Lecture 6

Leakage and Low-Power Design

R. Saleh
Dept. of ECE
University of British Columbia
res@ece.ubc.ca
Methods of Reducing Leakage Power

• So far we have discussed dynamic power reduction techniques which result from switching-related currents.
• The transistor also exhibits many current leakage mechanisms that cause power dissipation when it is not switching.
• In this lecture, we will explore the different types of leakage currents and their trends.
• We will then describe ways to limit various types of leakage.
• We will also re-examine the DSM transistor in more detail as a side-effect of this study.
• Readings:
 – Sections of Chapter 2 and 3 in HJS.
 – Many books and papers on DSM leakage power.
 – Alvin Loke Presentation (SSCS Technical Seminar, 2007).
Basic CMOS Transistor Structure

- Typical process today uses twin-tub CMOS technology
- Shallow-trench isolation, thin-oxide, lightly-doped drain/source
- Salicided drain/source/gate to reduce resistance
- Extensive channel engineering for V_T-adjust, punchthrough prevention, etc.
- Need to examine some details to understand leakage
Sources of Leakages

- Leakage is a big problem in the recent CMOS technology nodes.
- A variety of leakage mechanisms exist in the DSM transistor.
- Actual leakage levels vary depending on biasing and physical parameters at the technology node (doping, tox, VT, W, L, etc.).

Diagram:

- I1: Subthreshold Current
- I2: DIBL
- I2': Punchthrough
- I3: Thin Oxide Gate Tunneling
- I4: GIDL
- I5: PN Junction Current
- I6: Hot Carrier Injection
Relative Importance of Leakage Currents

- Relative contributions of OFF-state leakage (but magnitude of total leakage getting exponentially worse for deeper submicron nodes)

But is this really true? Need to examine each one and their trends...
Hot carriers

- Assume gate and drain are connected to \(V_{DD} \)
- Carriers pick up high energy from electric field as they move across channel – become “hot” carriers which are attracted to gate node
 - These “hot” carriers may be injected into the gate oxide where they become trapped – cause a shift in the \(V_T \)
 - Accumulation of charge in oxide causes shift in \(V_T \) over time
- The higher the \(V_{DD} \), the hotter the carriers (more current)
- Since we have scaled \(V_{DD} \), the problem was under control for years
- However, the \(V_{DD} \) value may not scale in the future so this problem may again be an issue

![Diagram of hot carriers](attachment:image.png)
Source/Drain Leakage

- Source and drain junctions are normally reverse-biased so they will leak current.
- Typically very small but may increase with scaling since doping levels are very high in future technologies (breakdown voltage decreases as doping increases – use LDD to reduce BV).

Look at cross-section.
Thin-Oxide Gate Tunneling

- t_{ox} has been scaling with each technology generation
- We have reached the point where t_{ox} is so small the direct tunneling occurs ($t_{\text{ox}} < 2\text{nm}$)
- Gate leakage = $f(t_{\text{ox}}, V_G)$

- NMOS leakage is 3-10X PMOS leakage (electrons vs. holes)
- Below 20 Å, the leakage increases by 10X for every 2Å in gate thickness reduction
High-k Metal Gate

Traditional Oxide

\[J_{\text{gate}} \text{ [A/cm}^2\text{]} \]

\[V_{\text{gate}} [\text{V}] \]

- HK+MG (45nm)
- \(T_{\text{ox}} = 1.4\text{nm} \)
- \(T_{\text{ox}} = 1.8\text{nm} \)
- \(T_{\text{ox}} = 2.0\text{nm} \)
- \(T_{\text{ox}} = 2.5\text{nm} \)

\[V_{\text{drain}} = 0\text{V} \]

Experimental Data of an NMOS

High-k Metal Gate

- Low resistance layer
- Metal Gate
- High-k oxide

S D
Subthreshold Leakage

- Subthreshold leakage is the most important contributor to static power in CMOS

\[I_{\text{sub}} = I_s \cdot e^{\frac{q(V_{GS} - V_T - V_{\text{offset}})}{nKT}} \left(1 - e^{-\frac{-qV_{DS}}{KT}}\right) \]

\[P_{\text{static}} \approx I_{\text{sub}} V_{DD} \]

- Note that it is primarily a function of \(V_T \)
- Higher \(V_T \), exponentially less current!

- But gate overdrive \((V_{GS} - V_T)\) is also a linear function of \(V_T \)
- Need to understand \(V_T \) in more detail to find ways to reduce leakage
Threshold Voltage Equation

MOS Fundamentals

- $V_T = FET \ ON \ voltage$, i.e., gate voltage required to form inversion layer connecting source & drain by shorting out back-to-back pn-junctions with substrate

\[
V_T = V_{FB} + 2\phi_b + \frac{Q_{dep}}{C_{ox}}
\]

- depletion charge per unit area

 \[= qN_Ax_{dep} \propto \sqrt[3]{N_A} \ (x_{dep} \propto 1/\sqrt{N_A})\]

- bulk potential

 \[\phi_b = \frac{k_B T}{q} \ln \frac{N_A}{n_i}\]

- oxide capacitance per unit area

 \[= \frac{\varepsilon_{ox}}{t_{ox}}\]

- flatband (offset) voltage due to oxide charge & work function difference

- silicon surface

 - poly gate

 - n^{-} inversion layer

- n^+ source

 - p-substrate

 - Q_{dep} depletion charge

- n^+ drain
Drain-Induced Barrier Lowering

- Since the channel must be depleted of charge before inversion takes place, any help on depletion process will reduce V_T
- Large V_{ds} => large depletion layer around drain
- Part of channel surface already depleted
- Lowered barrier => V_T reduced => increased leakage current
DIBL

- For long-channel device, the depletion layer width is small around junctions so V_T does not change noticeably.
- For short-channel devices, as we increase V_{DS}, the depletion layer will continue to increase and help to reduce the V_T.
- V_T will continue to decrease as depletion layer thickness grows.

If source and drain depletion regions merge --- Punch-through occurs!
Effect of DIBL

- As V_{DS} is increased, the current goes up (shift of graph up)
Gate-Induced Drain Leakage (GIDL)

- Drain-to-substrate leakage due to band-to-band tunneling current in very high field depletion region in gate-drain overlap region
- Caused by thinner oxides, lightly-doped drains and high V_{DD}
Short Channel Effect (SCE)

V_T rolloff at shorter L since less charge must be depleted to achieve surface inversion

- But $V_T \uparrow$ as $L \downarrow$ is observed… why?

Reverse Short Channel Effect (RSCE)
Reverse Short-Channel Effect (RSCE)

- p-type impurities gather at edges of source and drain and accumulate at point defects in this region during oxidation.

As L decreases, V_T rises before conventional SCE kicks in.

- p-type impurities gather at edges of source and drain and accumulate at point defects in this region during oxidation.
- Cause V_T to increase to compensate for extra charge.
- Actual curve depends on whether SCE or RSCE is dominant.

Actual curve depends on whether SCE or RSCE is dominant.
I_{on} vs. I_{off} for 90nm CMOS

- “No free lunch” principle prevails again: high $I_{ON} \rightarrow$ high I_{OFF}
- V_T's not scaling as aggressively as V_{DD} (1.0V in 90nm & 65nm)
- Technology providers offer variety of V_T's on same die to concurrently meet high-speed vs. low-leakage needs
Leakage Reduction – Long L_{eff}

- Allow two different minimum sizes: nom-L_{eff} and long-L_{eff}
- Most library cells are available in both flavors
- long-L_{eff} are ~10% slower but have 3X less leakage
- Use nom-L_{eff} for critical paths and long-L_{eff} for non-critical paths
- Do not increase area of source/drain regions, just increase L

Why does this work? effect of DIBL is reduced.
Leakage Reduction – Body-bias

- Called VTCMOS (variable threshold CMOS)
- Threshold voltage of both devices are increased by adjusting the body-bias voltage in order to reduce subthreshold leakage current in standby mode

- Requires twin-tub technology so that substrates of individual devices can be adjusted
Leakage Reduction – Body-Bias

- Devices get slower when V_T is higher
- Set bias to obtain low-V_T devices on critical path and high-V_T devices on non-critical paths and SRAMs
- As substrate bias increases, pn junction breakdown will occur so this places a limit on the voltages that can be used
- Optimal value of reverse bias continues to decrease since doping levels continue to increase and breakdown voltage of pn junctions decrease (especially for NMOS device)
- This may not be as useful in future technologies
Leakage Reduction - Multiple V_T Libraries

- Deep submicron libraries provide three types of transistor V_T’s for NMOS and PMOS devices
 - LVT = low threshold voltage (high speed)
 - SVT = standard threshold voltage (compromise)
 - HVT = high threshold voltage (low leakage)
- Place LVT cells along critical path
- Place SVT or HVT cells along non-critical paths and SRAM arrays
- Typical distribution in microprocessors (IBM P5)
 - SVT (65%), HVT(33%), LVT(2%)
User Higher V_{DD} and V_T for Memory

- **LOGIC**
 - V_{DD}: Low (0.5V)
 - V_T: Low (0V)
 - High-perf.

- **MEMORY**
 - V_{DD}: High (1V)
 - V_T: High (0.3V)
 - Low-leakage

- 0.5V 400MHz 16bit processor
- 3.5mW
Reducing Leakage Power – Power Gating

Logic circuit

Thin t_{OX}
Low V_T
Low V_{DD}

V_{DD}

1.2V

V_{SSV}

V_{GS}

Leakage cut-off switch

High V_T
High V_{GS}
Thick t_{OX}

Called

“MTCMOS”

<Stand-by> <Active>

1.5V

0.5V=V_{DD}

0V
Issues in MTCMOS

- Virtual ground not actual ground (lose some noise margin)
- NMOS leaks more than PMOS
- Can increase width of sleep transistor to reduce voltage at virtual ground but it will also increase subthreshold leakage and area of sleep transistor
- Sleep time must be long enough warrant its use
- Wakeup power must be offset by reduced leakage power
- Choose type, number and W of sleep transistors carefully
Virtual V_{DD} drift

![Diagram showing virtual V_{DD} with input illustrations](image)

- **Active Mode**: With Input = “1”
- **Sleep Mode**: With Input = “0”

- **Virtual V_{DD}**
- **Time (s)**: 50n, 100n, 200n, 300n, 400n, 25,999.8m, 26m, 25,000.2m

- **Voltages**: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

- **States**: Sleep = “0”, Sleep = “1”, Sleep = “4”
Use Zig-Zag Style Power Gating

- Allows gate to retain value, assuming input is known
- Need to force inputs to desired values
- Difficult placement/routing problem
Use Sleep Transistor in Each Gate

- Reduces effect of DIBL on each gate
- Put such gates in critical path and SVT, HVT cells in the non-critical paths

(a) 2-input NAND cell (b) 2-input NOR cell
What is the right balance?

- Optimal dynamic/leakage power ratio is 70/30, [Kuroda, ICCAD 2002]
Summary

Major concern today is leakage power.
- Subthreshold leakage will continue to be a problem
- Power gating is a widely-used approach
- Thin-oxide gate leakage may be reduced at 45nm
- Substrate bias to adjust V_T may lose its impact
- Junction leakage may be a problem soon
- Hot-carriers may become important again if V_{DD} does not continue to scale with technology
- Need to strike proper balance dynamic and static power in a design to minimize power

Power and Energy reduction and recycling will continue to be dominant topics for the foreseeable future