
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

CE216795 - PSoC 6 MCU Dual-CPU Basics

www.cypress.com Document Number: 002-25617 Rev.** 1

Objective

These examples demonstrate the two CPU cores in PSoC® 6 MCU doing separate independent tasks, and communicating with
each other using shared memory and the inter-processor communication (IPC) block; using ModusToolbox™ IDE.

Requirements

Tool: ModusToolbox™ IDE 1.0

Programming Language: C

Associated Parts: All PSoC® 6 MCU parts with dual CPUs

Related Hardware: PSoC 6 BLE Pioneer Kit

Note: The PSoC 6 BLE Pioneer kit is shipped with KitProg2, and ModusToolbox IDE only works with KitProg3. Before testing
this code example, make sure that the kit is upgraded to KtiProg3. See ModusToolbox IDE Help > ModusToolbox IDE
Documentation > User Guide, Section PSoC 6 MCU KitProg Firmware Loader.

Overview

The first example shows the two CPUs in PSoC 6 MCU – Arm® Cortex®-M0+ (CM0+) and Arm Cortex-M4 (CM4) – doing
independent tasks. The tasks are simple; each task blinks a separate LED using a firmware delay.

The second example uses the inter-processor communication (IPC) block in PSoC 6 MCU. Using the IPC block, the CPUs share
a portion of the SRAM and communicate in a simple mutex/semaphore-based application.

Hardware Setup

This example uses the kit’s default configuration. Refer to the kit guide to ensure that the kit is configured correctly.

Software Setup

None.

Operation

1. Connect the kit to your PC using the provided USB cable.

2. Add the code example to the IDE, in a new workspace. See KBA225201.

3. Program the PSoC 6 MCU device. In the project explorer, select the mainapp project. In the Quick Panel, scroll to the
Launches section and click the Program (KitProg3) configuration.

LED Bl ink Example

4. Confirm that the kit’s blue and red LEDs blink, at slightly different rates.

http://www.cypress.com/
http://www.cypress.com/modustoolbox
http://www.cypress.com/PSoC6
http://www.cypress.com/CY8CKIT-062-BLE
https://community.cypress.com/docs/DOC-15968

PSoC 6 MCU Dual-CPU Basics

www.cypress.com Document Number: 002-25617 Rev.** 2

IPC Shared Memory Example

5. Connect oscilloscope probes to four kit pins P5[3:0] on the kit connector J4. Confirm that the oscilloscope display is similar
to Figure 1, when all four pins are monitored.

Figure 1. Screenshot Showing Dual CPUs Reading and Writing Shared Memory

Cortex-M0+ Read

Cortex-M0+ Write

Cortex-M4 Read

Cortex-M4 Write

Debugging

You can debug the example to step through the code. Use the Debug (KitProg3) configuration. See KBA224621 to learn how

to start a debug session with ModusToolbox IDE.

Design and Implementation

There are two examples:

1. Basic Example: The two CPUs each blink a separate

LED. The hardware design uses only device pins for
blinking LEDs.

Figure 2 shows the firmware design. Note that after the
PSoC 6 MCU device reset, CM0+ always executes first
while CM4 is held in a reset state.

Figure 2. Dual CPU Basic Flowchart

Device reset and initialization

Enable Cortex-M4

Toggle the LED

Delay

Cortex-M4 Initialization

Toggle the LED

Delay

Cortex-M0+ Initialization

http://www.cypress.com/
https://community.cypress.com/docs/DOC-15763

 PSoC 6 MCU Dual-CPU Basics

www.cypress.com Document Number: 002-25617 Rev.** 3

2. Inter-Processor Communication (IPC) Example: The CPUs communicate with each other using a mutex to control the

access to a shared variable. Each CPU performs actions based on the value in the variable. The firmware uses the IPC
application programming interface (API) in the PSoC 6 SDK.

Figure 3 shows the firmware design. The CPUs update a one-byte shared variable in SRAM as follows:

 CM0+ increments the least-significant (LS) 4-bit nibble, then waits for the most-significant (MS) nibble to equal the LS
nibble.

 CM4 waits for the LS nibble to not equal the MS nibble, then copies the LS nibble into the MS nibble to make the two
halves of the byte equal.

Figure 3. Dual CPU Shared Memory Communications Flowchart

Device reset and initialization

Enable Cortex-M4

Increment the 4 LS bits

of the shared variable

Cortex-M4 Initialization

Cortex-M0+ Initialization;

‘sharedVar’ defined in Cortex-M0+ code

Initial handshaking with the Cortex-M4;

send the address of the shared variable

Wait for the 4 MS bits

to equal the 4 LS bits

Wait for the 4 MS bits to

NOT equal the 4 LS bits

Set the 4 MS bits to be

equal to the 4 LS bits

Initial handshaking with the Cortex-M0+;

receive the address of the shared variable

Initial handshaking

Get the handle for the

shared IPC channel

Wait for channel to be released

Acquire lock on channel;

Write address of ‘sharedVar’ to channel

Wait for channel lock release,

indicating channel has been read

Get the handle for the

shared IPC channel

Release lock on channel

Read address of ‘sharedVar’ from channel

Wait for channel to be locked,

indicating channel has been written

Cortex-M0+ Cortex-M4

http://www.cypress.com/

 PSoC 6 MCU Dual-CPU Basics

www.cypress.com Document Number: 002-25617 Rev.** 4

In the main() functions for both CPUs, the shared variable is never accessed directly. Instead, the main function calls utility
functions that provide mutex lock and release access for reading and writing the variable. The mutex access utility functions
in turn call IPC driver functions that provide an atomic IPC channel lock and release capability. This ensures that only one
CPU at a time accesses the shared variable.

The mutex access utility functions are in the code example project files ce216795_common.h/.c. Copies of the same file,
with the same utility functions, exist in both the _mainapp and the _mainapp_cm0p projects. Even though the files and
functions are in separate builds and binaries, for good design practice, the functions should be considered to be executed
simultaneously by both CPUs. This is similar to mutex techniques in RTOS designs except you have multiple CPUs instead
of multiple tasks.

Four pins are used for debug purposes; see Figure 1.

Design Considerations

Basic Example

CY8CKIT-062-BLE has one RGB LED module. Therefore, in the LED blink example, one of four colors may be displayed at any
time: black (both LEDs OFF), blue, red, and purple (both LEDs ON). To see the transitions, keep the two blink rates low, and
different from each other.

If the pins are on the same GPIO port, only the following GPIO API functions should be used to update the pins: GPIO_Write(),

GPIO_Set(), GPIO_Clr(), and GPIO_Inv(). For more information, see the ModusToolbox IDE documentation.

IPC Example

The example may be switched such that the shared variable is defined in the CM4 code and its address sent to CM0+.

The example includes error handling in the form of a HandleError() function, which is called if an IPC error or a mutex

lock/release timeout is detected. The function just drops into a placeholder loop; it can be modified for application-specific error
handling.

A number of other IPC-based code examples are available; they demonstrate more complex features of the IPC block and PDL
driver. For more information, see Related Documents.

Dedicated and Shared Resources

This code example shows two general ways to allocate resources (e.g., pins, UARTs) to two CPUs:

▪ Dedicate a resource to a CPU. A good practice is to document the CPU that “owns” the resource. Include code to use the
resource only in the firmware for the desired CPU – place it in either the _mainapp or the _mainapp_cm0p project in your

application.

▪ Share memory or other resources between the CPUs. The IPC shared memory example shows how a mutex may be

implemented to share memory between the CPUs. Use the same technique to share a resource such as a UART.

Flash and SRAM memory that are allocated in a CPU’s executable is generally separate from that for the other CPU. If custom
sections and section placement are defined in the CPUs’ linker scripts, you must ensure that the sections do not overlap.
Conversely, another way to share memory is to define custom sections that have the same address.

Resources and Settings

This example uses only GPIO pins, all configured for strong drive, input buffer OFF. The design.modus file contains all the
configuration settings. For pin usage and configuration, open the Pins tab of the design file.

http://www.cypress.com/
http://www.cypress.com/cy8ckit-062-ble

 PSoC 6 MCU Dual-CPU Basics

www.cypress.com Document Number: 002-25617 Rev.** 5

Reusing This Example

This example is designed for the kit indicated in Related Hardware. It is easily portable to the PSoC 6 WiFi-BT Pioneer Kit, which
has the same pin assignments for the LEDs and button as CY8CKIT-062-BLE. Change the device to CY8C6247BZI-D54.

To port this code example to a different platform or device, right-click the ..._mainapp project and click Change ModusToolbox
Platform... or Change ModusToolbox Device.... If changing to a different platform, you may need to reassign pins. Note that

the basic example uses the red and blue LED in an RGB LED module. Other kits have different LED configurations; adapt the
application to those LED configurations.

In some cases, a resource used by a code example is not supported on another device. In that case, the example will not work.
If you build the code targeted at such a device, you will get errors. See the device datasheet for information on which resources
a device supports.

Related Documents

Application Notes

AN215656 – PSoC 6 MCU: Dual-CPU System Design
Describes the dual-CPU architecture in PSoC 6 MCU, and shows how to
build a simple dual-CPU design

AN221774 – Getting Started with PSoC 6 MCU
Describes PSoC 6 MCU devices and how to build your first ModusToolbox
IDE or PSoC Creator project

AN210781 – Getting Started with PSoC 6 MCU with
Bluetooth Low Energy (BLE) Connectivity

Describes PSoC 6 MCU with BLE Connectivity devices and how to build
your first PSoC Creator project

Code Examples

Visit the Cypress GitHub site for a comprehensive collection of code examples using ModusToolbox IDE

Device Documentation

PSoC 6 MCU: PSoC 63 with BLE Datasheet PSoC 6 MCU: PSoC 63 with BLE Architecture Technical Reference Manual

Development Kits

CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit

CY8CKIT-062-WiFi-BT PSoC 6 WiFi-BT Pioneer Kit

CY8CPROTO-063-BLE PSoC 6 BLE Prototyping Kit

CY8CPROTO-062-4343W PSoC 6 Wi-Fi Prototyping Kit

Tool Documentation

ModusToolbox IDE
ModusToolbox IDE simplifies development for IoT designers. It delivers easy-to-use tools and a familiar
microcontroller (MCU) integrated development environment (IDE) for Windows, macOS, and Linux.

Cypress Resources

Cypress provides a wealth of data at www.cypress.com to help you to select the right device, and quickly and effectively integrate
the device into your design.

For PSoC 6 MCU devices, see KBA223067 in the Cypress community for a comprehensive list of PSoC 6 MCU resources.

http://www.cypress.com/
http://www.cypress.com/documentation/development-kitsboards/psoc-6-wifi-bt-pioneer-kit
http://www.cypress.com/an215656
http://www.cypress.com/an221774
http://www.cypress.com/AN210781
https://www.cypress.com/mtb-github
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=field_related_products%3A114026&f%5B2%5D=resource_meta_type%3A583
http://www.cypress.com/CY8CKIT-062-BLE
http://www.cypress.com/documentation/development-kitsboards/psoc-6-wifi-bt-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/psoc-6-ble-prototyping-kit
http://www.cypress.com/documentation/development-kitsboards/psoc-6-wi-fi-prototyping-kit?source=search&cat=software_tools
http://www.cypress.com/products/modustoolbox-software-environment
http://www.cypress.com/
https://community.cypress.com/docs/DOC-14644

 PSoC 6 MCU Dual-CPU Basics

www.cypress.com Document Number: 002-25617 Rev.** 6

Document History

Document Title: CE216795 – PSoC 6 MCU Dual-CPU Basics

Document Number: 002-25617

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 6397585 MKEA 12/03/2018 New version of CE216795, updated for ModusToolbox IDE.

http://www.cypress.com/

 PSoC 6 MCU Dual-CPU Basics

www.cypress.com Document Number: 002-25617 Rev.** 7

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Videos | Blogs
| Training| Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security
measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as
unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/cypressgithub
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

