
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 002-22011 Rev. *B Revised February 28, 2020

Features

▪ Standard SPI Master interface

▪ Supports Single/Dual/Quad/Octal SPI Memories

▪ Supports Dual-Quad SPI mode

▪ Design-time configurable support for multiple (up to 4) external serial memory devices

▪ eXecute-In-Place (XIP) operation mode for both read and write accesses with 4KB XIP
read cache and on-the-fly encryption and decryption

▪ Supports external serial memory initialization via Serial Flash Discoverable Parameters
(SFDP) standard

▪ SMIF_PDL Component is a Peripheral Driver Library (PDL) Component (PDL Application
Programming Interface (API) only)

General Description

The SMIF_PDL Component is a multifunction hardware block that implements the SPI
communication to external serial memory devices, including the NOR Flash, SRAM, and non-
volatile SRAM.

The SMIF_PDL Component is a graphical configuration entity built on top of the cy_smif driver
available in the PDL. It allows schematic-based connections and hardware configuration as
defined by the Component Configure dialog.

When to Use a SMIF_PDL Component

Use a SMIF_PDL Component to increase the total memory capacity of a system. It includes
using external flash memory as a code space, data storage or data logging, using external
SRAM memory as a data storage, etc.

Serial Memory Interface (SMIF_PDL)
1.10

Serial Memory Interface (SMIF) PSoC® Creator™ Component Datasheet

Page 2 of 17 Document Number: 002-22011 Rev. *B

Definitions

▪ SMIF: Serial Memory Interface: This IP block implements a SPI-based communication
interface for interfacing external memory devices to a PSoC. SMIF supports Octal-SPI,
Dual Quad-SPI, Quad-SPI, DSPI and SPI.

▪ DSPI: DSPI supports 2 bits/cycle throughput. This is a mode of communication using the
SMIF block.

▪ Quad-SPI: Quad SPI supports 4 bits/cycle throughput. This is a mode of communication
using the SMIF block.

▪ Dual Quad-SPI: Two Quad-SPI slaves that implement two nibbles and thus support a
byte transfer/cycle. This is a mode of communication using the SMIF block.

▪ Octal SPI: Octal SPI supports 8 bits/cycle throughput. This is a mode of communication
using the SMIF block.

▪ XIP: eXecute In Place: XIP is a mode of operation where read or write commands to the
memory device are directed through the SMIF without any use of API function calls. In this
mode, the SMIF block maps the AHB bus-accesses to external memory device addresses
to make it behave similar to internal memory. This allows the CPU to execute code
directly from external memory. This mode is not limited to code and is suitable also for
data read and write accesses.

▪ MMIO: Memory Mapped I/O mode. The MMIO mode is used for special commands like
program/erase of FLASH, device configuration etc. The MMIO mode can be used for
read/write operations too, but that is much less common.

▪ Memory mode: This is same as the XIP mode for the SMIF. The memory mode
nomenclature is followed, since it is more user-friendly than a specific name like XIP.

▪ Normal mode: This is same as the MMIO mode of operation.

▪ Memory device: A physical memory device. A user connects one or more memory
devices to the SMIF.

▪ Slave Slot: Slave Slot refers to the individual slave select lines in the SMIF interface. The
SMIF interface will have 4 Slave Slots. Each Slave Slot can have a memory device or
non-memory device or can be left unused.

▪ Memory Configuration Data structure: This is a data structure array which holds the
parameters that correspond to the individual memory device slots of the SMIF. The array
is of length 4 corresponding to the number of slave slots supported in the SMIF. Each
structure holds all the information required to configure the memory slave slot associated
with it. The content of the structure is populated based on the memory device being
interfaced to and the memory configuration of it.

PSoC® Creator™ Component Datasheet Serial Memory Interface (SMIF_PDL)

Document Number: 002-22011 Rev. *B Page 3 of 17

Quick Start

1. Drag a SMIF_PDL Component from the Component Catalog Memory Interface folder onto
your schematic (the placed instance takes the name SMIF_1).

2. Double-click to open the Configure dialog.

3. Select the Datalines to be used.

4. Select the Slave Select lines of the external serial memory devices.

5. Make sure the SMIF clock (Clk_HF2) is set up in the PSoC Creator Clock Editor.

Note The Clk_HF2 frequency limit is 80/50 MHz for low power/ultra low power modes.
Refer to the device datasheet for more details.

6. Build the project in order to verify the correctness of your design, add the required PDL
modules to the Workspace Explorer, and generate the configuration data for the SMIF_1
instance.

7. In main.c, initialize the peripheral and start the application.

a. Declare the SMIF memory configuration structure (stc_smif_mem_config_t**
memConfigs) or use SMIF Configuration Tool to generate the configuration structure.
Right-click on the SMIF_PDL Component and select SMIF Configuration Tool from
the context menu.

b. Add the code.

cy_stc_smif_context_t smifContext;

void ExtMemInterrupt(void);

void RxCmpltCallback(uint32_t event);

uint8_t extMemAddress[3u] = {0x00, 0x00, 0x00};

uint8_t transferData[3u] = {0x01, 0x0F, 0xAA};

uint8_t rxBuffer;

int main(void)

{

 /* SMIF interrupt setup */

 cy_stc_sysint_t smifIntConfig =

 {

 /* SMIF interrupt */

 .intrSrc = smif_interrupt_IRQn,

 /* Mapping the SMIF M4 core interrupt to

 * the 10th M0+ core interrupt

 */

 .intrCm0p = NvicMux10,

 /* SMIF interrupt priority */

 .intrPriority = 1u

 };

 Cy_SysInt_Init(&smifIntConfig, ExtMemInterrupt);

 /* SMIF configuration parameters */

 cy_stc_smif_config_t tst_psvpSmifConfig =

 {

 /* The mode of operation */

Serial Memory Interface (SMIF) PSoC® Creator™ Component Datasheet

Page 4 of 17 Document Number: 002-22011 Rev. *B

 .mode = CY_SMIF_NORMAL,

 /* The minimum duration of SPI deselection */

 .deselectDelay = SMIF_1_DESELECT_DELAY,

 /* The clock source for the receiver clock */

 .rxClockSel = SMIF_1_RX_CLOCK_SELECT,

 /* What happens when there is a Read

 * to an empty RX FIFO or Write to a full TX FIFO

 */

 .blockEvent = SMIF_1_AHB_BUS_ERROR,

 };

 /* SMIF initialization */

 Cy_SMIF_Init(SMIF0, &tst_psvpSmifConfig, &smifContext, 1000ul);

 Cy_SMIF_SetDataSelect(SMIF0, 1u, CY_SMIF_DATA_SEL0);

 Cy_SMIF_Enable(SMIF0, &smifContext);

 __enable_irq(); /* Enable global interrupts. */

 /* Enable the SMIF interrupt */

 NVIC_EnableIRQ((uint32_t)smif_interrupt_IRQn);

 /* Enable the Write bit in the status register.

 * Send the WREN 0x06 command to the external memory.

 */

 Cy_SMIF_TransmitCommand(SMIF0,

 &smifContext,

 0x06,

 CY_SMIF_WIDTH_SINGLE,

 0u,

 0u,

 CY_SMIF_WIDTH_SINGLE,

 1u,

 1u);

 /* Check if the SMIF IP is busy */

 while(Cy_SMIF_BusyCheck(SMIF0))

 {

 /* Wait until the SMIF IP operation is completed. */

 }

 /* Writes data to the external memory in the single mode.

 * Sends the PP 0x02 command to the external memory.

 */

 Cy_SMIF_TransmitCommand(SMIF0,

 &smifContext,

 0x02,

 CY_SMIF_WIDTH_SINGLE,

 extMemAddress,

 3u,

 CY_SMIF_WIDTH_SINGLE,

 1u,

 0u);

 Cy_SMIF_TransmitData(SMIF0,

 &smifContext,

PSoC® Creator™ Component Datasheet Serial Memory Interface (SMIF_PDL)

Document Number: 002-22011 Rev. *B Page 5 of 17

 transferData,

 0x03,

 CY_SMIF_WIDTH_SINGLE,

 &RxCmpltCallback);

 {

 /* Wait until the SMIF IP operation is completed */

 }

}

/* The ISR for the SMIF interrupt. All Read/Write transfers to/from

 * the external memory are processed inside the SMIF ISR.

 */

void ExtMemInterrupt(void)

{

 Cy_SMIF_Interrupt(SMIF0, &smifContext);

}

/* The callback called after the transfer completion. */

void RxCmpltCallback (uint32_t event)

{

}

8. Build and program the device.

The SMIF API is divided into low level functions and memory slot functions.

□ The low level API is used for SMIF block initialization and for implementing a
generic SPI communication interface using the SMIF block.

□ The Memory slot API has functions that implement basic memory operations like
program, read, erase etc. These functions are implemented using the memory
parameters in the memory device config data structure. Also Memory slot
initialization API will initialize all the memory slots based on the settings in the
array.

9. The driver is not responsible for external memory persistence. You cannot edit the buffer
during read/write operations. In case of a memory error, the SMIF IP block could get stuck
and need to be reset. Check the SMIF IP busy status by using the appropriate API call
and implementing a timeout. Reset the IP block by toggling CTL.ENABLED. Then
reconfigure the SMIF block.

10. For write operations, check that the SMIF finished transferring data by calling
SMIF_1_BusyCheck(). Also check that memory finished operation using
SMIF_1_Mem_IsBusy() before proceeding.

11. For read operations before accessing to the read buffer, check that SMIF operation
finished by calling SMIF_1_GetTxfrStatus().

12. Changing of SMIF from memory to normal mode does not invalidate cache. As a result, a
read after the second write in memory will return cached outdated values. It is
recommended to the SMIF_CacheInvalidate() function to invalidate the cache, if values in
external memory were updated in memory mode. See the PDL API reference guide for
the details.

Serial Memory Interface (SMIF) PSoC® Creator™ Component Datasheet

Page 6 of 17 Document Number: 002-22011 Rev. *B

Input/Output Connections

This section describes the various input and output connections for the SMIF_PDL Component.
An asterisk (*) in the following list indicates that it may not be shown on the Component symbol
for the conditions listed in the description of that I/O.

Terminal Name I/O Type DescrIPtion

rx_dma * Digital Output This signal can only be connected to a DMA channel trigger input. This signal
is used to trigger a DMA transaction. The output of this terminal is controlled
by the RX FIFO level. The presence of this terminal varies, depending on the
RX FIFO DMA Trigger parameter. It is an optional terminal because the DMA
usage is optional.

tx_dma * Digital Output This signal can only be connected to a DMA channel trigger input. This signal
is used to trigger a DMA transaction. The output of this terminal is controlled
by the TX FIFO level. The presence of this terminal varies, depending on the
TX FIFO DMA Trigger parameter. It is an optional terminal because the DMA
usage is optional.

PSoC® Creator™ Component Datasheet Serial Memory Interface (SMIF_PDL)

Document Number: 002-22011 Rev. *B Page 7 of 17

Component Parameters

The SMIF_PDL Component Configure dialog allows you to edit the configuration parameters for
the Component instance.

Basic Tab

This tab contains the Component parameters used in the general peripheral initialization
settings.

Serial Memory Interface (SMIF) PSoC® Creator™ Component Datasheet

Page 8 of 17 Document Number: 002-22011 Rev. *B

Parameter Name DescrIPtion

RX FIFO DMA Trigger DMA trigger enable for the RX FIFO trigger.

TX FIFO DMA Trigger DMA trigger enable for the TX FIFO trigger.

SMIF Datalines When selected, these fields enable the corresponding data lines to be
used by the SMIF block. The selections have no impact on generated
code/constants for the SMIF driver.

SMIF SPI Slave Select When selected these fields enable the corresponding slave select lines
to be used by the SMIF block. The selections have no impact on
generated code/constants for the SMIF driver.

Memory mode alignment error Alignment error in the memory mode (XIP mode) is set as an interrupt
cause.

RX Data FIFO Underflow The RX Data FIFO underflow condition is set as an interrupt cause.

TX Command FIFO Overflow The TX command FIFO overflow condition is set as an interrupt cause.

TX Data FIFO Overflow The TX data FIFO overflow condition is set as an interrupt cause.

RX FIFO Trigger Level This sets up the level that would trigger the RX FIFO trigger which
could trigger an interrupt or a DMA request.

TX FIFO Trigger Level This sets up the level that would trigger the TX FIFO trigger which
could trigger an interrupt or a DMA request.

Generate code from
cy_smif.cysmif file

This option calls the SMIF header generator during the build process. If
you de-select this check box, the SMIF Configuration Tool menu item
will be disabled.

For more information, refer to the SMIF Configuration Tool User Guide.

PSoC® Creator™ Component Datasheet Serial Memory Interface (SMIF_PDL)

Document Number: 002-22011 Rev. *B Page 9 of 17

Application Programming Interface

The API routines allow you to configure the Component using software.

By default, PSoC Creator assigns the instance name SMIF_1 to the first instance of a
Component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol.

This Component uses the cy_smif driver module from the PDL. The driver is copied into the
“pdl\drivers\peripheral\smif\” directory of the application project after a successful build.

Refer to the PDL documentation for a detailed description of the complete API. To access this
document, right-click on the Component symbol on the schematic and choose the “Open PDL
Documentation…” option in the drop-down menu.

The Component generates the configuration structures and base address described in the
Global Variables and Preprocessor Macros sections. Pass the generated data structure and the
base address to the associated cy_smif driver function in the application initialization code to
configure the peripheral. Once the peripheral is initialized, the application code can perform run-
time changes by referencing the provided base address in the driver API functions.

The SMIF_PDL Component provides an instance-based reference API that provide wrappers
around the PDL API. These are provided as reference only.

Global Variables

The SMIF_PDL Component populates the following peripheral initialization data structure(s). The
generated code is placed in C source and header files that are named after the instance of the
Component (e.g., SMIF_1.c).

cy_stc_smif_mem_config_t* SMIF_1_memSlotConfigs[((uint8_t) SMIF_DEVICE_NR)]

Allocate space memory configurations.

cy_stc_smif_config_t SMIF_1_config

Allocate space device configuration.

cy_stc_smif_context_t SMIF_1_context

Allocate space for context.

uint8 SMIF_1_initVar

SMIF_1_initVar indicates whether the SMIF_1 Component has been initialized. The variable is
initialized to 0 and set to 1 the first time SMIF_1_Start() is called. This allows the Component
to restart without re-initialization after the first call to the SMIF_1_Start() routine.

Serial Memory Interface (SMIF) PSoC® Creator™ Component Datasheet

Page 10 of 17 Document Number: 002-22011 Rev. *B

Preprocessor Macros

The SMIF_PDL Component generates the following preprocessor macro(s).

#define SMIF_1_DESELECT_DELAY (7u)

Minimum duration of SPI de-selection

#define SMIF_1_RX_CLOCK_SELECT (1u)

Clock source for the receiver clock

#define SMIF_1_AHB_BUS_ERROR (0u)

What happens when there is a Read to an empty RX FIFO or a Write to a full TX FIFO.

#define SMIF_1_HW (SMIF_1_SMIF__HW)

Pointer to the base address of the SMIF instance

Macro defined by the Component parameter.

In the following table, there is a list of macros that reflect values of Component parameters
selected in Component GUI. See parameter details in the Component Parameters section.

SMIF Component parameter name Macro generated in SMIF_1.h

Memory mode alignment error SMIF_1_MEMORY_MODE_ALIGMENT_ERORR

RX Data FIFO Underflow SMIF_1_RX_DATA_FIFO_UNDERFLOW

TX Command FIFO Overflow SMIF_1_TX_COMMAND_FIFO_OVERFLOW

TX Data FIFO Overflow SMIF_1_TX_DATA_FIFO_OVERFLOW

RX FIFO Trigger Level SMIF_1_RX_FIFO_TRIGEER_LEVEL

TX FIFO Trigger Level SMIF_1_TX_FIFO_TRIGEER_LEVEL

Component Functions

This Component also includes a set of Component-specific functions that provide additional
functionality available through PSoC Creator. These functions are generated during the build
process and are all prefixed with the name of the Component instance.

void SMIF_1_Start (cy_stc_smif_block_config_t *configStruct, uint32_t timeout)

This function starts the SMIF block, allocating and configuring its interrupt for Normal mode.
This function initializes all the memory slots, sets the trigger level, and enables Memory mode
cache with prefetching. The SMIF HW block is configured according to the SMIF_1_config
values.

PSoC® Creator™ Component Datasheet Serial Memory Interface (SMIF_PDL)

Document Number: 002-22011 Rev. *B Page 11 of 17

Note:

Changing SMIF mode does not invalidate cache. You should invalidate cache after
changing from Normal to Memory mode. This will prevent reading outdated values from
cache in Memory mode.

Parameters:

configStruct Define configuration of the external memories connected to the SMIF.

timeout Timeout in microseconds for blocking APIs in use.

Global Variables

SMIF_1_initVar - Checks the initial configuration modified on the first function call.

SMIF_1_memSlotConfigs - Allocates array of external memory configuration structures.

Interrupt Service Routine

The SMIF_PDL Component has a single ISR. This ISR has six interrupt causes. The driver
provides corresponding macro definitions to enable each interrupt trigger (refer to the PDL API
Reference Guide).:

▪ TX FIFO Trigger. This interrupt cause is activated in MMIO mode, when the TX data FIFO
has TX FIFO Trigger Level free entries.

▪ RX FIFO Trigger. This interrupt cause is activated in MMIO mode, when the RX data
FIFO has RX FIFO Trigger Level used entries.

▪ Memory mode alignment error. This interrupt cause is activated in XIP mode, when
erroneous behavior in dual-quad SPI mode is identified.

▪ TX Data FIFO Overflow. This interrupt cause is activated in MMIO mode, when the TX
data FIFO is overflowed - not enough free entries available.

▪ RX Data FIFO Underflow. This interrupt cause is activated in MMIO mode, when the RX
data FIFO is underflowed - no data available.

▪ TX Command FIFO Overflow. This interrupt cause is activated in MMIO mode when the
TX command FIFO is overflowed - not enough free entries available.

Serial Memory Interface (SMIF) PSoC® Creator™ Component Datasheet

Page 12 of 17 Document Number: 002-22011 Rev. *B

Functional Description

The SMIF_PDL Component initializes the SMIF hardware block in normal mode with enabled
cache and prefetching features. Cache is used in memory mode only. Initialization configuration
of the SMIF block is defined in the SMIF_1_config structure. This structure is initialized with
default values (see Preprocessor Macros section for details).

Note The driver is not responsible for external memory persistence. User cannot edit buffer
during read/write operations. In case of a memory error, the SMIF IP block could get stuck and
need to be reset. Check the SMIF IP busy status using the API call, and implement a timeout.
You could also reset the IP block by toggling CTL.ENABLED. Then reconfigure the SMIF block.

For write operations, check that the SMIF finished transferring data by calling
SMIF_1_BusyCheck() and check that memory finished operation using SMIF_1_Mem_IsBusy()
before proceeding. For read operations before accessing to the read buffer, check that the SMIF
operation finished by calling SMIF_1_GetTxfrStatus().

Changing the SMIF from memory to normal mode does not invalidate cache. As a result, the
read after the second write in memory will return outdated cached values. You should call the
SMIF_CacheInvalidate() function to invalidate cache if values in external memory were updated
in memory mode. See the PDL API reference guide for the details.

PSoC® Creator™ Component Datasheet Serial Memory Interface (SMIF_PDL)

Document Number: 002-22011 Rev. *B Page 13 of 17

Block Diagram and Configuration

The following shows a simplified diagram of the SMIF hardware:

See the Serial Memory Interface (SMIF) section in the device Technical Reference Manual
(TRM) for more information about the hardware block description and configuration values.

 mxsmif

 FIFOs

SPI interface logic

spi_clk

TX state machine RX state machine

spi_select[3:0]

“c
lk

_
if
_

rx
”

d
o

m
a

in

spi_data[7:0]

Mode multiplexer

MMIO

XIP

Cryptography

MMIO AHB-Lite

interface

“c
lk

_
if
_

tx
”

d
o

m
a

in

“c
lk

_
h

f”
 d

o
m

a
in

“c
lk

_
s
lo

w
”

d
o

m
a

in

“c
lk

_
s
y
s
”

d
o

m
a

in

Intended to be

connected to a

m4cpuss, slow

interface

Intended to be

connected to

mxperi

Support for up to 4

external devices

Support for dual-

quad data transfer

IOSS

tr_tx_req

tr_rx_req

interrupt

Port arbiter

XIP

AHB-Lite

interface 0

4 KB

cache

Intended to be

connected to a

m4cpuss, fast

interface

“c
lk

_
fa

s
t”

 d
o

m
a

in XIP

AHB-Lite

interface 1

4 KB

cache

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749

Serial Memory Interface (SMIF) PSoC® Creator™ Component Datasheet

Page 14 of 17 Document Number: 002-22011 Rev. *B

The following shows the general SMIF_PDL Component usage flow. The Component API is a
wrapper over the cy_smif driver API, which is part of the PDL. The Component API needs
external memory configuration structures as input parameters. These configuration parameters
could be generated using the SMIF Configuration Tool. This tool is part of the PDL and it can be
invoked directly from the Component context menu (see SMIF Configuration Tool user guide for
details).

Clock Selection

The internal clock source for SPI interface logic of SMIF_PDL is the HFClk2 clock (which is
configurable in the PSoC Creator Clock Editor). This clock needs to be configured and enabled
for the SMIF to function properly.

PSoC® Creator™ Component Datasheet Serial Memory Interface (SMIF_PDL)

Document Number: 002-22011 Rev. *B Page 15 of 17

DMA Support

The SMIF_PDL Component supports Direct Memory Access (DMA) transfers. The Component
may transfer to/from the following sources.

Name of DMA Source Length Direction DMA Req Signal DMA Req Type DescrIPtion

TRIG13_IN_SMIF_TR_RX_REQ Word /
Byte or
Halfword

Source
Destination

rx_dma_tr Level sensitive Receive FIFO

TRIG13_IN_SMIF_TR_TX_REQ Word /
Byte or
Halfword

Destination tx_dma_tr Level sensitive Transmit FIFO

Industry Standards

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the Component. There
are two types of deviations defined:

▪ project deviations – deviations that are applicable for all PSoC Creator Components

▪ specific deviations – deviations that are applicable only for this Component

This section provides information on Component-specific deviations. Refer to PSoC Creator Help
> Building a PSoC Creator Project > Generated Files (PSoC 6) for information on MISRA
compliance and deviations for files generated by PSoC Creator.

The SMIF_PDL Component has the following specific deviations:

Rule Rule Class Rule DescrIPtion DescrIPtion of Deviation(s)

1.1 R This rule states that code shall conform
to C ISO/IEC 9899:1990 standard.

PDL v3.0.0 supports ISO:C99 standard.

11.3 A A cast should not be performed
between a pointer to volatile object and
an integral type.

The cast from unsigned integer to pointer
does not have any unintended effect, as it
is a consequence of the definition of a
structure based on hardware registers.

This Component uses firmware drivers from the cy_smif PDL module. Refer to the PDL
documentation for information on their MISRA compliance and specific deviations.

Serial Memory Interface (SMIF) PSoC® Creator™ Component Datasheet

Page 16 of 17 Document Number: 002-22011 Rev. *B

Registers

See the Serial Memory Interface (SMIF) Registers section in the device Technical Reference
Manual (TRM) for more information about the registers.

Resources

The SMIF_PDL Component uses the mxsmif peripheral block.

DC and AC Electrical Characteristics

Note Final characterization data for PSoC 6 devices is not available at this time. Once the data
is available, the Component datasheet will be updated on the Cypress web site.

References

▪ PDL API Reference Manual (<PDL installation
folder>/doc/pdl_api_reference_manual.html)

▪ PDL User Guide (<PDL installation folder>/doc/pdl_user_guide.pdf)

▪ SMIF Configuration Tool User Guide (<PDL installation
folder>/doc/smif_config_tool_user_guide.pdf)

▪ Technical Reference Manual (TRM)

Component Changes

This section lists the major changes in the Component from the previous version.

Version Description of Changes Reason for Changes / Impact

1.10.b Patch update. Fixed the customizer to allow space characters in the temporary folder
path where the cy_smif_memconfig.h file is stored.

1.10.a Datasheet update. Added a note to the Quick Start that the Clk_HF2 frequency limit is
80/50 MHz for low power/ultra low power modes

1.10 Updated the Component
version.

Support of driver changes.

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749

PSoC® Creator™ Component Datasheet Serial Memory Interface (SMIF_PDL)

Document Number: 002-22011 Rev. *B Page 17 of 17

Version Description of Changes Reason for Changes / Impact

1.0.b Updated the Component
symbol

Updated Configure dialog

Updated datasheet

Removed “Prototype” label

Added/removed parameters

Updated References section

Updated MISRA section

Added Clock Section section

Added usage flow text and diagram

Updated API section

Updated Parameters section

1.0.a Updated datasheet Added driver initialization and data transmit example code in the Quick
Start section.

Added explanation why the SMIF API is divided in the low level API and
the Memory slot API in the Quick Start section.

Added user responsibility notes in the Quick Start section.

Updated the Basic tab and its description table.

Removed wrapper functions from the Component Functions section.

1.0 Initial Version

© Cypress Semiconductor Corporation, 2019-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use a SMIF_PDL Component
	Definitions
	Quick Start

	Input/Output Connections
	Component Parameters
	Basic Tab

	Application Programming Interface
	Global Variables
	The SMIF_PDL Component populates the following peripheral initialization data structure(s). The generated code is placed in C source and header files that are named after the instance of the Component (e.g., SMIF_1.c).
	cy_stc_smif_mem_config_t* SMIF_1_memSlotConfigs[((uint8_t) SMIF_DEVICE_NR)]
	cy_stc_smif_config_t SMIF_1_config
	cy_stc_smif_context_t SMIF_1_context
	uint8 SMIF_1_initVar

	Preprocessor Macros
	#define SMIF_1_DESELECT_DELAY (7u)
	#define SMIF_1_RX_CLOCK_SELECT (1u)
	#define SMIF_1_AHB_BUS_ERROR (0u)
	#define SMIF_1_HW (SMIF_1_SMIF__HW)

	Component Functions
	void SMIF_1_Start (cy_stc_smif_block_config_t *configStruct, uint32_t timeout)

	Interrupt Service Routine

	Functional Description
	Block Diagram and Configuration
	Clock Selection
	DMA Support

	Industry Standards
	MISRA Compliance

	Registers
	Resources
	DC and AC Electrical Characteristics
	References
	Component Changes

