ and are found in

ISSP_PHYSICALLAYER.C.

 Port Bit Masks: There are four port bit masks that must be adjusted for the specific host processor being used.

Note that though four bits must be set, only three are used in programming, depending on the choice of
programming method—SDATA, SCLK, and XRES in reset mode; SDATA, SCLK, and PWR in power cycle
mode.

 Delay(n) Function: This function is adjusted so that each iteration of the while loop takes at least 2 µs.

Generally, there is no upper limit for the loop time. However, the longer this loop takes, the longer it takes to
program the target. For example, if the host microcontroller is also a PSoC, each iteration takes about 2 µs with a
7-µs overhead. Therefore, the function generates a delay of 2n+7 µs, where n is the parameter passed to the

function. To adjust the delay time for your host processor, modify the #define statements in ISSP_DELAYS.H.

 Port Bit Manipulation Functions: These functions manipulate host pins to generate signals needed to program

the PSoC. They deal with driving pins high and low and releasing pins to high-Z state. A list of these functions
follows. Most of the functions are self- explanatory, but they are all documented within the code.

fSDATACheck()

SCLKHigh()

SCLKLow()

SetSCLKStrong()

SetSDATAHigh()

SetSDATALow()

SetSDATAHiZ()

SetSDATAStrong()

SetXRESStrong()

AssertXRES()

DeassertXRES()

SetSCLKHiZ()

SetTargetVDDStrong()

ApplyTargetVDD()

RemoveTargetVDD()

 UART Functions: These functions are used for debugging purpose. Messages are sent out over UART to notify

progress of the programming process. User should modify below functions based on the host processor. TX8
user module is placed in the design for the UART-transmitter.

InitTx()

SendDebugMessage()

PrintReceivedSiliconID()

DisplaySecurityValues()

http://www.cypress.com/go/support

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 7

 Test Point Functions: These are also used for debugging purpose. Modify the following functions to work with

the host processor:

InitTP()

SetTPHigh()

SetTPLow()

ToggleTP()

4.5 Loading Data into the RAM Buffer

The HSSP code takes data from a 64-byte buffer to program PSoC flash blocks sequentially. This process starts at
the lowest block address. After the first block is programmed, the same buffer is used to program further flash blocks.

The designer must provide code to fill this buffer depending on the data source (USB, RS-232, SD Card, and so on).
There are two functions to be written for the specific host processor used—LoadProgramData() and

LoadSecurityData(). These functions are found in ISSP_PACKETLAYER.C and are marked with ’Processor

Specific’ and ‘User Attention Required’. Currently, these functions load incrementing values into the buffer.

5 Modifying Flash Block Sequence or Quantity

In some cases, you must program a specific area in flash. An example is an area set aside for characterization,
calibration, or firmware field upgrades. These features are usually implemented using the EEPROM User Module.
However, in some cases programming them directly into the PSoC saves code space if that is a limitation.

You can change the start address of the target block and the order in which the blocks are programmed. This does
not cause any problems as each programming sequence includes the block address. However, remember the
following points:

 Flash bank number is set only once for each block write. This is applicable only to the CY8C29x66, CY8C28xxx,
CY8C24x94, CY8CTST120, CY8CTMG120 and CY8CTMA120 families of products as other families have only
one bank. For more information about banks, see the PSoC Technical Reference Manual (TRM). The FLS_PR1

register determines which flash block the programming calls affect.

 If the programming loop is modified the same changes must be applied to the verify loop; otherwise, verification
fails.

 The code accumulates the checksum as it goes. The code examines the checksum against the entire flash up to

that point. If you program only a section of flash, set the variable iChecksumData accordingly.

6 Verifying Flash Write Time with Built-In Test Points

One of the most critical factors in successful host-sourced programming is using the correct erase and write pulse
widths. To help you with the process, a few strategically placed test point (TP) calls are implemented in the program.
To enable this debugging mode, uncomment the USE_TP #define in ISSP_DIRECTIVES.H. There are few

functions associated with the debugging mode, which are similar to pin manipulation functions mentioned earlier in
this application note. The system designer must provide a host-specific code to drive a pin high, low, or to toggle it.

Proper debugging requires monitoring TP and SDATA lines. Both erase and programming pulses must be measured.
The best way to do this is to use a two-channel oscilloscope and have it trigger in the single-sequence mode from the
rising edge of the TP channel.

The erase pulse width is measured from the end of the data burst to the TP falling edge, as shown in Figure 3. Note
that the TP rising edge does not line up with the end of the data burst. This is expected due to the delay caused by
the overhead between the instant the TP pin is driven high and the host starts to send the data out.

http://www.cypress.com/documentation/technical-reference-manuals/cy8cplc20-cy8cled16p01-cy8c29x66-cy8c27x43-cy8c24x94?source=search&cat=technical_documents

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 8

Figure 3. Measuring the Erase Pulse Width

ERASE PULSEWIDTH

The programming pulse width is also measured from the end of the data burst to the TP falling edge. Figure 4 shows
this measurement. As with the erase pulse width, the rising edge of the TP signal does not line up with the end of the
data burst.

Figure 4. Measuring the Write Pulse Width

WRITE PULSEWIDTH

See the ’AC Programming Specifications’ table in the respective device datasheet to find the ideal erase and write
pulse widths for various PSoC devices. The measured values must be within –3 percent to +15 percent of the ideal
values. Failure to meet this requirement results in improper programming, which has undesirable side effects such as
shorter than specified flash data retention

[1]
, and fewer flash erase and write cycles than expected

[2]
.

1
 Specified with a symbol of FlashDR under the DC Programming Specifications section of the device data sheet.

2
 Specified with symbols of FlashENPB and FlashENT under the DC Programming Specifications section of the device data sheet.

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 9

7 UART Debugging Messages

The present code with UART enabled, sends out debug messages. Figure 5 shows an example of status messages
sent out during programming process.

Figure 5. Status Messages

8 Constraints

The comments at the beginning of main.c include useful and important information that the system designers should
consider. The HSSP code has some constraints that are explained in those comments. The following is a brief
summary.

 Serial programming occurs only within the temperature range of 5 °C and 50 °C.

 The HSSP program does not support voltages below 3.0 V.

 The programming procedure is completed in one voltage range only. If the device is initialized at 5.0 V, the entire
procedure must be completed in 5.0 V range and with 5.0 V vectors.

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 10

 CY8C20x34 and obsolete PSoC versions are currently not supported. See the header section in main.c of the

attached project for a list of devices not supported by this application note.

 The upper limit of SCLK’s frequency is specified with a symbol of FSCLK under the “AC Programming
Specifications” section of the device datasheet.

 Cypress does not recommend sharing ISSP bus lines of the CY8C20x36/46A/66A/96A/ CY8CTMG2xx/
CY8CTST2xx parts with other PSoC devices. However in scenarios where the ISSP bus of the
CY8C20x36/46A/66A/96A/ CY8CTMG2xx/ CY8CTST2xx parts are shared with other PSoC devices, avoid
CY8C20x36/46A/66A/96A/ CY8CTMG2xx/ CY8CTST2xx parts seeing key ‘AC52’ in reset state. For more
information, see the knowledge base article, CY8C20X36A/46A/66A/96A: issue with sharing ISSP bus.

9 Summary

This application note provides a ready-to-use example HSSP code that gives designers the flexibility to create their
own serial programming software. It provides a good starting point for engineers implementing PSoC 1 Host
Programming solutions, and reduces the time to develop the solution by giving a portable C source code.

10 Related Documents

 PSoC
®
 1 ISSP Programming Specifications - CY8C21x23, CY8C21x34, CY8C23x33, CY8C24x23A,

CY8C27x43, CY8CTMG110, CY8CTST110

 PSoC
®
 1 ISSP Programming Specifications - CY8C21x45, CY8C22x45, CY8C24x94, CY8C28xxx, CY8C29x66,

CY8CTST120, CY8CTMA120, CY8CTMG120, CY7C64215

 ISSP Programming Specifications

 AN59389 - Host Sourced Serial Programming for CY8C20xx6A

http://www.cypress.com/?id=4&rID=45442
http://www.cypress.com/?rID=2907
http://www.cypress.com/?rID=2907
http://www.cypress.com/?rID=2908
http://www.cypress.com/?rID=2908
http://www.cypress.com/?rID=40048
http://www.cypress.com/?rID=42958

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 11

A Appendix A: Port Bit Manipulation Functions

Table 3. Port Bit Manipulation Functions

Function Name Description

SetSCLKStrong() Sets the SCLK pin to an output (Strong drive mode).

SetSCLKHiZ() Releases the SCLK pin to high Z.

SetSDATAHigh() Sets the SDATA pin high.

SetSDATALow() Sets the SDATA pin low.

SetSDATAStrong() Sets the SDATA pin to an output (Strong drive mode).

SetSDATAHiZ() Releases the SDATA pin to high Z (to be driven by the target).

AssertXRES() Sets the XRES pin high.

DeassertXRES() Sets the XRES pin low.

SetXRESStrong() Sets the XRES pin to an output (Strong drive mode).

ApplyTargetVDD() Provide power to the target PSoC.

RemoveTargetVDD() Remove power from the target PSoC.

SetTargetVDDStrong() Sets the PWR pin to an output (Strong drive mode).

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 12

Document History

Document Title: AN44168 - PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

Document Number: 001-44168

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 2198867 JVY 03/12/2008 New Application Note.

*A 2710245 FKL 05/22/2009 Added support for CY8C28xxx devices.

*B 2880651 XCH 02/18/2010 Added support for CY8CTST110, CY8CTST120, CY8CTMG110, CY8CTMG120,
CY8CTMA120.

Modified timing equation to match project update which changed CPU from
24 MHz to 12 MHz.

*C 3119376 VVSK 12/23/2010 Added support for CY8C21x45, CY8C22x45 and CY8C23x33 devices.

Removed the table specifying programming pulse widths, and instead added a
note to refer device datasheet.

*D 3173698 VVSK 02/15/2011 Changed text in abstract to be clear on AN intent.

Reorganized sections according to their relevance.

*E 3386899 VVSK 09/28/2011 Title changed to make it clear for new users.

Updated to new template.

*F 3618021 KERI 05/22/2012 Added a paragraph on “Differences between Bootloader and HSSP” in the
introduction section.

Changed the software version from PD5.1 to "PSoC Designer™ 5.2 SP1".

Updated to new template.

*G 4035071 KERI 06/20/2013 Changed the software version to PD5.3.

Added info on “Wait and Poll” method in “Other Implementation Features”
section.

Updated reference documentation links.

*H 4914547 RJVB 09/11/2015 Updated Software Version as “PSoC Designer™ 5.4 SP1” in page 1.

Updated Abstract.

Removed HSSP Overview.

Removed HSSP Implementation.

Added HSSP Firmware Architecture.

Added Hardware Connections for PSoC 1 HSSP Programming.

Added Porting the HSSP Application to a Host Programmer.

Updated Verifying Flash Write Time with Built-In Test Points:

Renamed “Verifying with Built-In Test Points” with “Verifying Flash Write Time
with Built-In Test Points” in heading and updated description.

Added UART Debugging Messages.

Updated Summary.

Updated to new template.

Updated attached Associated Project:

Added protection bits verification stage, removed clocks at SCLK line during
TPOLL event, added UART for debugging, and updated with PSoC Designer 5.4
SP1.

Completing Sunset Review.

*I 5706010 AESATMP9 04/21/2017 Updated logo and copyright.

PSoC
®
 1 Device Programming using External Microcontroller (HSSP)

www.cypress.com Document No. 001-44168 Rev. *I 13

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

©Cypress Semiconductor Corporation, 2008-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/?id=1062&source=anxxxxx
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	2 HSSP Firmware Architecture
	2.1 ISSP Protocol Physical Layer
	2.2 ISSP Protocol Packet Layer
	2.3 HSSP Programming Steps

	3 Hardware Connections for PSoC 1 HSSP Programming
	4 Porting the HSSP Application to a Host Programmer
	4.1 Files that must be ported
	4.2 Code Changes Required While porting
	4.3 Property Selection
	4.4 Low-Level Driver Modifications
	4.5 Loading Data into the RAM Buffer

	5 Modifying Flash Block Sequence or Quantity
	6 Verifying Flash Write Time with Built-In Test Points
	7 UART Debugging Messages
	8 Constraints
	9 Summary
	10 Related Documents
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

