A

w# CYPRESS

~g@@@p” EMBEDDED IN TOMORROW™

AN84810

PSoC® 3 and PSoC 5LP Advanced DMA Topics

Author: Ranjith M
Associated Project: Yes

Associated Part Family: All PSoC® 3 and PSoC SLP parts
Software Version: PSoC CreatorE 3.0 SP2

Related Application Notes: AN52705, AN61102

ANB4810 discusses several advanced PSoC® 3 and PSoC 5LP direct memory access (DMA) topics and design
challenges. This application note builds upon the fundamental concepts introduced in AN52705 1 Getting Started
with DMA. Topics covered include indexed transfers, timing and bandwidth considerations, data alignment, and DMA

debugging tips.

Contents

1 INtrOAUCHION......cieiiiei e
2 PSoC Resources.................
2.1 PSoC Creator

2.2 Code EXamPIEScceveeviiiiiiiiiee e 4
2.3 PS0oC Creator Helpuveveiiiiiiiiieeeee 5
2.4 Technical SUPPOIt........ccvveiiiieeeiiiee e 5
3 DMA Considerations..........cccceuuruiiieieeeeiiniiieeeae e 6
3.1 DMA Terms and Definitions............cccccoeveeene 6
3.2 DMA TimMiNgeeveeieeeiiiiiiiiee e 7
3.3 DMA Channel Priority Handling 10

3.4 Terminating a TD Chain
4 Multi-Byte Data Alignment............ccccvevveeeeininenenns
5 Writing to Standard Registers and Components.....18
6 Modifying a TD Dynamicallycccccooveeeiiinerennns 27

1 Introduction

10
11
12

13

6.1 Indexed DMAooiiiieee e
6.2 Nested DMA .
Debugging DMAoooiiiiiie e
7.1 CommON ISSUES.........cceviiiiiiiiiiiiiee e
7.2 Debugging Methods............ccciieiiiiiiiieneenn.
PrOJECES ..t
8.1 Parallel to Serial Converter Project
8.2 Nested DMA Projectcoccveeviiieeiniieeenne
SUMMATY .o
Appendix A: Memory Mapscccccevvveeniieeesnnnennn
Appendix B: Termination Request Signal

Appendix C: DMA Channel Arbitration
FIOW Diagramc..oooiiiieiiiiiieeiieee e 39
Appendix D: Misaligned Data Transfers.................. 40

Direct memory access (DMA) controllers transfer data between peripherals and memory without CPU intervention.
The DMA controller (DMAC) in PSoC® 3 and PSoC 5LP features 24 channels and 128 transaction descriptors (TDs),
making it very versatile for a wide variety of applications. PSoC CreatorE , the development environment for PSoC,
has tools including a DMA wizard and component APIs that make it easy to desigh complex DMA functions.

This application note teaches you advanced methods to get maximum performance from the PSoC DMAC. The
topics covered include DMA timing, DMA channel priority handling, multi-byte data alignment, and methods to modify

a TD dynamically.

This application note assumes that you are already familiar with the topics discussed in the basic DMA application
note, AN52705 i Getting Started with DMA. It also assumes that you are familiar with developing applications using
PSoC Creator for PSoC 3 or PSoC 5LP. If you are new to these products, you can find introductions in AN54181 1
Getting Started with PSoC 3 and AN77759 1 Getting Started with PSoC 5LP. If you are new to PSoC Creator, see

the PSoC Creator home page.

WwWWw.Ccypress.com

Document No. 001-84810 Rev. *C 1

http://www.cypress.com/?rID=37793
http://www.cypress.com/?rID=44335
http://www.cypress.com/?rID=37793
http://www.cypress.com/?rID=37793
http://www.cypress.com/?rID=37793
http://www.cypress.com/?rID=39157
http://www.cypress.com/?rID=39157
http://www.cypress.com/?rID=60890
http://www.cypress.com/?id=2494

A
W

.

CYPRESS

EMBEDDED IN TOMORROW™

PSoC®3 and PSoC 5LP Advanced DMA Topics

2.1

PSoC Resources

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design,
and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources,
see KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. The following is an abbreviated list for PSoC

4.

1
1

Overview: PSoC Portfolio, PSoC Roadmap

Product Selectors: PSoC 1, PSoC 3,
PSoC 4, or PSoC5LP. In addition, PSoC
Creator includes a device selection tool.

Datasheets: Describe and provide electrical
specifications for the PSoC 4000, PSoC 4100,
and PSoC 4200, PSoC 4xx7 BLE, PSoC
4200-M device families

CapSense Design Guide: Learn how to
design capacitive touch-sensing applications
with the PSoC 4 family of devices.

Application Notes and Code Examples:
Cover a broad range of topics, from basic to
advanced level. Many of the application notes
include code examples. PSoC Creator
provides additional code examplesi see
Code Examples.

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and
firmware design of systems based on PSoC 3, PSoC 4, and PSoC 5LP. See Figure 17 with PSoC Creator, you can:

1.

Drag and drop Components to build your
hardware system design in the main design
workspace

Codesign your application firmware with the
PSoC hardware

1 Technical Reference Manuals (TRM):

Provide detailed descriptions of the
architecture and registers in each PSoC 4
device family.

Development Kits:

1 CYB8CKIT-040, CY8CKIT-042, and
CY8CKIT-044 PSoC 4 Pioneer Kits are
easy-to-use and inexpensive development
platforms. These kits include connectors

for ArduinoE compatible
DigilentE PmodE daughter

1 CY8CKIT-049 is a very low-cost
prototyping platform for sampling PSoC 4
devices.

1 CY8CKIT-001 is a common development
platform for all PSoC family devices.

The MiniProg3 device provides an interface
for flash programming and debug.

Configure Components using configuration
tools

Explore the library of 100+ Components

Review Component datasheets

WWW.CYpress.com

Document No. 001-84810 Rev. *C

http://www.cypress.com/
http://www.cypress.com/?id=4&rID=77024&source=an79953
http://www.cypress.com/psoc
http://www.cypress.com/?rID=86788&source=an79953
http://www.cypress.com/?id=1573&source=an79953
http://www.cypress.com/?id=5041&source=an79953
http://www.cypress.com/?id=4976&source=an79953
http://www.cypress.com/?id=5044&source=an79953
http://www.cypress.com/?rID=94034&source=an79953
http://www.cypress.com/?rID=78805&source=an79953
http://www.cypress.com/?rID=78632&source=an79953
http://www.cypress.com/?rID=99492
http://www.cypress.com/?rID=108039
http://www.cypress.com/?rID=108039
http://www.cypress.com/?rID=78578&source=an79953
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&id=4749
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=110&id=4749&applicationID=0&l=0
http://www.cypress.com/?rID=94456&source=an79953
http://www.cypress.com/go/cy8ckit-042
http://www.cypress.com/cy8ckit-044
http://www.cypress.com/?rID=92146&source=an79953
http://www.cypress.com/go/cy8ckit-001
http://www.cypress.com/go/cy8ckit-002
http://www.cypress.com/psoccreator/?source=an79953

w CYPRESS

EMBEDDED IN TOMORROW™

PSoC®3 and PSoC 5LP Advanced DMA Topics

Figure 1. PSoC Creator Features

NasHadg@

File Edit View Project Build Debug Tools
$Ga@X 9o

Window Help

200%

-2a

Debug -

8- % 2 F | % |

Microsoft Sans Serif

-0 - BIU

%% G5 | 42 Sh 2 A\ 4 BT L

Workspace Explorer (1 project) + & x\ Start Page TopDesign.cysch | vabx \(‘ Catalog (142 co.. » # X
B B + | searchfor. | |@
Workspace ThermalManagement' (« i Temperature Sensors and Fans Analog Temperature Sensing
3] Project Thermal Manageme| | o] < Closed-Loop Fan Controller (Extemal to PSoC) y q?rprss’ ol ab
: 2 press Component Catalog -
22 1l
i Thermal Management Syste C s Analog
=03 Header Files =} 12v Vo4 8 ADC
= Amplifiers
[8) ThermalManager.h =lal| N Reference 2 % &)
43 Source Files |~ 3 Rosior 23 F 58 Anolog MUK
+/c] main.c § T | ‘ - z g g«;[m:parawrs
“-¢] ThermalManager.c -] TACH1 P35 'y
503 Generated_Source EIE ~ETACHR T T pat] Thermistor 3) J 8 Manual Routing
&4 PSoC4 . von_1_2 %a CapSense
265 ADC g LT -t %@ Communications
+[d] ADC.c B Ves g 120
g
- ADCh 2 . ADC Channels: 8 125
i~[8] ADC_INT ¢ i}] 5 = rence resistor [¢] Serial Communicaticn Block
] ADC_PM.c 3 e e eI rmistor ¢l Software Transmit UART [v] _
55 ADC_intClock 2 und %8 SPI =
—nitlec 5 Name: FanCortroller_1 15 UART (SCB mode) [v1.10]
ADC_intClock.c a Host Processor ||
DC_intClock.h 12C-based D. 2 UART [v2.30]
_IRQ (12C-based Data %8 Digital
/ADC_IRQ.c tions
ADC_IRQ h [) 4pole motors by
e s
i ;LECLFC c) &pole motors PWM resclution PWI
[0 CLFCh Features
“/d CLFCNTc s |t D B EED BEE * Supportorup o 16 Pi<ori ‘sa Ports and Pins
& LrC. DraSend Diyorce AU | RPMA | Duyord PS5 39520 5LP duvces and 1 Mmoot 4 &g System
@ CLFC DetaSend.c] TS o B 1 ® Indiiduslorbanted PHVM clputs wih achameter nputs | 68 Thermal Mansgement
pports 25112, 50 iz or verapec — H
*[1) CLFC_DataSend h - = ® Supports 251z, 50 ifid PYWM [Ea)
B CLFC_PW_PWM1 2 B 5 000 |5 100 = Supportsfan spescs up 0 25 08O RPA {[#] RTD Calculator [v1 20]
(0] CLFC_Fw_PwM1 3 P 000 |2 100 * Support 450k and Spoie motors — +-[2] Thermistor Calculator [v120 _
8 CLFC_FW_PWM) 8 — B e 0 - = ¢ St i cr , S
o gLrCcL FFCWF&\F\mW Page 1 5 =B 1000 [100 i <> [Open datasheet
¥ E CLFC_FW_PWMZ. Output 5 % = 00 = 00 Zv:“":;":::i":':':d';u:v::zw'ﬂw‘ Intelligent 4-Wire Dﬁsﬁ? Controller
0] CLFC_FW_PWM2. Fan Controler
t-[g] CLFC_FW_PWM2. Show output from: All G N
N PV eneral Descri alertis]
@ e s Log file for this se n ol
i
1] CLFC_Fw/_PwMz s st g Pl o TCAI orPScC L schomanyng pur et SlEcU S
W - e and S - lachs fanale
() CLFC_FW_PWM3 ™ [hoe anc o liachd fandes
« [» v |« o
Ready {X=214)Y=576} OErrors 0Warmings 1Notes

WwWw.Ccypress.com

Document No. 001-84810 Rev. *C

& CYPRESS

g~ EMBEDDED IN TOMORROW™ PSoC®3 and PSoC 5LP Advanced DMA Topics
2.2 Code Examples Figure 2. Code Examples in PSoC
PSoC Creator includes a large number of code example projects. Creator
These projects are available from the PSoC Creator Start Page, /m
as Figure 2 shows. age |«
Example projects can speed up your design process by starting g £
you off with a complete design, instead of a blank page. The PSoC® Creator

example projects also show how PSoC Creator Components can
be used for various applications. Code examples and datasheets

are included, as Figure 3 shows. P Drojects -
In the Find Example Project dialog shown in Figure 3, you have Create Mew Project...
several options: Open Existing Project...

1 Filter for examples based on architecture or device family,

i.e., PSoC 3, PSoC 4 or PSoC 5LP; category; or keyword —iried

PSoC Creator Start Page

1 Select from the menu of examples offered based on the Filter Quick Start Guide
Options Intro to PSoC

1 Review the datasheet for the selection (on the Documentation Intro to PS50l Creator
tab) PSoC Creator Training

. . Design Tutorials
1 Review the code example for the selection. You can copy and Getting Started With PSoC 3

paste code from this window to your project, which can help Getting Started With PSoC 4
speed up code development, or Getting Started With PSaC 5LP

1 Create a new project (and a new workspace if _needed) based BT ad Kits
on the selection. This can speed up your design process by)
starting you off with a complete, basic design. You can then MM‘M
adapt that design to your application. Kis

m

Product Information
PSaC Creator
PSoC Programmer
PSoC 3
PSoC 4 o

Figure 3. Code Example Projects, with Sample Code

Find Example Project @
' Fitter Options
Documentation .~ Sample Code .9] I L
Architecture [Psoc4 - ThC main(] S
-
. . {
D F: E -
TEEY [M] /* Enable global interrupts */
Tty PSoC 4100 CyGlobalIntEnable;
PSoC 4200
Keyword: PSoC-ﬁII]] /* Start PWM and CapSense components */
LED_CONTROL_Start():
. Project Mame ‘
ADC_Differertial_Preamplifier "
ADC_SAR_Seq_DieTemp_PSoC4 3
Bootloadable_PSoC4_Bxample |
Bootloader_PSoC4_Example
apSense CS50 P4
CapSense_CSD_P4 Example_WithTuner L hi =
CapSense_LowPower = while (1u) 3
CapSense_Proximity_Design i
CharLCD_CustomFort /* Update all baselines */
g?ﬂil)_glgﬁi%aéucdiaample i Cap3ense C5D UpdateEnabledBaselines();
Count7_Example
CRCExample /* Start scanning all enabled sensors */
CSD_Comp_AMUIX CapSense CSD ScanEnabledWidgets();
DebouncerExample - -
Em_EEPROM_Example
Fan_Control_futa_FW_with_Alert /* Wait for scanning to complete */
FW_Fan_Control while (CapSense_CSD_IsBusy(} != 0);
GlitchFiterExample - -
Hibemate_and_Stop_PowerModes . . _
Hibemate_F SoC4_Example /* Display CapSense state using LEDs */
12C_LCD_Example_PSoC4 CapSense DisplavState(): R
IDACE_P5oC4_Example i J] T | b
NN Tee oy
[’ Add to Existing Workspace] [Create New Workspace]I’ Cancel

WWW.CYpress.com Document No. 001-84810 Rev. *C 4

& CYPRESS

g~ EMBEDDED IN TOMORROW™ PSoC®3 and PSoC 5LP Advanced DMA Topics

2.3 PSoC Creator Help
Visit the PSoC Creator home page to download the latest version of PSoC Creator. Then, launch PSoC Creator and
navigate to the following items:
1 Quick Start Guide: Choose Help > Documentation > Quick Start Guide. This guide gives you the basics for
developing PSoC Creator projects.

1 Simple Component example projects: Choose File > Open > Example projects. These example projects
demonstrate how to configure and use PSoC Creator Components.

9 Starter designs: Choose File > New > Project > PSoC 4 Starter Designs. These starter designs demonstrate
the unique features of PSoC 4.

1 System Reference Guide: Choose Help > System Reference > System Reference Guide. This guide lists and
describes the system functions provided by PSoC Creator.

1 Component datasheets: Right-cick a Component a OpEn Bamdheet Wisitfthe PSoC 4 Component
Datasheets page for a list of all PSoC 4 Component datasheets.

1 Document Manager: PSoC Creator provides a document manager to help you to easily find and review
document resources. To open the document manager, choose the menu item Help > Document Manager.

2.4 Technical Support

If you have any questions, our technical support team is happy to assist you. You can create a support request on the
Cypress Technical Support page.

If you are in the United States, you can talk to our technical support team by calling our toll-free number: +1-800-541-
4736. Select option 8 at the prompt.

You can also use the following support resources if you need quick assistance.

1 Self-help
1 Local Sales Office Locations

WWW.CYpress.com Document No. 001-84810 Rev. *C 5

http://www.cypress.com/?id=2494&source=an79953
http://www.cypress.com/?id=4749&rtID=377
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=377&id=4749&source=an79953
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=377&id=4749&source=an79953
https://secure.cypress.com/myaccount/?id=25&techSupport=1&source=an79953
http://www.cypress.com/support
http://www.cypress.com/?id=1062

& CYPRESS

g EMBEDDED IN TOMORROW™ PS0C®3 and PSoC 5LP Advanced DMA Topics

DMA Considerations

The DMAC is one of the most useful components in PSoC 3 and PSoC 5LP. However, it also exposes a whole new
set of design considerations with which you may not be familiar. Here are some points to consider when designing a
system with DMA.

DMA Terms and Definitions
Following is a list of terms and definitions that are used in this application note. These terms are described in detail in
AN52705 1 Getting Started with DMA but are included here for clarity.

Peripheral HUB (PHUB): The PHUB is the central hub that has data buses connected between the CPU, DMAC,
and on-chip peripherals and memory.

Spoke: Spokes are data buses that branch out from the PHUB to peripherals. Spoke widths can be 16 or 32 bits; see
the device datasheet and Technical Reference Manual (TRM) for details. Figure 4 shows the PHUB and spoke
connections.

Channel: DMA channels use the PHUB to transfer data. A channel fetches transaction descriptors, accesses the
PHUB spokes for the source and the destination, and transfers data.

Transaction descriptor: A TD stores all information required for a data transfer, including the source and destination
addresses and the number of bytes to transfer. Multiple chained TDs can be allocated to a single DMA channel.

Figure 4. Peripheral HUB

uUsB
CAN
System Fixed Function
Resources 12C
» SRAM EEPROM Fixed Function Digi?;\llglsoilks

Timers

(UDB Bank 0)

CPU
A
Y
Spoke
Arbitration
A
Y
DMAC
10 Interface ADCs gligci;? l(gll':tg; Digi?;YgZilks
(UDB Bank 1)
e tomgy || oacs

Other Analog
Peripherals

WWW.CYpress.com Document No. 001-84810 Rev. *C 6

http://www.cypress.com/?rID=37793

A
W

CYPRESS

EMBEDDED IN TOMORROW™ PSoC®3 and PSoC 5LP Advanced DMA Topics

3.2

DMA Timing

This section describes how to calculate the best-case timing for a DMA channel. Many factors can cause the DMA to
deviate from this best-case timing; those factors are also discussed here.

The PSoC DMAC operates at the same frequency as the CPU, which is the bus clock frequency. Most PSoC family
members run at a bus clock frequency as high as 67 MHz. DMA data transfers are either intra-spoke (within the same
PHUB spoke) or inter-spoke (between different PHUB spokes).

For each data transfer, the DMA implements a set of phases, as Figure 5, Figure 6, and Figure 7 show:

Ve

A

Ve

A

> >

-

A

DMA request (DRQ) latch phase: It takes one clock cycle for the DMA request to be latched into the DMAC.

Arbitration phase: This phase is used to arbitrate between simultaneous requests from multiple DMA channels.
One clock cycle is required for this phase. If a channel loses arbitration, it reenters the queue and waits for the
next arbitration cycle.

Fetch phase: This phase is used fetch the TD and configuration information for the channel. One clock cycle is
required.

Source engine phase: This phase is used to select the spoke to which the source memory or peripheral is
connected. If the spoke is being used by another bus master, that is, the CPU, data transfer from the source is
delayed until the spoke is available. The source engine phase initially consists of a bus control cycle followed by
a data cycle. Then the control and data cycles are pipelined in parallel.

Destination engine phase: This phase selects the spoke to which the destination peripheral is connected. The
data collected in the source engine phase is transferred to the destination peripheral as soon as the spoke is
available. The destination engine phase initially consists of a bus control cycle followed by a data cycle. Then the
control and data cycles are pipelined in parallel.

Write back phase: In this phase, the TD and DMA channel configurations are updated after the data transfer.
This phase requires one clock cycle.

Figure 5 shows a simple state diagram for a DMA transfer. Figure 6 and Figure 7 on page 8 show the actual timing
for an inter-spoke and an intra-spoke data transfer.

Figure 5. DMA Data Transfer State Diagram

DMA idle

DMA channel
request

Write back
phase

Complete

Arbitration
phase

Destination
Engine phase

Burst not
Complete

Fetch phase

Source Engine
phase

WWW.CYpress.com Document No. 001-84810 Rev. *C 7

& CYPRESS

EMBEDDED IN TOMORROW™ PSoC®3 and PSoC 5LP Advanced DMA Topics

The number of clock cycles required for the source engine and destination engine phases is the same for an inter-
spoke and an intra-spoke data transfer. However, the two phases can happen in parallel for an inter-spoke transfer,
which usually requires fewer clock cycles.

Figure 6. Timing Diagram for DMA Inter-Spoke Data Transfer

DMA request
latch phase

Arbitration Phase N

Fetch Phase -

. Control Cycles Control 1 X Control 2 X Control 3 X Control 4 »-———— — Control N
Source Engine
Phase
Data Cycles Data 1 Data 2 Data3 »——-—-—-— Data N-1 Data N

L . Control Cycles Control 1 X Control 2 »—————— Control N-2 X Control N-1 X Control N
Destination Engine
Phase

Data Cycles Datal »————— DataN-3 X DataN-2 X Data N-1 Data N
writeack
Phase

DMA request
latch phase

Arbitration Phase ——— @ >— ——— . R

FetchPhase —— -+« —(»— ——— . -

. Control Cycles Control 1 Control 2 X Control 3 »- —————(Control N ——
Source Engine
Phase

Data Cycles Data1 Data2 »——-—--— Data N-1 DataN ———-

Destination Engine control Cycleg —— X — 000000 O OO control 1 Control 2) Control 3 - —————
Phase
pata Cyes Bt oz -
WwriteBck . -
Phase

When calculating DMA timing, start with the ideal conditions, as follows:

Ve

Only one DMA channel is active, and there is no arbitration between multiple DMA channels.

There is no arbitration between the DMAC and the CPU. Note that the CPU and the DMAC can access different
spokes simultaneously.

> >

The source and the destination spokes are available when the transfer is to be done.
The source and destination spoke widths are the same.

The data length is an even multiple of the spoke width, in bytes.

v v D

The source and destination start addresses are on a spoke width boundary.

WWW.CYpress.com Document No. 001-84810 Rev. *C 8

A,

w CYPRESS

- t

MBEDDED IN TOMORROW ™ PSoC® 3 and PSoC 5LP Advanced DMA Topics

The

whe

number of bursts required for a DMA transfer N is defined as follows:
06aRG6T (60 ————— 1)

re transfer count and spoke width are in bytes. See AN52705 for details on DMA burst transfers.

If the ideal conditions are met, the number of clock cycles required for an inter-spoke data transfer is calculated as
follows:

C=

The
C=

The

1 clock cycle to latch the drq signal + fo) 0 X @)
1 clock cycle for arbitration phase +

1 clock cycle for fetch phase +

(N + 3) clock cycles for source and destination engine phases +

1 clock cycle for write back phase

number of clock cycles required for an intra-spoke data transfer is calculated as follows:

1 clock cycle to assgrt the drq signal + o} CU 0] @)
1 clock cycle for arbitration phase +

1 clock cycle for fetch phase +

(N + 1) clock cycles for source engine phase +

(N + 1) clock cycles for destination engine phase +

1 clock cycle for write back phase

exact number of clock cycles required for a DMA transaction under non-ideal conditions varies depending on the

conditions. Use the following tips to calculate the clock cycles required for a non-ideal DMA transaction:

1.

The clock cycle to assert the drg signal is not required for continuous DMA transfers. For example, if the transfer
length is set to 100 and the request per burst is set to 0 (complete transfer in a single request), the latching of the
request is required only for the first DMA transfer.

The arbitration between multiple DMA channels takes only one clock cycle. If the DMAC is already performing a
data transfer, arbitration is performed in parallel with the data transfer, and this clock cycle is hidden.

If the CPU is competing with the DMAC for a spoke, the DMAC must wait until the CPU releases the spoke if the
CPU is assigned a higher priority than the DMAC. The priority of the CPU over the DMAC is controlled using the
spk_cpu_pri[6:0] bits in the PHUB_CFG register. See the iPHUBOsection in the PSoC Registers TRM for details.

If the source or destination start address is not on a spoke width boundary, the number of clock cycles required
for the DMA transfer varies depending upon the spoke width and the addresses. The formulas in Equations (1)
and (2) for inter-spoke and intra-spoke transfers can also be used in this case, with a change in the value of N as
calculated by Equation (3).

If the source and destination widths are 32 bits, N is unchanged if the source and destination addresses are 32-
bit DWORD aligned. N is multiplied by 2 if the source and destination are WORD aligned, and N is multiplied by 3
if the source and destination are BYTE aligned. See the section Multi-Byte Data Alignment for details.

If endian swapping is enabled for an inter-spoke DMA transaction, the destination transfer cannot occur until the
last source byte has been put into the DMAC FIFO. The DMAC must write the last source byte to the first location
of the destination to do the endian swap. The effective value of N in this case is calculated as (N calculated with
Source spoke width) + (N calculated with Destination spoke width) i 1.

If the source and destination peripherals have unequal spoke widths, the number of clock cycles required for a
transfer is governed by the narrower spoke width. In this case, N = (Transfer Count) / (Narrower Spoke Width).

WWW.CYpress

.com Document No. 001-84810 Rev. *C 9

http://www.cypress.com/?rID=37793

& CYPRESS

~g@e” EMBEDDED IN TOMORROW™ PSoC® 3 and PSoC 5LP Advanced DMA Topics

Table 1 shows the number of clock cycles required for a DMA transfer in different scenarios to transfer N bursts of

data.
Table 1. Number of Clock Cycles for DMA Transfer between PSoC Resources
Use Case Number of Clock Cycles
Flash to SRAM N+7
SRAM to SRAM 2N +6
SRAM to peripherals N+7
Peripherals to SRAM N+7
Peripherals to peripherals 2N +6

Appendix C: DMA Channel Arbitration Flow Diagram provides a flow diagram for DMA channel arbitration.

3.3 DMA Channel Priority Handling

Each of the 24 DMA channels is assigned a priority value ranging from 0 to 7, with 0 being the highest priority and 7
being the lowest. Since there are only 8 different priorities and 24 DMA channels, multiple channels may have the
same priority.

For channels having the same priority, two methods are used to decide which channel gets priority:

1. Simple priority: The lowest channel number has a higher priority. This is enabled by default.

2. Round robin: Round robin priority ensures that all channels get an equal opportunity to access the PHUB. This is
disabled by default and is set using the API function CyDmaChRoundRobinEnable().

For channels with different priorities, two rules are applied to determine which channel gets priority:
1. Simple priority: The channel with the lowest priority number gets priority.

2. Grant allocation fairness algorithm: The grant allocation fairness algorithm is designed such that even the lowest
priority channels get access once in a while. With this method, channels with priorities 0 and 1 always have 100
percent access and are not interrupted, with the exception that 0 is higher priority than 1. The channels with
priorities 2 to 7 are given access according to Table 2.

Table 2. Channel Priority Distribution

Channel Priority Bandwidth (%)

2 50
25

125

6.25

3
15

N o | 0|~ w

The grant allocation fairness algorithm is enabled by default. You can disable it by setting the simple priority bit (bit
23) in the PHUB_CFG regi st erPSoSExRegistets ERMiaRIHPESE GLPsRegisters DRV
for details.

Note that Table 2 applies only if DMA channels with all the priorities are requesting simultaneously. Otherwise, the
DMA channel with a higher priority is given more access than Table 2 shows.

Figure 8 shows a channel priority wheel that describes how the next 63 requests are handled if all channels with
priorities 2 to 7 are requesting simultaneously.

WWW.CYpress.com Document No. 001-84810 Rev. *C 10

http://www.cypress.com/?rID=37833
http://www.cypress.com/?rID=73299

& CYPRESS

~g@e” EMBEDDED IN TOMORROW™ PSoC® 3 and PSoC 5LP Advanced DMA Topics

3.4

Figure 8. DMA Channel Priority Wheel

Channel Request

DMA Channel
priority wheel

The bandwidth utilization of the DMA channel can be defined as the number of clock cycles utilized by the DMA
channel for the data transfer as a percentage of the total number of available clock cycles across sustained DMA
requests of burst length N.

For inter-spoke data w oo
transfers: Ow — pmmm @
For intra-spoke data w oo
transfers: 0w pTmT (5

If a channel with priority 2 to 7 is not requesting, the slots of the missing channel priority are used by the channel with
the highest priority. In that case, channels with a higher priority get more access than Figure 8 shows.

Terminating a TD Chain

In some cases, a TD must be terminated before data transfer is completed. This is called non-count termination.
There are three methods to terminate a TD and abort a DMA transaction:

A API function call to terminate the current TD [CyDmaChSetRequest(channel, CPU_TERM_TD)]
A API function call to terminate the current TD chain [CyDmaChSetRequest(channel, CPU_TERM_CHAIN)]

A Hardware trq signal

Use the API function CyDmaChSetRequest() to terminate either the current TD or the entire TD chain. This API
function disables the DMA channel and terminates the chain of TDs if the second parameter is set to
CPU_TERM_CHAIN. This API terminates the current TD but does not disable the DMA channel if the second
parameter is set to CPU_TERM_TD.

When one of these methods is used, the DMA channel is reconfigured as if the current transaction has completed
normally. If enabled, the nrq signal is activated; see the DMA Component datasheet for details.

Note: The DMA channel completes any ongoing transaction before terminating, so termination may require some
cycles for the final transaction to be complete. The DMAC may transfer more data bytes before terminating the TD.
You should be extremely careful while accessing these memory locations after a terminate TD API request as the
function is not blocking and may return before the data transfer has been actually terminated.

WWW.CYpress.com Document No. 001-84810 Rev. *C 11

http://www.cypress.com/?rID=46450

& CYPRESS

~g@e” EMBEDDED IN TOMORROW™ PSoC® 3 and PSoC 5LP Advanced DMA Topics

3.4.1

Using the Hardware trq Signal

You can also use the hardware signal trg, or termination request. This signal, when asserted during the source
engine phase of a transaction, stops the DMA transaction.

This is an effective way to terminate a TD using a hardware signal when the transfer count is set to zero. If the
transfer count parameter of a TD is set to zero, the TD runs indefinitely unless it is terminated by a non-count
termination. See Appendix B: Termination Request Signal for an example of how to use the trg signal.

Note: The trq signal is used only when the DMA is trying to transfer data. A positive edge on this line is ignored at all
other times.

Multi-Byte Data Alignment

One feature of the DMAC is that it can transfer more than one byte in a single bus cycle. This allows more efficient
and faster data transfers.

The section DMA Timing introduced I -
the concept of N: 00aw6i il06i —— (6)

Here are some examples:

For Transfer Count = 2; Spoke Width=2: N=1

For Transfer Count = 4; Spoke Width = 2: N=2

For Transfer Count = 3; Spoke Width =2: N = 2 (always round up to the next integer)
For Transfer Count = 4; Spoke Width = 4: N=1

All of these calculations assume that the source and destination addresses are aligned. There are three possible
ways for addresses to be aligned: BYTE, WORD, and DWORD, as Figure 9 shows:

A BYTE = All addresses
A WORD = Even or 16-bit addresses: 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0xOC, OxOE, and so on
A DWORD = 32-bit addresses: 0x00, 0x04, 0x08, 0x0C, and so on

Figure 9. Notation to Represent Possible Data Alignments in the Memory

0x00 | 0x01 | 0x02 | 0x03 | Ox04 | 0x05 | 0x06 | 0x07 | 0Ox08 | 0x09 | O0x0A | 0x0B | Ox0C | 0x0D | O0xO0E | O0x0F

DWORD DWORD DWORD DWORD

WORD WORD WORD WORD WORD WORD WORD WORD

BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE

To reduce the number of clock cycles needed for a data transfer, align the source and destination addresses with the
spoke width boundaries. An address is aligned with a 32-bit spoke width boundary if the address is DWORD aligned.
An address is aligned with a 16-bit wide spoke if the address is WORD aligned. BYTE-aligned addresses are never
aligned with any spoke width boundary.

Note: In some cases, if the addresses are not aligned with the spoke width boundaries, the DMAC may fetch
incorrect data from the source or write incorrect data to the destination address. Appendix D: Misaligned Data
Transfers details the results of misaligned data transfers.

You can avoid incorrect data transfers by using one of the following methods:

1. Enable the increment source address or increment destination address option in the TD configuration.
2. Force the source and destination addresses to the spoke width boundaries.

Figure 10 and Figure 11 show WORD-aligned and BYTE-aligned arrangements for 16-bit data, respectively.

WWW.CYpress.com Document No. 001-84810 Rev. *C 12

A,

W

CYPRESS

EMBEDDED IN TOMORROW™

PSoC® 3 and PSoC 5LP Advanced DMA Topics

N
Figure 10. WORD-Aligned Arrangement of 16-Bit Data
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 OxOA | OxOB [OxOC | OxOD | OxOE | OxOF
DATA VALUE
WORD WORD WORD WORD WORD WORD WORD WORD
Figure 11. BYTE-Aligned Arrangement of 16-Bit Data
0x00 | Ox01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | O0x0A | 0x0B | 0x0C | OxOD | OxOE | OxOF
DATA VALUE
BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE

A data transfer from address location fnois carried out in a single clock cycle if the data at the source is aligned with
the spoke boundary, as Figure 12 shows. When the data is BYTE aligned, data transfer takes two clock cycles, as

Figure 13 shows.

Peripheral A 16-bit
(16-bit data) [\ spoke
Peripheral A 16-bit
(L6-bit data) [\ spoke

Figure 12. Data Transfer of WORD-Aligned 16-Bit Data

Bus Clock

Data Read Cycles
for Burst = 2
(WORD Aligned
Data)

WORD

0x04

Figure 13. Data Transfer of BYTE-Aligned 16-Bit Data

from address

Bus Clock

Data Read Cycles BYTE
for Burst = 2 from address
(BYTE aligned 0x03

Data)

BYTE
from address
0x04

16-bit Peripheral B
spoke l l (16-bit data)
16-bit Peripheral B
Spoke (16-bit data)

Figure 14, Figure 15, and Figure 16 show the DWORD-aligned, WORD-aligned, and BYTE-aligned arrangements for
a 32-bit data transfer, respectively.
Figure 14. DWORD-Aligned Arrangement of 32-Bit Data

WwWWw.Ccypress.com

Document No. 001-84810 Rev. *C

0x00 | 0x01 | 0x02 | 0x03 0x04 | 0x05 | 0x06 | 0x07 0x08 | 0x09 | 0x0A | 0x0B | Ox0C | 0x0D | O0x0E | OxOF

DATA VALUE
DWORD DWORD DWORD DWORD

Figure 15. WORD-Aligned Arrangement of 32-Bit Data

0x00 | 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | OxO0A | 0x0B | 0x0C | 0x0OD | OxOE | OxOF

DATA VALUE
WORD WORD | WORD WORD WORD WORD WORD WORD
13

A
W

.

CYPRESS

EMBEDDED IN TOMORROW ™ PSoC® 3 and PSoC 5LP Advanced DMA Topics

Figure 16. BYTE-Aligned Arrangement of 32-Bit Data

0x00 | 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B | 0x0C | 0x0D | OXOE | OxOF
DATA VALUE
BYTE | BYTE | BYTE | BYTE | WORD | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE | BYTE

The data transfer from address location Mois carried out in a single clock cycle if the data at the source is aligned
with the spoke boundary, as Figure 17 shows. When the data is WORD aligned, the data transfer takes two clock
cycles, and when the data is BYTE aligned, data transfer takes three clock cycles, as Figure 18 and Figure 19 show.

Figure 17. Data Transfer of DWORD-Aligned 32-Bit Data

. Bus Clock J _| I_I 5
Peripheral A 32-hit 32-bit Peripheral B
(32-bit data) spoke Dot Read Cycles spoke (32-bit data)
for Burst = 4
(DWORD Aligned fro?nmgc(;:r[e)ss
Data) 0x04
Figure 18. Data Transfer of WORD-Aligned 32-Bit Data
Peripheral A (32- 32-bit WORD 32-bit Peripheral B
bit data) spoke Data Read Cycles from address) spoke (32-bit data)
(WORD aligned 0x02
Data) WORD
from address
0x04
Figure 19. Data Transfer of BYTE-Aligned 32-Bit Data
BYTE
. from address .
Peripheral A (32- 32-bit Data Read Gyl 0x03 32-bit Peripheral B
bit data) spoke ata f:raBursyffj TR spoke (32-bit data)
(BYTE aligned from address)

Data)

0x04

BYTE
from address
0x06

Note: If the transfer count is odd, the number of cycles is different. For example a 3-byte burst on a 32-bit spoke
takes two clock cycles, even if the addresses are DWORD aligned: one cycle to transfer two bytes, and another to
transfer the third byte. Also, if increment source and destination address are not enabled in the TD configuration, only
the first two bytes are transferred.

For the Keil compiler, use the keyword _at to force variables into absolute address locations in SRAM. This
ensures that variables are aligned with even address boundaries, for example:

uint 8 myVariable _at_ 0x1000;

Note: Variables forced to absolute memory locations cannot be initialized.

For the GCC compiler, use the keyword __attribute__ to force variables to 16-bit or 32-bit address boundaries.

For example:

uint32 var __ attribute_ ((aligned(32)));

WWW.CYpress.com Document No. 001-84810 Rev. *C 14

& CYPRESS

> EMBEDDED IN TOMORROW™

PSoC® 3 and PSoC 5LP Advanced DMA Topics

You can replace the number 32 in the previous format with 16 to align the variables with 16-bit address boundaries.
You must use the appropriate keywords to align the data with the spoke width boundaries, depending upon your
compiler.

Aligning UDBs

You can do DMA transfers to and from the registers in UDB-based PSoC Creator Components, though enabling the
increment source or destination address is not always a viable option. To work around this, you may need to force the
Component to be aligned with an address boundary. You can use PSoC Creator directives to force a UDB-based
Component to start at a specific address.

There are as many as 24 UDBs in a PSoC device, and each set of UDB registers has a particular base address. The
base addresses for the UDBs are provided in the PSoC 3 Registers TRM and PSoC 5LP Registers TRM. The UDBs
are distributed in the form of two banks and are numbered in a specific fashion, as Figure 20 shows. The dashed line
represents how UDBs are chained.

Figure 20. Organization of PSoC UDBs

0 1 2 3 4 5
o110 | 9 19 | 10! |13 | 14
! ! ! || '
| ! | 1H |
1111 | 8! '8 | 11} ;12 | 151
PR | = ol
| !
__L, | | 1 N I—
214 7 |7 41113 0!
' I L
| il T |
3(15 6 | 6 5112 1!
i _J_ - S I I R (|
Bank 1 Bank 0

The numbers in blue on the top and left of the diagram are the indices that PSoC Creator uses to address each of the
UDBs. The numbers inside the squares indicate the UDB number. For example, UDBO is addressed as U(2,5). To
find out where PSoC Creator places a Component in the UDB array, follow these steps:

1. Place a 16-bit UDB-based Counter Component in the TopDesign, as Figure 21 shows, and build the project.

Figure 21. Counter Component

Counter
Counter
Pin_CountIn [o}-+—
tc- — »{«J Pin_TermCount
m
Clock_Counter[JULH compy=
12 MHz
— count
—>clock
[0} —reset interrupt{+
16-bit (UDB)

WWW.CYpress.com Document No. 001-84810 Rev. *C 15

http://www.cypress.com/?rID=37833
http://www.cypress.com/?rID=73299

A,

w CYPRESS

- EMBEDDED IN TOMORROW™

PSoC® 3 and PSoC 5LP Advanced DMA Topics

2. Examine the .rpt file to find the location where PSoC Creator has placed the Component, as Figure 22 shows.

Workspace Explorer (1 project)
5 .
£l “Workspace UDB Data Alignment (1 Projects)
E+P2] “Project 'UDB Data Alignment’ [CYBC3856AX-040]
E+£3 DPBOS!
E1 DP20S1_Keil_302
305 Debug
EHL Listing Files
[Clock_1lst
[Counterlst
|1 Counter_PM.Ist
[CyBoothsmKeil Ist
[CyDmaclst
[cyfitier_cfg.lst
[CyFlashlst
[CyLibst
[cymemlst
3 cyPmist
[CySpelst
1] cyutils st
[KeilStartst
] mainlst
13 Fin_tlst
[Fin_2lst
|1 UDB Data Alignment elf
[} UDE Data Alignment hex

UDE Data Alignment map
|} UDE Data Alignment.rpt
"] UDE Data Alignment_timing i

[|

>3 X

anog

Sjueuoduiog

[emess_pomeeo

StartPage | TopDesign.cysch | UDB Data Alignment.cydwr) UDB Data Alignment.rpt |

Figure 22. Finding the UDB Location of the Component

Simulated Annealing

I <CYPRESSTAG name="Final Placement Summary"> I

Final Placement Summary

Resource Type : Count : Avg Inputs : Avg Outputs

DB . 2. 20 5 00
nal Placement Details">

<CYPRESSTAG na
<CYPRESSTAG na

Component Placemsnt Details

UDB [UDB=(0,0)] is empty.
UDB [UDB=(0,1)] is empty.
UDB [UDB=(0,2)] is empty.
UDB [UDB=(0,3)] is empty.
UDS [UDB=(0,4)] is empty.
UDB [UDB=(0,5)] is empty.
UDB [UDB=(1,0)] is empty.
UDB [UDB=(1,1)] is empty.
UDB [UDB=(1,2)] is empty.
UDB [UDB=(1,3)] is empty.

UDB is empty.
LB is empty.
LB is empty.
LB is empty.
LB is empry.
uDs

is empty.
IIDE -

LABE[UDB=(2,4)] [LB=0] #macrocells=2, #inputs=2, #§pterms=2 I

1
[McSlotId=0]: MacroCell: Name=\Counter:CounterUDB:status 0\, Mode=(Combinatorial) @ [UDB=(2,4}][LB=0] [MC=0]
Total # of inputs 2
Total # of product terms : 1
Clock Enable: True

Main Equation : 1 pterm

UDB:cmp_out_i\ *

] #macrocells=4, #inputs=5, #pterms=4 I

1
[McSlotId=0]: MacroCell: Name=\Counter:CounterUDE:count_snabls), Mode=(Combinatorial) @& [UDB=(3,4)][LB=0] [MC=0]
Total # of inputs : 3
Total # of product terms : 1
Clock Enable: True
Main Equation : 1 pterm

output =

datapathcell: Name =\Coun

TORT FIE [
clock => Wetr_16 ,
cs_addr_1 :count_enable\ ,
cs_addr_0 load\ ,

chain_out = B:sC16:counterdp:carry\ }:

Figure 22 shows that PSoC Creator has placed the Component in UDBs U(2,4) and U(3,4) or UDB3 and UDB2. The
LSB data path of the Component is located in UDB2. In the Registers TRM, the FIFO 0 (FO) address for UDB?2 is
0x6442, which is a WORD-aligned address. Note that the UDB register space is on a 16-bit spoke, and the DMAC
can transfer two bytes, or one word, in one clock cycle on this spoke.

WwWWw.Ccypress.com

Document No. 001-84810 Rev. *C 16

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC® 3 and PSoC 5LP Advanced DMA Topics

If the Component placement was unaligned for some reason, follow these steps to align the counter FIFO 0
addresses with a word address boundary:

1. Open the .rpt file and locate the line fDesign Equations,0as Figure 23 shows. Expand the list by clicking on the
[+] symbol left of the line. Locate the line fDatapath listingoto find the fully elaborated name of the Component.

Figure 23. Locating the Fully Elaborated Name of the Component

Waorkspace Explorer -ax StartPage | TopDesign.cysch | UDB Data Alignment.cydwr -~ UDB Data Alignment.rptl
% % Loading plugins phase: Elapsed time ==> (0s5.232ms
@ \Workspace UDB Data Alignment (1 Projects) Initializing data phase: Elapsed time ==> 2Z=.515ms
) Project ' Al t [CYBC3866AX1-040] {CyDsfit argquments...}
E %‘@ DPSD;DBM E’ Design elaboration results...}
E}L’f} DP2051 Keil 902 & Elaboration phase: Elapsed time ==> 1=.405ms
g b h; - A HDL generation results..
E‘C} = g) g HDL generation phase: Elapsed time ==» 0s5.03Tms
F0 Listing Files B 11 {Synthesis results...}
+1] Clock_11st E z Warp synthesis phase: Elapsed time ==> 1s.610ms
~L] Counter.lst 4 2 <CYPRESSTAG name="Fitter results...">
-] Counter_PM.Ist o 2 Fitter startup details...}
] CyBootBsmkKeil Ist = P {Design parsing}
L] CyDmac.Ist ;ﬁ' 2
L] eyfitter_cfg.lst & 2 {Initial Mapping}
-] CyFlashlst = 3 {Duplicate Macr 1 detection}
-] CyLib.lst] 3 <CYPRESSTAG name="Design Egquations" icon="FILE RFT EQUATION">
-] eymemlst S 3
-] eyPmlst = 3
_1 CySpe.lst 3 Dezign Egquations
- cyutils.Ist 350
-] KeilStart Ist Sf"
-] main.lst 428 - : o
. 503 <CYPRESSTRG mn ="Datapath listing">
-] Pin_1lst -
-] Pin_2.lst ;
-] UDE Data Alignment.elf 206 Datapath listing
] UDE Data Alignment hex 5
UDE Dats Alignment. map 5
r __] UDB Data Alignment.rpt 5 | datapathcell: Name =\Counter:CounterUDB:sClé:counterdp:ull |
#] UDE Data Alignment_timing.html 5 PORT MED |
5 clock =» Net_16& ,
51 cs_addr_1 =>)Bicount_enablel ,
51 cs_addr 0 => \ ady ,
514 chain out => B:sClé:counterdp:carryh);

2. Open the .cydwr file, go to the Directives tab, and add a directive using the Add Directive button, as Figure 24
shows. In the column fiComponent (Signal) Name,otype the fully elaborated Component name obtained from the
.rpt file. Select fForceComponentUDBO as the directive type. Enter the required UDB location as mentioned
previously. To force the Counter to UDBO, where the FIFO 0 address is 0x6440, which is WORD aligned, enter
U(2,5).

Figure 24. Adding the Directive

pDesign.cysch UDBdataaIignment.qrdwﬂ DB data alignment.rpt |© Counter.c | Counter.h [~ cyfitter.h

&1 Add Directive

ame Directive Type Directive Value

\Counter:Counter UDB:5C16:counterdp:ulh | ForceComponent DB |Z| (2.5

3. Rebuild the project, and then check the .rpt file again to confirm that the counter was placed in UDB(2,5).

WWW.CYpress.com Document No. 001-84810 Rev. *C 17

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC® 3 and PSoC 5LP Advanced DMA Topics

5 Writing to Standard Registers and Components

The DMAC can transfer data to and from almost any memory or register location in PSoC. This includes the memory,
UDBSs, and registers of any PSoC Creator Component. However, the DMA Wizard provided with PSoC Creator
supports data transfer between only a few Components.

To use DMA to transfer data between Components that are not supported by the DMA Wizard, you must find the
addresses of the Components' registers. To do so, use the PSoC register maps in the PSoC 3 Registers TRM and
PSoC 5LP Registers TRM.

For example, the following steps show how to transfer a byte of data from a GPIO port to an SRAM location.

1. Place a Pins Component in the TopDesign and change the number of pins to 8, as Figure 25 shows. Deselect
the option hardware connection (HW Connection).

2. Enable the port interrupt control unit (PICU) interrupt, as Figure 26 shows. The PICU interrupt is used to trigger
the DMA channel to initiate a data transfer.

Figure 25. Configuring GPIO Pins (Type Tab)

Name: Input_Signall
" Pins |° Mapping |~ Reset [Builtin q b
INumberofPins: 8 |, H o+ +| B |
[A_lpi‘sl " Type | General " Input Output
E |nput_5?gna|_3] Analog Preview:
i [Fomar =
Input_Signal_3 [©] HW Connection
Input_Signal_4 || Digital Output
Input_Signal 5
Input_Signal_§

Input_Signal 7
[] Bidirectional

[] Show Annotation Teminal

Figure 26. Configuring GPIO Pins (Input Tab)

Configure 'cy_pins’ &I&J
Name: Input_Signal
~" Pins |° Mapping |~ Reset [* Builtin q b
Number of Pins: & |>(N ¥ F
[l Pins] Type | General Input] Output
B InputSignal 0 | mognoid: [cwos -
B Input_Signal_1
E Input_Signal_2 Intemupt:
[Input_Signal 3 |1 Hat Swap
B Input_Signal_4 Input Buffer Enabled
[Input_Signal_5
B Input_Signal_8 ync Mode: | Babieing

L[] Input_Signal 7

WWW.CYpress.com Document No. 001-84810 Rev. *C 18

http://www.cypress.com/?rID=37833
http://www.cypress.com/?rID=73299

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC® 3 and PSoC 5LP Advanced DMA Topics

3. Place two DMA Components and a Character LCD Component in the TopDesign. Wire the Components as
Figure 27 shows.

Figure 27. Completed TopDesign

Input_Signal lcd
Pins Character LCD
.
o
.
.
.
.
.
571 1
irq DMA_1 DMA_2
DMA DMA

drg nrqg drg nrgfe

4. Assign a suitable port for the GPIO using the .cydwr file. Then, if you selected port 5, for example, locate the
address of port 5 in the register map, as Figure 28 shows.

Figure 28. Locate the Address From the Register Map

L] ‘ Bookmarks. o]

P e 3

7| tem 1.3.241 PRT[0..11]_PS

F1ay Port Pin State Register1

PRT15_DR 15 ALA
s

P 13238 Reset: System reset for retention flops [reset_all_retention]
PRT[0.14] PS_ALIA
s

P 1228 Register : Address

- ;‘:T;:O—P“i"“’“ PRTO_PS: 0x5101 PRT1_PS: 0x5111 PRT2_PS: 0x5121
PRII0

7 . PRT3_PS: 0x5131 PRT4_PS: 0x5141 PRT5_PS: 0x5151
13241

PRT6_PS: 0x5161

V13242

PRT[0.11] DM[0.2] N

P 13200 Bits 7 6 5 4« | s | 2 | [o
PRT[0.11] SLW

P 13244
PRT[0.11]_BYP

I 13245
PRT[0.11]_BIE

P 13246
PRT[0.11]_INP_DIS

P 13247 The Port Pin State Registers PRTxPS read the logical pin state for the corresponding GPIO port. Writes to this register have

sl no effect. If the drive mode for the pin is set to High-Z Analog, the state will read 0 independent of the voltage on the pin.
ir

13248

PRT[0.11]_ PRT
7 13249
;:Tl’l 111 BIT_MA 7:0 PinState[7:0] Reads of this register return the logical state of the corresponding I/O pin. The data read from
P 1325% this register specifies the logical state of the pin:

PRTI0.11] AMUX 1'b1 Reads HIGH if the pin voltage is above the input buffer thresheld, logic high.
P 13251 1'b0 Reads LOW if the pin voltage is below that threshold, logic low

PRT[0.11]_AG L .)
P 1320 If the drive mode for the pin is set to High-Z Analog, the pin state will read 0 indepen-

PRT[0.11]LCD_CO dent of the voltage on the pin.

M_SEG
IF 13253

0RTIA 111 1en EN T

SW Access:Reset R:00000000

HW Access RW

Name PinState

Bits Name Description

5. You can use either the absolute address (0x5151) or the alias (Input_Signal_PS) in your code to address the port
pin state register.

You can find out the alias names for the Component registers from the fiho generated file of the Component.
These files are automatically generated by PSoC Creator when you build the project. In this case, the alias name
Input_Signal_PS is defined in the file Input_Signal.h.

WWW.CYpress.com Document No. 001-84810 Rev. *C 19

o CYPRESS

g~ EMBEDDED IN TOMORROW™ PSoC® 3 and PSoC 5LP Advanced DMA Topics

6. The PICU interrupt must be cleared each time it is triggered. All interrupts from the port are masked until the
interrupt is cleared. The PICU interrupt is cleared by reading the interrupt status register of the port.

7. This example uses two DMA channels: one to transfer the GPIO input value to SRAM and the other to clear the
PICU interrupt.

8. Open the DMA Wizard from the PSoC Creator menu via Tools > DMA Wizard, as Figure 29 shows.

Figure 29. Configure DMA_1

WWW.CYpress.com Document No. 001-84810 Rev. *C 20

