
Programming Spec

CY8C21x45, CY8C22x45, CY8C24x94,
CY8C28xxx, CY8C29x66, CY8CTST120,

CY8CTMA120, CY8CTMG120, CY7C64215

PSoC® 1 ISSP Programming Specifications

Document No. 001-15239 Rev. *L

October 5, 2015

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

www.cypress.com



2 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Copyrights

License

© 2007-2015, Cypress Semiconductor Corporation. All rights reserved. This software, and associated documentation or
materials (Materials) belong to Cypress Semiconductor Corporation (Cypress) and may be protected by and subject to world-
wide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Unless
otherwise specified in a separate license agreement between you and Cypress, you agree to treat Materials like any other
copyrighted item.

You agree to treat Materials as confidential and will not disclose or use Materials without written authorization by Cypress.
You agree to comply with any Nondisclosure Agreements between you and Cypress.

If Material includes items that may be subject to third party license, you agree to comply with such licenses.

Copyrights

Copyright © 2007-2015 Cypress Semiconductor Corporation. All rights reserved.

PSoC® is a registered trademark and PSoC® Designer™ is a trademark of Cypress Semiconductor Corporation (Cypress),
along with Cypress® and Cypress Semiconductor™. All other trademarks or registered trademarks referenced herein are the
property of their respective owners.

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Phil-

ips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard
Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semi-
conductors.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear
in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Cypress. Made in the U.S.A.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress
does not authorize its products for use as critical components in life-support systems where a malfunction or failure may rea-
sonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems appli-
cation implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress Data Sheets. Cypress believes that its family
of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There
may be methods that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest
and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code.
Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly
evolving. We at Cypress are committed to continuously improving the code protection features of our products.



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 3

Contents

1. Overview 5

1.1 Introduction ................................................................................................................................5
1.2 Document History ......................................................................................................................6

2. Host Programmer - PSoC® 1 Programming Interface 7
2.1 Programming Pin Drive Modes ..................................................................................................7
2.2 Using an External Crystal Oscillator...........................................................................................8
2.3 Pin Loading Requirements.........................................................................................................8

3. Programming Flow 9

3.1 Programming Concepts ...........................................................................................................10
3.1.1 Vectors......................................................................................................................10
3.1.2 Clocking, Data Format, and Timing Diagrams..........................................................10
3.1.3 Wait and Poll ............................................................................................................10

3.2 Initialize Target Procedure .......................................................................................................11
3.2.1 Reset Mode ..............................................................................................................12
3.2.2 Power Cycle Mode ...................................................................................................12
3.2.3 Verify Silicon ID Procedure.......................................................................................13

3.3 Program Procedure..................................................................................................................14
3.4 Verify Procedure ......................................................................................................................15
3.5 Secure Procedure ....................................................................................................................17
3.6 Verify Secure Procedure..........................................................................................................17
3.7 Verify Checksum Procedure ....................................................................................................19
3.8 Erase Block Procedure ............................................................................................................19

4. Specifications and Definitions 21

4.1 DC Programming Specifications ..............................................................................................21
4.2 AC Programming Specifications .............................................................................................21
4.3 Device Address and Block Definitions .....................................................................................22

A. Programming Vectors for CY8C21x45, CY8C22x45, CY8C24x94, CY8C28xxx, 
CY8C29x66, CY8CTST120, CY8CTMA120, CY8CTMG120, CY7C64215 23

B. Intel.hex File Format for CY8C21x45, CY8C22x45, CY8C24x94, CY8C28xxx, CY8C29x66, 
CY8CTST120, CY8CTMA120, CY8CTMG120, CY7C64215 27

B.1 Example Flash Program Data Record .....................................................................................27
B.2 Example Security Data Records ..............................................................................................28

B.2.1 Additional Notes on Security Records ......................................................................28
B.3 Example Device Checksum Data Records ..............................................................................29

B.3.1 Additional Notes on Device Checksum Data Records .............................................29
B.4 End Record (End of File) .........................................................................................................29



4 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Contents

B.5 Device Address and Block Definitions .....................................................................................29



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 5

1.   Overview

This document is the programming specifications manual for the PSoC® 1 device families: CY8C21x45, CY8C22x45,
CY8C24x94, CY8C28xxx, CY8C29x66, CY8CTST120, CY8CTMA120, CY8CTMG120, CY7C64215. This reference manual
provides information about the hardware connections and programming vectors required to develop your own PSoC 1 pro-
grammers. PSoC 1 can be programmed using the In-System Serial Programming (ISSP) protocol. Refer to the other pro-
gramming specifications documents for information about how to program the rest of the PSoC 1 devices. 

1.1 Introduction
In-circuit programming is convenient for prototyping, manufacturing, and in-system field updates. PSoC 1 devices can be
programmed in-system using the in-system serial programming (ISSP) protocol, a proprietary protocol used by Cypress.

This programming reference manual provides programming timing and vectors so that developers and programmer vendors
can create their own in-system programming solutions for a PSoC 1 device. Refer to the application note AN44168 for a
practical implementation with source code of the Host Programming solution. Refer to the General PSoC Programming web
page for a list of programming solutions available for PSoC 1.

There are two participants in the programming procedure: the programmer and the target device. The programmer
communicates serially with the target, supplies the clocking, and sends commands to the target. The target receives data
from the programmer and supplies data upon a read request. The target drives the data line only upon request from the
programmer. The programmer programs the target with the program image contained in the <PROJECT NAME>.hex file,
which is generated by PSoC Designer. Refer to Appendix B on page 27 for more information regarding the Intel.hex file
format. 

There are two important points that you should remember while developing a Host Programming application. These are:

1. You should not compare the programming vectors provided in this application note with those generated by the 
MiniProg1, Miniprog3, or ICE-Cube. This is because Miniprog1, Miniprog3, and ICE-Cube follow a slightly different ver-
sion of the protocol for programming the target device. The programming vectors provided in this application note are the 
recommended ones for developing your own host-side interface to program a PSoC 1 device.

2. Even though the ISSP protocol uses a bidirectional data line for communication between the host and the target device, it 

is not related to I2C protocol in any manner.

http://www.cypress.com/?rID=2543
http://www.cypress.com/?rID=2543
http://www.cypress.com/?rID=2906
http://www.cypress.com/?rID=2906
http://www.cypress.com/?rID=2906


6 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Overview

1.2 Document History
Document Title: CY8C21x45, CY8C22x45, CY8C24x94, CY8C28xxx, CY8C29x66, CY8CTST120, CY8CTMA120, 
CY8CTMG120, CY7C64215 PSoC® 1 ISSP Programming Specifications

Document Number: 001-15239

Revision Orig. of Change Submission Date Description of Change

** HMT 09/17/2007 Converted to new template.

*A MAXK/AESA 07/31/2008
Updated Power Cycle Mode on page 12. Updated Appendix B on page 27. Converted to latest 
application note template.

*B FKL/PYRS 02/16/09 Updated CY8C28xxx chip family information. Added CY8C28xxx to Table 5. 

*C MAXK/AESA 10/26/09 Added CY8CTST120, CY8CTMA120, and CY8CTMG120 devices.

*D ROBC 11/17/09 Added CY8C21345 and CY8C22x45 devices

*E MAXK 10/01/2010

Updated Figure 3-4 on page 11, Figure 3-7 on page 13, Figure 3-9 on page 14, Figure 3-12 on 
page 16, Figure 3-13 on page 17, and Figure 3-15 on page 19

Updated content in 3.1.3 Wait and Poll on page 10 section.

Updated Text in 3.5 Secure Procedure on page 17 section

Updated Table A-1 on page 23.

*F VVSK 12/06/2010

Updated 1.1 Introduction on page 5.

Updated 3.2.1 Reset Mode on page 12 and 3.2.2 Power Cycle Mode on page 12.

Added 3.8 Erase Block Procedure on page 19.

Updated Table A-1 on page 23.

Updated Appendix B on page 27.

*G VVSK 03/02/2011

Updated Associated Application Notes in page 1 as AN2026a, AN2026c, AN2026d, AN44168, 
AN59389.

Updated Abstract.

Updated 1.1 Introduction on page 5.

Added Host Programmer - PSoC® 1 Programming Interface chapter on page 7.

Added 2.2 Using an External Crystal Oscillator on page 8.

Added 2.3 Pin Loading Requirements on page 8.

Renamed the section Clocking as 3.1.2 Clocking, Data Format, and Timing Diagrams on 
page 10 under Programming Flow on page 9 and updated the same section.

Deleted the section Command Format under Programming Flow on page 9.

Added the section 3.1.3 Wait and Poll on page 10 under Programming Flow on page 9.

Updated the sections 3.2.2 Power Cycle Mode on page 12, 3.2.3 Verify Silicon ID 
Procedure on page 13 under See “Initialize Target Procedure” on page 11..

Updated 3.3 Program Procedure on page 14.

Updated Appendix A on page 23.

*H VVSK 05/19/2011

Changed Title.

Changed Associated Part Family.

Changed Associated Application Notes.

Modified Abstract.

Updated 1.1 Introduction on page 5.

Updated Host Programmer - PSoC® 1 Programming Interface chapter on page 7.

Updated Table 4-3 on page 22.

Updated Appendix A on page 23 and Table A-1 on page 23.

Updated Appendix B on page 27.

*I VVSK 08/29/2011 Minor changes throughout document. Changed to TRM format

*J RJVB 04/19/2012 Updated Table 4-1 and Table 4-2

*K RJVB 10/08/2014
No technical updates.

Completing Sunset Review.

*L RJVB 10/05/2015
Updated Figure 3-1. Added 3.6 Verify Secure Procedure on page 17. Updated Table A-1 with 
the VERIFY-SECURE=SETUP vector.



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 7

2.   Host Programmer - PSoC® 1 Programming Interface

Figure 2-1 shows the connections between the host programmer and the target PSoC® 1 device. If you use a Miniprog1 pro-
grammer, refer to the knowledge base article at www.cypress.com/?id=4&rID=50010 for information about the part number of
the Miniprog1 programming header.

Figure 2-1.  Host Programmer - PSoC 1 Interface

2.1 Programming Pin Drive Modes
The electrical pin connections between the programmer and the target shown in Figure 2-1 are listed in Table 2-1. This
includes two signal pins, a reset pin, a power pin, and a ground pin. Leave the other pins floating. The pin-naming conven-
tions and drive-strength requirements are also listed in Table 2-1.

Table 2-1.  Pin Names and Drive Strengths

Pin Name Function Programmer HW Pin Requirements PSoC 1 Drive mode behavior

P1[0] SDATA - Serial Data In/Out Drive TTL Levels, Read TTL, High Z Strong drive (while sending data to host), 
Resistive pull down mode (Reading data 
from host, Waiting for data from host)

P1[1] SCLK - Serial Clock Drive TTL Levels High Z Digital input

XRES Reset Drive TTL Levels. Active High Active high Reset input with internal resistive 
pull down

VSS Power Supply Ground Connection Low Resistance Ground Connection Ground connection

VDD Positive Power Supply Voltage 0 V, 1.8 V, 3.3 V, 5 V. 20 mA Current Capability Supply voltage

 VSS

VDD  *

SCLK (P1[1] )

SDATA (P1[0] )

XRES **

GND

GND

SCLK

SDATA

XRES

Host Programmer  PSoC 1

VDD

* For Programming in Power Cycle mode, the Host Programmer must be able to toggle power to the PSoC 1 device.

** XRES pin in PSoC 1 is an active-high input. It has an internal pull-down resistor to keep it at logic low when left 
floating. XRES pin is not available in all device packages. Check the device datasheet for information on XRES pin 
availability. Use Power Cycle mode if XRES is not available.

VDD

http://www.cypress.com/?id=4&rID=50010


8 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Host Programmer - PSoC® 1 Programming Interface

The PSoC 1 SDATA pin drive modes vary during the
programming operation. When the PSoC 1 drives the
SDATA line to indicate it has started up completely or to
send data back to the host, SDATA is in a strong drive
configuration. When it waits for data or receives data from
the host, SDATA is in a resistive pull-down configuration. It is
important to design the host external pin drive mode circuitry
such that a strong high to resistive low transition can be
detected, and also so that the pin can be driven both high
and low when it is in resistive pull-down mode. Because
there is an internal pull-down resistor (5.6 k) on the SDATA
line, the presence of external pull-up resistors on the SDATA
line might cause the host to miss the high-to-low transition
on the target device. This is caused by the resistive voltage
divider. You should not use external pull-up resistors on the
SDATA line for this reason. 

2.2 Using an External Crystal 
Oscillator

The programming pins on PSoC 1 (SCLK (P1[1], SDATA
(P1[0]) are also shared by the external 32-kHz crystal. If
your design uses the external 32-kHz crystal, the
programming connections to ports P1[0] and P1[1] must be
kept as short as possible. The total capacitance on each
side of the crystal should be close to 25 pF, including the
capacitance of the package leads. (See the device data
sheet for pin capacitance.) Too much trace length on these
signals could adversely affect the operation of the oscillator.
During programming, the 32-kHz crystal loading does not
add loading to the programming pins.

2.3 Pin Loading Requirements

The SDATA and the SCLK pins each have three functions.
These pins are configurable as an external 32-kHz crystal,
I2C interface pins, and as general-purpose IO pins. 
The equivalent load on these pins should not exceed 120 pF
in parallel with a 1-k resistor.

Figure 2-2.  Maximum Load Data and SCLK Pins

The XRES signal is a single-function pin. You should
connect this signal directly to the programmer connector.
Some designs may drive the XRES signal from another
source, such as a system reset, to force reset at a known
time. In this case, a you can place a resistor in series with
the signal source and the XRES pin. The programmer is
then connected on the pin side of the register. See
Figure 2-3. This allows the programmer to overdrive the
XRES pin.

Figure 2-3.  XRES Connection

or

 >1 k <120 pF

P1[0] / XTALOut / SDATA

P1[1] / XTALIn / SCLK

XRES

P3[0]

P4[6]

1 k

To In-System Program Connector

To System ResetPSoC



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 9

3.   Programming Flow

To make target programming successful, use the steps in the programming flow shown in Figure 3-1. Each procedure is
explained in the following sections. If you do not complete these steps the flash can be programmed incorrectly.

Figure 3-1.  Target Programming Flow

Start

Initialize Target Procedure

Verify Silicon ID 
Procedure

Program Procedure

Verify Procedure

Secure Procedure

Verify Secure Procedure
(Optional)

Verify Checksum 
Procedure

End



10 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Programming Flow

3.1 Programming Concepts

3.1.1 Vectors

Vectors are the binary representation of the commands
necessary to perform the various operations involved in the
programming flow. Many individual vectors are associated
with each procedure in the programming flow. (See
Appendix A on page 23). Each vector is 22 bits long and any
number of zeros can be sent between sequential vectors.
The target ignores the zero padding and any subsequent ‘0’
on the SDATA line. This continues until the target receives a
‘1’, which is the first bit in the next vector in the vector-set.

3.1.2 Clocking, Data Format, and Timing 
Diagrams

The host programmer always writes and reads SDATA on
the rising edge of SCLK, while the target writes and reads
on the falling edge. Figure 3-2 on page 10 shows the Timing
waveforms of the SDATA, SCLK lines. Refer to Table 4-2 on

page 21 for the timing specifications mentioned in
Figure 3-2 on page 10.

During the programming flow, the programmer supplies a
clock on SCLK to transfer data. This data transfer mode is
used while the programmer communicates with the target,
either by sending or receiving data. During this time, the
programmer can drive the SCLK signal at any frequency
that enables reliable data transfer with a maximum transmit
frequency of 8 MHz (see Fsclk in Table 4-2 on page 21). The

frequency of SCLK does not need to be accurate or
consistent, as long as it is less than the 8-MHz limit. 

After the programmer requests a read from the target, it
releases the SDATA to a HI-Z state. It continues driving the
line only after the target sends the byte. The programmer
supplies clocks even when it has released (HI-Z) the SDATA
line.

During the “Wait and Poll” procedure, the programmer
releases (HI-Z) the SDATA line and must wait for a high-to-
low transition on SDATA. Clocks are not allowed during the
Wait and Poll phase (Tpoll) as shown in the “Wait and Poll”
timing diagram.

Figure 3-2.  SCLK, SDATA Timing Diagrams

3.1.3 Wait and Poll

After a mnemonic bit stream is sent, the programmer clocks in a “Z” to the device (with enough setup time for the device
SDATA pin to drift low to Vilp by the device’s internal pull down resistor, typically 1 µs). One SCLK clock cycle must complete

before SDATA transitions from low to high. SCLK is then held low. The target device pulls SDATA high when the mnemonic
begins executing. The device outputs logic high on the SDATA pin while the mnemonic is executing and then switches to a
logic low when the mnemonic finishes. The programmer must wait and poll the SDATA pin for the high to low transition. The
maximum SDATA high time is 100 ms; this is the maximum time the Programmer should wait for the operation to complete.
WAIT-AND-POLL uses AC timing specification Tpoll (from Table 4-2 on page 21).

When it observes the transition to low, the programmer must apply a bit stream of 40 zero bits to the SDATA pin of the device
and then continue to the next mnemonic. This is shown in Figure 3-3.



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 11

Programming Flow

Figure 3-3.  “Wait and Poll” Timing Diagram

3.2 Initialize Target Procedure
The Initialize Target Procedure places the chip into the
programming mode. This is done by using the reset mode or
power cycle mode.

Reset mode is the preferred method for initiating
communication with the target. However, in the case of
CY8C24794, there is no XRES pin, so power cycle mode is
the only option. Because power cycle mode involves cycling
power to the target, in-circuit field programming may involve
PCB layout considerations in the design phase.

Figure 3-4.  Initialize Target Procedure

Wait and Poll for 
SDATA going low

Toggle XRES on
Device

Send
Initialize 1 Vector

Begin Initialize
Target

End Initalize Target

Power cycle
or

Reset mode?

Assert VDD

Wait for
TVDDwait

Wait and Poll for
SDATA going low

Assert VDD

Reset Power cycle

Send
Initialize 2 Vectors

Wait and Poll for 
SDATA going low

Send
Initialize 3 Vectors



12 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Programming Flow

3.2.1 Reset Mode

The timing to enter programming mode with Reset is shown in Figure 3-5. To initialize the part using the XRES line, first wait
until VDD is stable, and then assert the XRES line for the time specified by Txres (see Table 4-2 on page 21). After XRES is
driven low, there is a window of time specified by Txresini, as shown in Table 4-2 on page 21, in which the first nine bits of the
Initialize 1 vector-set must be transmitted.
When the target executes the operation, it drives the SDATA line high. The programmer must wait and poll the SDATA line for
a high-to-low transition, which is the signal from the target that the Initialize 1 operation has completed. Next, send Initialize 2
vectors, wait for a high-to-low transition on SDATA, and then send Initialize 3 vectors.

The programmer must sense the system supply and decide which Initialize 3 vectors to supply. If VDD  3.6 V, use one set; if
VDD > 3.6 V, use the other. (Appendix A on page 23).

Figure 3-5.  Using Reset to Initialize

3.2.2 Power Cycle Mode

To initiate communication with the target using power cycle mode, apply VDD to the target as shown in Figure 3-6. The target
attempts to drive the SDATA line high. The programmer then waits and polls for a high-to-low transition on the SDATA line,
which is the signal from the target that VDD has stabilized. Note that until VDD stabilizes, the SDATA signal is noisy and a false
edge could be detected. As a result, the programmer must wait for the time specified by TVDDwait (Table 4-2 on page 21)
before beginning to wait and poll. The programmer also must not drive the SCLK signal until the TVDDwait time period has
passed. 

After the SDATA transition is detected, the programmer must transmit the Initialize 1 vectors in Tacq seconds (see Table 4-2 on
page 21). Next, send Initialize 2 vectors and wait for a high-to-low transition on SDATA. Send the appropriate Initialize 3 vec-
tors for the VDD level applied to the PSoC when it is programmed.

During the power cycle phase of the Initialize Target Procedure, VDD must be the only pin asserted. XRES must be low. The
PSoC’s internal pull-down resistor achieves this if the pin is left floating externally. 

Figure 3-6.  Using Power Cycling to Initialize

Txres Txresini

XRES

SDATA

SCLK

1

TVDD wait

VDD

SDATA

SCLK

Tacq

1

Tssclk

TrsclkTfsclk

1
Fsclk

VDD = VPOR



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 13

Programming Flow

3.2.3 Verify Silicon ID Procedure

The Verify Silicon ID Procedure (see Figure 3-7 on page 13)
returns the package-specific silicon ID value from the target.
This is used by the programmer to verify the package type of
the target.

Figure 3-7.  Verify Silicon ID Procedure

The first step in the Verify Silicon ID Procedure is for the
programmer to send the ID-Setup vector-set. The
programmer then drives the SDATA line into a HI-Z state. It
waits and polls the SDATA line for a HIGH to LOW
transition, which signifies that the target has executed the
operation. The silicon ID value can then be read back by
using the READ-ID-WORD vector-set. The sequence for a
READ BYTE operation from target at a specific address is
shown in Figure 3-8. The READ-ID-WORD vector given in
Appendix A on page 23 is based on this READ BYTE
sequence with address replaced with specific value, and the
data byte to be read replaced by the expected Silicon ID
byte. Two bytes must be read to get a complete Silicon ID
word.

The vectors in Appendix A on page 23 under READ-ID-
WORD show the device-specific values read from the
target. For example, a LLLLLLLL LLLHHHLH denotes a
0x00ID hex read back from CY8C24794. The programmer
must compare the value in the READ-ID-WORD vector
(Appendix A on page 23) and the value returned by the
target. If these values do not match, the programmer must
terminate the programming flow.

Figure 3-8.  READ-BYTE (D7..D0) from Target PSoC 1 (At address A7..A0)

Begin Verify Silicon
ID

Send ID Setup
Vectors

Wait and Poll for
SDATA going low

Read Back Silicon
ID Word

Correct Value?

End Verify Silicon
ID

Programming Failed

Yes
No

1 0 1 Z D7 D6 D1 D0 Z 1

SCLK

SDATA

Programmer Drives SDATA Target Drives SDATA

A7 A0
..
.



14 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Programming Flow

3.3 Program Procedure
The Program Procedure is responsible for the actual programming of the Flash.

Figure 3-9.  Program Procedure

A Bulk Erase operation must be executed to prepare the flash for programming. 

The ERASE vector-set is sent. As before, the programmer must wait and poll the SDATA line for a HIGH to LOW transition
before continuing with the Program procedure.

Execute Bulk
Erase Macro

Begin
Erase/Program

BLK_NUM = 0

Address = 0

WRITE-BYTE
referenced by
Address and

BLK_NUM.  Store

in Target SRAM

Address = 63?
N

Y

Execute Program
Macro

Increment
Address

BLK_NUM = Total
Number of Blocks?

Increment
BLK_NUM

N

Y

Send ERASE
Vectors

Wait and Poll for 
SDATA going 

low

End Bulk Erase
Macro

Bulk Erase Macro

Send SET- BLOCK-
NUM Vectors

with Block Number
as the Data

Send PROGRAM-
BLOCK Vectors

Wait and Poll for 
SDATA going 

low

End Program
Macro

Program Macro

End
Erase/Program

BANK_NUM = 0

Increment
BANK_NUM

BANK_NUM = Total
Number of BANKS?

N
Y

Send
SET_BANK_NUM

Vector



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 15

Programming Flow

To place the actual program image into the flash, the program portion of the .hex (see Appendix B on page 27) is read by the
programmer in 64-byte blocks. This is written into the SRAM of the target, one byte at a time, using the WRITE-BYTE vector
whose format is shown in Figure 3-10. 

After the programmer completely writes the block into the target’s SRAM, the block number to be written is set using the SET-
BLOCK-NUM vector. Then the PROGRAM-BLOCK is sent. The PROGRAM-BLOCK vector executes a write block operation.
Following the previous commands, the programmer must wait and poll the SDATA line before continuing. This loop is
executed for each 64-byte block of the program image until the entire program is loaded into the flash. Note that data can only
be written to Flash in 64-byte blocks.

Figure 3-10.  WRITE-BYTE (D7..D0) to Target PSoC 1 (At address A7..A0)

3.4 Verify Procedure
The Verify Procedure, as shown in Figure 3-12 on page 16, is responsible for verification of the programmed Flash.

Flash must be verified to ensure program integrity. This procedure uses a loop to read back the same number of blocks
programmed into the flash. To verify a block of flash, the SET-BLOCK-NUM vector (see Appendix A on page 23) is first sent
with the ‘dddddddd’ in the vector replaced with the block number to be read from flash. 

The programmer sends the VERIFY-SETUP vector-set and then waits and polls. Each Read Block operation reads a 64-byte
block from Flash and stores the data in the target’s SRAM. The programmer must then use the READ-BYTE vector (see
Figure 3-11) to individually read each byte in the block. After the programmer reads the block, the programming software
must compare it with the block written to the flash. Data mismatch denotes an incorrect flash write; the programmer must
terminate the programming flow as a failure.

Figure 3-11.  READ-BYTE From Target for Verify operation

 

1 0 0 A7 A6 A1 A0 D7 D6 D1 D0 1 1 1 

SCLK 

SDATA 

1 0 1 Z D7 D6 D1 D0 Z 1

SCLK

SDATA

Programmer Drives SDATA Target Drives SDATA

A5 A0A401



16 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Programming Flow

Figure 3-12.  Verify Procedure (Offset = 0x80 in figure)

Begin Verify

BANK_NUM = 0

BLK_NUM = 0

SET_BANK_NUM

Verify Macro

Address = Offset*

Read Byte 
Referenced by 

Address

Send Set Block 
Number Vectors with 

BLK_NUM as the data

Send VERIFY SETUP
Vectors

Wait and Poll for 
SDATA going low

End Verify Macro

Address = Offset* + 63 ?

Block Read = Block 
Written?

BLK_NUM = Total No. 
of Blocks?

BANK_NUM = Total 
No. of Banks?

Increment 
Address

Verify Macro

Increment
BLK_NUM

Increment 
BANK_NUM

Programming 
Failed

End Verify

Y

N

Y

Y

Y

N

N



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 17

Programming Flow

3.5 Secure Procedure
The Secure Procedure (shown in Figure 3-13), writes the
user-determined security values to the target for each block.

After the flash is programmed and verified, each bank of the
flash must be secured separately. Each 8K bank is secured
by 32 bytes of security data. The 32 bytes of security data
are written to the target SRAM using the WRITE-BYTE
vector. This block defines the access modes for each
64-byte block of the program image. After the 32 bytes are
written to the target, the appropriate SECURE vector-set is
sent to the target and the programmer waits and polls
SDATA while the operation executes. The security data is
located in the .hex file (Appendix B on page 27).

Figure 3-13.  Secure Procedure

3.6 Verify Secure Procedure

The Verify Secure Procedure shown in Figure 3-14 verifies
the security data (protection bits) stored in the target device.
Note that this is an optional step in the programming flow.
The procedure involves a loop to read (32 × Number of
Banks) bytes of security data and verify with the hex file.
The SET-BANK-NUM vector is sent to select the bank and
then the VERIFY-SECURE-SETUP vector is sent to collect
the security bits from the protection area to the SRAM area
of the target device. The programmer waits and polls SDATA
while this security bit transfer is in progress. When the trans-
fer is complete, the programmer sends the READ-BYTE
vector to read the 32 bytes of security data from the SRAM
area of the target device. The programmer verifies the
received security data with the hex file. If it matches, the pro-
cess is repeated for the remaining banks. Otherwise, the
programmer will flag an error.

Begin Secure

BANK_NUM = 0

Send
SET_BANK_NUM

Vector

Address = 0

Send Byte of Security 
Data Referenced by 

Address

Address = 32?

BANK_NUM = Total 
No. of Banks?

Increment 
Address

Increment 
BANK_NUM

End Secure

N

Y

Y

N

Send Secure Vectors

Wait and Poll for 
SDATA going low



18 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Programming Flow

Figure 3-14.  Verify Secure Procedure

Send SET-BANK-NUM vector

Send read vector with address

Address = Offset

Address = Offset + 
32?

Increment Address

BANK_NUM = 0

Security bits match 
with the source?

Select higher bank

Begin Verify Secure

End Verify Secure

No

Yes

No

Yes

Verify Secure Failed

BANK_NUM == 
TOTAL No. of 

Banks?

Yes

No

Send VERIFY-SECURE-
SETUP Vector

Wait and Poll for SDATA going 
low



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 19

Programming Flow

3.7 Verify Checksum Procedure
The Verify Checksum Procedure (shown in Figure 3-15),
causes the target to generate a checksum value for the data
in flash.

Figure 3-15.  Verify Checksum Procedure

To get the Checksum Value from the target, the programmer
sends the appropriate CHECKSUM-SETUP vector to the
target. The programmer releases the SDATA line, then waits
and polls. After the target signals that the operation is
complete, the READ-CHECKSUM vector reads back the
two-byte checksum value from the target. This value from
the target is compared to the device checksum value from
the .hex file (Appendix B on page 27). If the values are not
equal, a programming error has occurred.

To calculate a correct checksum, the entire flash must be
programmed. 

3.8 Erase Block Procedure
The Erase Block procedure is required only when it is
necessary to erase a particular number of blocks of flash.
This is typically needed to update a few blocks of flash for
partial firmware updates. In this case, the Erase Block and
Program Block vectors are sent by the host to the target
device. Note that this “Erase Block” is not used or required
in the general programming flow, as shown in Figure 3-9 on
page 14. This is because the Bulk Erase Macro is used in
Figure 3-9 on page 14, which erases all the blocks of flash.
Although the Bulk Erase function can be used to erase all of
the flash data and the protection settings at any time, the
“Erase Block” function can execute only if the Write
protection feature for that particular block is turned off. 

Begin Device Checksum

Total_CHECKSUM = 0

Send
SET_BANK_NUM

Vector

BANK_NUM = 
Max_BANK_Address?

Increment 
BANK_NUM

END Device 
Checksum

Y

Y

N

BANK_NUM = 0

Send CHECKSUM 
SETUP Vectors

Wait and Poll for SDATA 
going low

Send Read CHECKSUM  
Vectors

Total_CHECKSUM = 
Total_CHECKSUM + 

CHECKSUM

Total CHECKSUM
Correct?

Programming 
Failed

Y

N



20 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Programming Flow

Figure 3-16.  Erase Block Procedure

As shown in Figure 3-16, initialize the Bank number with the starting bank number, and the Block number with the starting
block number (zero in Figure 3-16), and iterate for required number of blocks (all blocks are erased one by one in
Figure 3-16). 



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 21

4.   Specifications and Definitions

4.1 DC Programming Specifications

4.2 AC Programming Specifications 

Table 4-1.  DC Programming Specifications

DC Programming Specifications Minimum Maximum

IDDp (Supply Current During Programming or Verify)

See the DC Programming Specifications section in the respective 
device datasheet

Vilp (Input Low Voltage During Programming or Verify)

Vihp (Input High Voltage During Programming or Verify)

Iilp (Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify)

Iihp (Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify)

Volv (Output Low Voltage During Programming or Verify IOL = 0.1 mA)

Vohv (Output High Voltage During Programming or Verify IOH = 5 mA)

Vddp (VDD for Programming and Erase)

Vdd (VDD for Verify)

Vipor (Power On Reset Trip) See the DC POR and LVD Specifications section in the respective 
device datasheet

Table 4-2.  AC Programming Specifications

AC Programming Specifications Minimum Maximum

Trsclk (Rise Time of SCLK) 

See the AC Programming Specifications 
section in the respective device datasheet

Tfsclk (Fall Time of SCLK) 

Tssclk (Data Setup Time to Falling Edge of SCLK)

Thsclk (Data Hold Time From Falling Edge of SCLK)

Fsclk (Frequency of SCLK) 

Tdsclk (Data-Out Delay from Falling Edge of SCLK)

Tvddwait (VDD Stable to WAIT-AND-POLL Hold Off[1]) 0.1 ms 1 ms

Tpoll (SDATA High Pulse Time[2]) 10 µs 100 ms

Tacq (Delay from WAIT-AND-POLL to Initialize-1[3]) – 3 ms

Txres (Duration of External Reset) See the AC Chip Level Specifications in the 
respective device datasheet

Txresini (Programming Mode Acquisition Window) – 125 µs

Notes 
1. Until VDD stabilizes, SDATA is noisy and the falling edge must not be pursued. Therefore, a delay of Tvddwait is needed after VDD is applied and before WAIT-

AND-POLL.
2. This applies to the WAIT-AND-POLL mnemonic. The SDATA remains high for Tpoll time.

3. The Initialize-1 bit-stream data must not be delayed more than Tacq from the end of the WAIT-AND-POLL (measured from SDATA’s falling edge).



22 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Specifications and Definitions

4.3 Device Address and Block Definitions
Table 4-3.  Device Address and Block Definitions

Device Part Numbers CY8C22x45, CY8C24x94, CY8C28xxx, CY8CTST120, 
CY8CTMA120, CY8CTMG120, CY7C64215

 CY8C29x66 CY8C21x45

Byte Addresses within a Block 0–63 0–63 0–63

Max_byte_address 63 63 63

Block Addresses within a Flash Bank 0–127 0–127 0–127

Max_block_address 127 127 127

Flash Bank Addresses 0–1 0–3 0

Max_bank_address 1 3 0



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 23

Appendix A.   Programming Vectors for CY8C21x45, CY8C22x45, CY8C24x94, CY8C28xxx, 
CY8C29x66, CY8CTST120, CY8CTMA120, CY8CTMG120, 
CY7C64215

Table A-1.  Programming Vectors 

Name Data

Vector Bit Stream (Executed From Left Bit to Right)

Initialize-1 11001010000000000000000000000000000000000000
00000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000
11011110111000000001111101111011000000000111
10011111000001110101111001111100100000011111
11011110101000000001111101111010000000011111
10011111011100000001111101111100100110000111
11011111010010000001111101111000000001001111
11011111000000000001111101111111100010010111

Initialize-2 11011110111000000001111101111011000000000111
10011111000001110101111001111100100000011111
11011110101000000001111101111010000000011111
10011111011100000001111101111100100110000111
11011111010010000001111001111101000000001111
11011110000000001101111101111100000000000111
1101111111100010010111

Initialize-3 3V

Initialize-3 5V

11011110111000000001111101111010000000011111
11011110101000000001111101111011000001000111
11011111000010100011111101111100111111000111
11011111010001100001111101111111100010010111
00000000000000000000001101111011100000000111
11011110100000000111111101111010100000000111
11011110110000010001111101111100001100000111
11011111001111010101111101111101000110000111
11011110111000100001111101111111100010010111
00000000000000000000001101111011100000000111
11011110100000000111111101111010100000000111
11011110110000010001111101111100001010001111
11011111001111110011111101111101000110000111
11011111111000100101110000000000000000000000
11011110111000000001111101111010000000011111
11011110101000000001111101111011000001000111
11011111000011000001111101111100111101000111
11011111010001100001111101111011100010000111
11011111111000100101110000000000000000000000

11011110111000000001111101111010000000011111
11011110101000000001111101111011000001000111
11011111000010100011111101111100111111100111
11011111010001100001111101111111100010010111
00000000000000000000001101111011100000000111
11011110100000000111111101111010100000000111
11011110110000010001111101111100001100000111
11011111001111010101111101111101000110000111
11011110111000100001111101111111100010010111
00000000000000000000001101111011100000000111
11011110100000000111111101111010100000000111
11011110110000010001111101111100001010001111
11011111001111111011111101111101000110000111
11011111111000100101110000000000000000000000
11011110111000000001111101111010000000011111
11011110101000000001111101111011000001000111
11011111000011000001111101111100111101000111
11011111010001100001111101111011100010000111
11011111111000100101110000000000000000000000



24 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

ID-SETUP 11011110111000100001111101110000000000010111
11011110111000000001111101111011000000000111
10011111000001110101111001111100100000011111
11011110101000000001111101111010000000011111
10011111011100000001111101111100100110000111
11011111010010000001111001111101000000000111
11011110000000001101111101111100000000000111
1101111111100010010111

READ-ID-WORD (CY8C21345)
10111111000ZLLLLLLLLZ110111111001ZHHLHLLHHZ1

READ-ID-WORD (CY8C21645-24xxXA)
10111111000ZLLLLHLLLZ110111111001ZHHLHHLHLZ1

READ-ID-WORD (CY8C21645-12xxXE)
10111111000ZLLLLHLLLZ110111111001ZHHLHHLLHZ1

READ-ID-WORD (CY8C22345)
10111111000ZLLLLLLLLZ110111111001ZHHLHLLLHZ1

READ-ID-WORD (CY8C22345H-24xxXA)
10111111000ZLLLLHHLLZ110111111001ZHHLHLLLHZ1

READ-ID-WORD (CY8C22545-24xxXI)
10111111000ZLLLLLLLLZ110111111001ZHHLHLLHLZ1

READ-ID-WORD (CY8C22645-24xxXA)
10111111000ZLLLLLLLLZ110111111001ZHHLHHLHLZ1

READ-ID-WORD (CY8C22645-12xxXE)
10111111000ZLLLLLLLLZ110111111001ZHHLHHLLHZ1

READ-ID-WORD (CY8C24794)
10111111000ZLLLLLLLLZ110111111001ZLLLHHHLHZ1

READ-ID-WORD (CY8C24894)
10111111000ZLLLLLLLLZ110111111001ZLLLHHHHHZ1

READ-ID-WORD (CY8C24994)
10111111000ZLLLLLLLLZ110111111001ZLHLHHLLHZ1

READ-ID-WORD (CY8C28000)
10111111000ZLLLLLLLLZ110111111001ZHHHLLLLLZ1

READ-ID-WORD (CY8C28445)
10111111000ZLLLLLLLLZ110111111001ZHHHLLLLHZ1

READ-ID-WORD (CY8C28545)
10111111000ZLLLLLLLLZ110111111001ZHHHLLLHLZ1

READ-ID-WORD (CY8C28645)
10111111000ZLLLLLLLLZ110111111001ZHHHLLLHHZ1

READ-ID-WORD (CY8C28243)
10111111000ZLLLLLLLLZ110111111001ZHHHLLHLLZ1

READ-ID-WORD (CY8C28643)
10111111000ZLLLLLLLLZ110111111001ZHHHLHLHLZ1

READ-ID-WORD (CY8C28452)
10111111000ZLLLLLLLLZ110111111001ZHHHLLHLHZ1

READ-ID-WORD (CY8C28413)
10111111000ZLLLLLLLLZ110111111001ZHHHLLHHLZ1

READ-ID-WORD (CY8C28513)
10111111000ZLLLLLLLLZ110111111001ZHHHLHLHHZ1

READ-ID-WORD (CY8C28433)
10111111000ZLLLLLLLLZ110111111001ZHHHLLHHHZ1

READ-ID-WORD (CY8C28533)
10111111000ZLLLLLLLLZ110111111001ZHHHLHHLLZ1

READ-ID-WORD (CY8C28403)
10111111000ZLLLLLLLLZ110111111001ZHHHLHLLLZ1

READ-ID-WORD (CY8C28623)
10111111000ZLLLLLLLLZ110111111001ZHHHLHLLHZ1

READ-ID-WORD (CY8C29466)
10111111000ZLLLLLLLLZ110111111001ZLLHLHLHLZ1

READ-ID-WORD (CY8C29566)
10111111000ZLLLLLLLLZ110111111001ZLLHLHLHHZ1

READ-ID-WORD (CY8C29666)
10111111000ZLLLLLLLLZ110111111001ZLLHLHHLLZ1

READ-ID-WORD (CY8C29866)
10111111000ZLLLLLLLLZ110111111001ZLLHLHHLHZ1

Table A-1.  Programming Vectors  (continued)
Name Data



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 25

READ-ID-WORD (CY8CTST120-56xxxx)
10111111000ZLLLLLHHLZ110111111001ZLLLHHHHHZ1

READ-ID-WORD (CY8CTST120-00xxxx)
10111111000ZLLLLLHHLZ110111111001ZLLLHHLHHZ1

READ-ID-WORD (CY8CTMA120-56xxxx)
10111111000ZLLLLLHLHZ110111111001ZLLLHHHHHZ1

READ-ID-WORD (CY8CTMA120-00xxxx)
10111111000ZLLLLLHLHZ110111111001ZLLLHHLHHZ1

READ-ID-WORD (CY8CTMA120-100xxxx)
10111111000ZLLLLLHLHZ110111111001ZLHLHHLLHZ1

READ-ID-WORD (CY8CTMG120-56xxxx)
10111111000ZLLLLLHHHZ110111111001ZLLLHHHHHZ1

READ-ID-WORD (CY8CTMG120-00xxxx)
10111111000ZLLLLLHHHZ110111111001ZLLLHHLHHZ1

READ-ID-WORD (CY7C64215-28xxxx)
10111111000ZLLLLLLLLZ110111111001ZLLLHHHHLZ1

READ-ID-WORD (CY7C64215-56xxxx)
10111111000ZLLLLLLLLZ110111111001ZLHLHLLHHZ1

SET-BANK-NUM 110111101110001000011111011111010000000dd111
1101111011100000000111
where dd = bank #

SET-BLOCK-NUM 10011111010dddddddd111
where dddddddd = block #

BULK ERASE 10011111100000101011111001111111001010110111
11011110111000000001111101111011000000000111
10011111000001110101111001111100100000011111
11011110101000000001111101111010000000011111
10011111011100000001111101111100100110000111
11011111010010000001111101111000000000101111
11011111000000000001111101111111100010010111

WRITE-BYTE 10010aaaaaadddddddd111
where dddddddd = data in, aaaaaa = address (6 bits)

PROGRAM-BLOCK 10011111100010101001111001111111001010110111
11011110111000000001111101111011000000000111
10011111000001110101111001111100100000011111
11011110101000000001111101111010000000011111
10011111011100000001111101111100100110000111
11011111010010000001111101111000000000010111
11011111000000000001111101111111100010010111

VERIFY-SETUP 11011110111000000001111101111011000000000111
10011111000001110101111001111100100000011111
11011110101000000001111101111010000000011111
10011111011100000001111101111100100110000111
11011111010010000001111101111000000000001111
11011111000000000001111101111111100010010111

READ-BYTE 10110aaaaaaZDDDDDDDDZ1
where DDDDDDDD = data out, aaaaaa = address (6 bits)

SECURE 10011111100010101001111001111111001010110111
11011110111000000001111101111011000000000111
10011111000001110101111001111100100000011111
11011110101000000001111101111010000000011111
10011111011100000001111101111100100110000111
11011111010010000001111101111000000000100111
11011111000000000001111101111111100010010111

VERIFY-SECURE-
SETUP

11011110111000000001111101111011000000000111
10011111000001110101111001111100100000011111
10011111101000000001111001111111100000000111
11011110101000000001111101111010000000011111
10011111011100000001111101111100100110000111
11011111010010000001111101111000000010000111
11011111000000000001111101111111100010010111

Table A-1.  Programming Vectors  (continued)
Name Data



26 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

Notes

1 = Logic high = Vihp

0 = Logic low = Vilp

Z = HI-Z (floating)

D = Data read from device (Most Significant Bit [MSb] of binary data comes out first)

d = Data applied to the device (MSb of the binary data goes in first)

a = Address applied to the device (MSb of the binary data goes in first)

H = High data read from the device (Vout = Vohv)

L = Low data read from the device (Vout = Volv)

If the Programmer has delays between executing the different mnemonics, SDATA must be HI-Z (floating) during these
delays.

Note Cypress does not recommend sharing ISSP bus lines of CY8C20x36/46A/66A/96A/CY8CTMG2xx/CY8CTST2xx parts
with other PSoC devices. However in scenarios where ISSP bus of CY8C20x36/46A/66A/96A/CY8CTMG2xx/CY8CTST2xx
parts are shared with other PSoC devices, you must take care to avoid CY8C20x36/46A/66A/96A/CY8CTMG2xx/
CY8CTST2xx parts seeing key 'AC52' in reset state. Refer to the knowledge base article 
www.cypress.com/?id=4&rID=45442 for details.

CHECKSUM-SETUP 11011110111000000001111101111011000000000111
10011111000001110101111001111100100000011111
11011110101000000001111101111010000000011111
10011111011000000001111101111100100110000111
11011111010010000001111001111101010000000111
11011110000000001111111101111100000000000111
1101111111100010010111

READ-CHECKSUM 10111111001ZDDDDDDDDZ110111111000ZDDDDDDDDZ1
where DDDDDDDDDDDDDDDD = Device Checksum data out

ERASE BLOCK 10011111100010101001111001111111001010110111
11011110111000000001111101111011000000000111
10011111000001110101111001111100100000011111
11011110101000000001111101111010000000011111
11011111001001100001111101111101001000000111
11011110000000000111111101111100000000000111
1101111111100010010111

Table A-1.  Programming Vectors  (continued)
Name Data

http://www.cypress.com/?id=4&rID=45442
http://www.cypress.com/?id=4&rID=45442
http://www.cypress.com/?id=4&rID=45442


PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 27

Appendix B.   Intel.hex File Format for CY8C21x45, CY8C22x45, CY8C24x94, CY8C28xxx, 
CY8C29x66, CY8CTST120, CY8CTMA120, CY8CTMG120, 
CY7C64215

Intel.hex file records are a text representation of hexadecimal coded binary data. Only ASCII characters are used, so the for-
mat is portable across all computer platforms.

PSoC® Designer™ generates this file and stores it under the <PROJECT_DIR>/OUTPUT directory.

Each line in an Intel.hex file is called a 'record'.

Each line (record) of Intel.hex file consists of six parts:

The flash program data and end data are made up of a single record. The security data and checksum data are made up of
multiple records. These data each have an extended linear address record and one or more records. Records always begin
with a colon (:), followed by the number of data bytes in each record. For the devices, flash program data records always use
64 bytes of data so the hexadecimal value in the file is always 0x40 for that type.

For flash programming data records, the next pair of numbers represents the 16-bit starting address of the data in the record.
This is the absolute location in the flash memory. This number must be a multiple of 64 (0x00, 0x40, 0x80, 0xC0, and so on)
for flash program data records because each record contains 64 bytes.

The starting address is followed by a byte representing the record type. If this is 0x00, the next bytes are the actual program
data to be stored in flash. A 0x01 indicates that this is the end of the file. A 0x04 indicates an “Extended Linear Address
Record” and is used for security data and device checksum data storage (see the following examples).

The security and checksum data use multiple records because they have longer addresses than the other data. The first
record, the Extended Linear Address Record, gives the upper bytes of the address of the data in memory. The other records
give the lower bytes of the address along with data.

Following the record type are the hexadecimal representations of the data to be stored. The last byte is a checksum, which is
the least significant byte of the two’s complement of the sum of the values of all fields except the colon field. This is called the
record checksum. Note that this value is derived from the binary values of the bytes rather than the ASCII representation.

Typically, a standard CR/LF pair (carriage return/linefeed, 0x0D 0x0A) terminates the record. Other end-of-line conventions
are also acceptable (such as CR only).

B.1 Example Flash Program Data Record
:4000C000505152535455565758595A5B5C5D5E5F00000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000E8(CR/LF)
Broken down, it is as follows:
: - Colon, indicates that this is IntelHex
40 - Number of data bytes to follow = 0x40(40 hex)
00C0 - Starting address in the FLASH for record.
00 - This is the record type -- 0x00 = Data
505152535455565758595A5B5C5D5E5F00000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000

Start code
(Colon 

character)

Byte 
count

(1 byte)

Address
(2 bytes)

Record 
type

(1 byte)

Data
(N bytes)

Checksum
(byte)



28 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L

These are 64 bytes of data in hex as noted above. The
first byte (0x50) will be stored at 0x00C0, with the
remaining bytes following in sequence.

E8 - This is record checksum. If you add all of successive bytes 
(note that the address is treated as two individual
bytes), and truncate it to the lowest eight bits, the
result is 0x18. The two's complement of 0x18 is 0xE8.
(This may be derived by subtracting 0x18 from 0x100, or
by inverting the bits and adding one to the result.)

(CR/LF) - End of this record.

B.2 Example Security Data Records
:020000040010ea(CR/LF)
:400000005555555555555555555555555555555555555555555555555555555555555555555555555555555555
555555555555555555555555555555555555555555555580(CR/LF)

: - Colon, indicates IntelHex
02 - Number of data bytes – 2 bytes of data
0000 - Address - zero 
04 - This is the record type -- 0x04 indicates 

Extended Linear Address record
0010 - 2 hex data bytes used – here byte 1 has 0x00,

byte 2 has 0x10 data.
This indicates that the
security data is offset in memory space
(0x0010 is used for security data).

ea - The record checksum, calculated as above.
(CR/LF) - End of this record.

: - Colon, indicates that this is IntelHex
40 - Number of data bytes – 64 bytes
0000 - Address – zero
00 - Record type - 0x00 indicates data record 
5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555
5555555555555555555555555555555555555

- 64 data bytes – here bytes have 0x55 data             
80 - The record checksum, calculated as above.
(CR/LF) - End of this record.

B.2.1 Additional Notes on Security Records

The security data must be in the file after all flash program data records are specified.

As seen in the previous example, security data uses multiple records (one to access the extended memory space, and others
for the data).There is one security data record for every 256 blocks of flash. For devices with under 256 blocks of flash, the
record is still 64 bytes long. The most significant bytes are used, and the remainder are ignored. The extended linear address
record that precedes the security data record always specify the same data, and as a result, always have the same check-
sum. This record can be copied from a known good hex file.

The data of the security data record indicates the flash security settings specified in PSoC Designer, in flashsecurity.txt. Each
letter in flashsecurity.txt indicates the security settings for one block of flash space. Each letter is encoded into two bits of a
hex digit in the security data record. Four blocks’ settings are concatenated into two digits of data, in reverse order. The
encoding may be further examined by changing flashsecurity.txt and generating hex files.



PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L 29

B.3 Example Device Checksum Data Records
:020000040020da(CR/LF)
:02000000253a9f(CR/LF)

: - Colon, indicates that this is IntelHex
02 - Number of data bytes – 2 bytes of data
0000 - Address - zero 
04 - This is the record type -- 0x04 indicates

Extended Linear Address record
0020 - 2 hex data bytes used – here byte 1 has 0x00,

byte 2 has 0x20 data.
This indicates that indicates that the checksum
data is offset in memory space (0x0020 is use
for checksum data).

da - The record checksum, calculated as above.
(CR/LF) - End of this record.

: - Colon, indicates that this is IntelHex
02 - Number of data bytes – 2 bytes of data
0000 - Address - zero 
00 - Record type -- 0x00 indicates data record
253a - 2 hex data bytes used – here byte 1 has 0x25, byte 2 has 0x3a data. The data is 
a 2 byte checksum of all of the data stored in flash.
9f - The record checksum, calculated as above.
(CR/LF) - End of this record.

B.3.1 Additional Notes on Device Checksum Data Records

The device checksum data must be in the file after all security data records are specified.

As seen in the previous example, device checksum data uses two records (one to access the extended memory space, and
the other for the data). The extended linear address record that precedes the checksum data record always specify the same
data, and as a result, always have the same checksum. This record can be copied from a known good hex file.

B.4 End Record (End of File)
:00000001FF(CR/LF)

: - Colon, indicates that this is IntelHex
00 - Number of data bytes - zero
0000 - Address - zero 
01 - Record type -- 0x01 indicates end record,

- no data bytes used
FF - The record checksum, calculated as above.
(CR/LF) - End of this record.

B.5 Device Address and Block Definitions
The least significant 6 bits in the IntelHex address define the byte address (0 to 63) within a block. The most significant bits in
the IntelHex address define the block number. See Table 4-3 on page 22.



30 PSoC® 1 ISSP Programming Specifications, Document No. 001-15239 Rev. *L


	Programming Spec
	Contents
	1. Overview
	1.1 Introduction
	1.2 Document History

	2. Host Programmer - PSoC® 1 Programming Interface
	2.1 Programming Pin Drive Modes
	2.2 Using an External Crystal Oscillator
	2.3 Pin Loading Requirements

	3. Programming Flow
	3.1 Programming Concepts
	3.1.1 Vectors
	3.1.2 Clocking, Data Format, and Timing Diagrams
	3.1.3 Wait and Poll

	3.2 Initialize Target Procedure
	3.2.1 Reset Mode
	3.2.2 Power Cycle Mode
	3.2.3 Verify Silicon ID Procedure

	3.3 Program Procedure
	3.4 Verify Procedure
	3.5 Secure Procedure
	3.6 Verify Secure Procedure
	3.7 Verify Checksum Procedure
	3.8 Erase Block Procedure

	4. Specifications and Definitions
	4.1 DC Programming Specifications
	4.2 AC Programming Specifications
	4.3 Device Address and Block Definitions

	Appendix A. Programming Vectors for CY8C21x45, CY8C22x45, CY8C24x94, CY8C28xxx, CY8C29x66, CY8CTST120, CY8CTMA120, CY8CTMG120, CY7C64215
	Appendix B. Intel.hex File Format for CY8C21x45, CY8C22x45, CY8C24x94, CY8C28xxx, CY8C29x66, CY8CTST120, CY8CTMA120, CY8CTMG120, CY7C64215
	B.1 Example Flash Program Data Record
	B.2 Example Security Data Records
	B.2.1 Additional Notes on Security Records

	B.3 Example Device Checksum Data Records
	B.3.1 Additional Notes on Device Checksum Data Records

	B.4 End Record (End of File)
	B.5 Device Address and Block Definitions


