Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.
AN217979 documents the endurance and data retention characterization of Cypress Flash Memory Products.

1 Introduction

Nonvolatile flash memory technology is subject to physical degradation that can eventually lead to device failure. Vendors use two end-of-life parameters to specify the performance of reprogrammable nonvolatile memory: Program/Erase endurance and data retention. Understanding the practical meaning of these parameters and their inter-relationship allows a designer to properly assess the capabilities in order to meet the system performance and reliability requirements.

This application note provides a perspective on Cypress nonvolatile flash memory reliability testing methodology and discusses the influence of key factors in terms of Program/Erase endurance and data retention. It also provides information on reliable usage models using Cypress products related to industry standards.

2 Industrial Standard Trend – Program/Erase Cycling and Data Retention

JEDEC standard JESD22-A117 indicate that over-stressing a memory product during reliability evaluation will impact the data retention after Program/Erase cycling. This is not uncommon. Overstressing flash during pre-production and/or production tests can impact data retention of later operations.

JESD22-A117

4.1.2.4 Intentional delays between cycles

The degradation rate of EEPROM products may depend strongly on the cycling frequency.

This sentence indicates that significant overstress can excessively accelerate the degradation of nonvolatile flash memory performance. Design of high-reliability products based on a product usage model is a primary concern, especially for newer technologies. It is essential to comprehend the gap between the evaluation condition and field usage to adequately characterize the reliability of the application in the field. Understanding field usage models (cycling frequency per sector, temperature, etc.) and testing under the same conditions will avoid overstressing the device.

3 Cypress Testing Procedure for Program/Erase Cycling and Data Retention

3.1 Test procedure

JEDEC qualification standards JESD47, JESD22-A117, and AEC-Q100 require evaluation samples to undergo both endurance stress and data retention stress after completing endurance.

For endurance cycling, JEDEC specifies four primary points:

1. The cycling time is limited to 500 hours of actual cycling operations, not including inserted bake times used in cycling delays.
2. One must follow the inserted bake delay guideline in JESD22-A117.
3. High-temperature bakes are not to be inserted during room temperature endurance.
4. The delays plus the cycling time itself must not add up to more than 500 hours at 85 degree Celsius during high-temperature endurance.

The assumption of JEDEC’s cycling condition is 1.5 years at 55 degree Celsius, which is equivalent to 500 hours at 85 degree Celsius when the assumed cycling de-trapping Ea is 1.1 eV for Floating gate technology.

For AEC-Q100, the primary concern of the endurance condition is the customer usage model. It recommends understanding the customer usage model, including the targeted Program/Erase cycling count, period, and temperature, because automotive products typically require a tighter field usage model. Moreover, Cycling shall be performed at temperature T ≥ 85°C, with total cycling time not exceeding 15 percent of the accelerated product life. (For example, 10 years product life in field allows 1.5 years Program/Erase cycling period in field.)

In Cypress’ cycling methodology, Cypress implements cycling in proportions of 100%, 10%, 1%, and less than 1% Program/Erase cycling on the same unit. At a minimum, Program/Erase cycling time of 100% and 10% areas occupy each one-third of total Program/Erase cycling time. Figure 1 shows an example of sector assignment. The assigned sector number for each Program/Erase cycling target are intended to meet the 500 hours Program/Erase cycling period. Figure 2 shows the allocation of cycling condition and time as one of conditions.

![Figure 1. Example of Program/Erase Cycle Conditions in a Unit](image)

<table>
<thead>
<tr>
<th>Row#</th>
<th>Sector#</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>248 249 250 251 252 253 254 255</td>
</tr>
<tr>
<td>30</td>
<td>240 241 242 243 244 245 246 247</td>
</tr>
<tr>
<td>29</td>
<td>232 233 234 235 236 237 238 239</td>
</tr>
<tr>
<td>28</td>
<td>224 225 226 227 228 229 230 231</td>
</tr>
<tr>
<td>27</td>
<td>216 217 218 219 220 221 222 223</td>
</tr>
<tr>
<td>26</td>
<td>208 209 210 211 212 213 214 215</td>
</tr>
<tr>
<td>25</td>
<td>200 201 202 203 204 205 206 207</td>
</tr>
<tr>
<td>24</td>
<td>192 193 194 195 196 197 198 199</td>
</tr>
<tr>
<td>23</td>
<td>184 185 186 187 188 189 190 191</td>
</tr>
<tr>
<td>22</td>
<td>176 177 178 179 180 181 182 183</td>
</tr>
<tr>
<td>21</td>
<td>168 169 170 171 172 173 174 175</td>
</tr>
<tr>
<td>20</td>
<td>160 161 162 163 164 165 166 167</td>
</tr>
<tr>
<td>19</td>
<td>152 153 154 155 156 157 158 159</td>
</tr>
<tr>
<td>18</td>
<td>144 145 146 147 148 149 150 151</td>
</tr>
<tr>
<td>17</td>
<td>136 137 138 139 140 141 142 143</td>
</tr>
<tr>
<td>16</td>
<td>128 129 130 131 132 133 134 135</td>
</tr>
<tr>
<td>15</td>
<td>120 121 122 123 124 125 126 127</td>
</tr>
<tr>
<td>14</td>
<td>112 113 114 115 116 117 118 119</td>
</tr>
<tr>
<td>13</td>
<td>104 105 106 107 108 109 110 111</td>
</tr>
<tr>
<td>12</td>
<td>96 97 98 99 100 101 102 103</td>
</tr>
<tr>
<td>11</td>
<td>88 89 90 91 92 93 94 95</td>
</tr>
<tr>
<td>10</td>
<td>80 81 82 83 84 85 86 87</td>
</tr>
<tr>
<td>9</td>
<td>72 73 74 75 76 77 78 79</td>
</tr>
<tr>
<td>8</td>
<td>64 65 66 67 68 69 70 71</td>
</tr>
<tr>
<td>7</td>
<td>56 57 58 59 60 61 62 63</td>
</tr>
<tr>
<td>6</td>
<td>48 49 50 51 52 53 54 55</td>
</tr>
<tr>
<td>5</td>
<td>40 41 42 43 44 45 46 47</td>
</tr>
<tr>
<td>4</td>
<td>32 33 34 35 36 37 38 39</td>
</tr>
<tr>
<td>3</td>
<td>24 25 26 27 28 29 30 31</td>
</tr>
<tr>
<td>2</td>
<td>16 17 18 19 20 21 22 23</td>
</tr>
<tr>
<td>1</td>
<td>8 9 10 11 12 13 14 15</td>
</tr>
<tr>
<td>0</td>
<td>0 1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

Note: Sector or block assignment depends on the specific product.

According to the JEDEC JESD47 specification, data retention lifetime for 100 percent Program/Erase cycling is required to meet 10 hours at 125 degree Celsius, and 10 percent Program/Erase cycling to meet 100 hours at 125 degree Celsius. (10 hours at 125 degree Celsius is equivalent with over 10 years at 55 degree Celsius in field when activation energy is 1.1 eV.) Data pattern during Data retention bake uses CheckKerBoarD(CKBD), Reverse-CheckerBoarD(RCKBD), or Random. As an engineering study, data retention bake time is routinely extended to characterize the ability of data retention after Program/Erase cycling.
4 Impact of Program/Erase Cycling Condition

This section uses a simplified MirrorBit® cell structure as a model and data. However, as a phenomenon, it is common both for NOR/NAND Flash Floating Gate technology and NOR Flash MirrorBit technology. Diminished data retention is possible with both NOR and NAND Flash because of high-frequency program/erase cycles to the same sectors.

The ideal program state of a flash memory MirrorBit cell is to have all stored electrons within the specific area of the Nitride layer of the cell as shown in Figure 4 (a simplified rendering). Electrons are not de-trapped (diffused) easily from the Nitride layer, resulting in good data retention performance. In cases where Program/Erase is repeated rapidly, perhaps by using only a few sectors, the excess trapped electrons located near the Nitride layer increase significantly as shown in Figure 5. Those excess trapped electrons are easily de-trapped (diffused) and cause poorer data retention performance. If the product is run to a maximum cycle count (100 percent) in a days or even just a few hours, excess trapped electrons near the Nitride layer are accumulative due to the lack of a normal de-trapping effect between cycles. A higher cycling rate prevents relaxation recovery and it is a direct result of cycling overstress.

5 Factors Affecting Data Retention Lifetime After Program/Erase Cycling

Post-Cycling Data retention is determined by three main parameters:
1. System Field Temperature (Program/Erase Cycling and Data Storage)
2. Total number of Program/Erase Cycles
3. Cycling Interval Time

These factors can significantly impact the retention lifetime after Program/Erase cycling. To ensure that the reliability design of the product is suitable for a particular customer application, a good understanding of these parameters is essential.
5.1 System Field Temperature (Program/Erase Cycling and Data Storage)
Temperature is a significant modifier for endurance and data retention. One cannot universally assume that a part will work for its entire lifetime of 10 to 20 years by simply assuming a field average temperature such as 55 degree Celsius. In fact, there are a variety of temperature profiles based on real-world applications. Most of the time, a continuous high or low temperature is not typical for most applications. There is always a distribution of use at different temperatures. However, an average use temperature can be calculated from a complex temperature profile through the Arrhenius equation. Higher temperatures increase the impact to the average field temperature even if the actual time spent at the high temperature is small. Again, lower storage temperatures can increase retention lifetime while higher storage temperatures can decrease it significantly.

Figure 6. Data Retention Time Versus Field Average Temperature
\[At = \exp \left(\frac{Ea}{kb} \times \left(\frac{1}{T_{field}} - \frac{1}{T_{reference}} \right) \right) \]
\[\text{Lifetime}_{Field Temp} = At \times \left(\text{Lifetime}_{55°C} \right) \]

At: Acceleration temperature factor
Ea: MB activation energy: 1.2eV, Note: FG: 1.1eV
kb: Boltzmann constant= 8.62 1E-5 eV/K,
Tfield: Field average temperature (°C) + 273 K,
Treference: 55 (°C) + 273 K
Lifetime field: Data retention lifetime (years)
Lifetime 55°C: Base points, 1/2/10/20 years at 55°C

Note: Assumptions are 1, 2, 10, and/or 20 years after Program/Erase cycling such as 10k or 100k cycles at 55 degree Celsius.

5.2 Total Number of Program/Erase Cycles
There is a trade-off between the Program/Erase cycling count and subsequent Data Retention capability. The larger the Program/Erase cycling count, the smaller the subsequent Data Retention after the completion of Program/Erase cycling. In general, they are inversely proportional; that is, if the number of Program/Erase cycles are increased by about one order (10x) of magnitude, it results in subsequent Data retention of about one order smaller (1/10x) of magnitude.

Figure 7. Relationship Between Data Retention and Program/Erase Cycling
The plotted lines are based on 1/2/10/20 year lifetime after 10k Program/Erase cycles at 55°C.
5.3 Cycling Interval Time

The endurance specification of a flash device should be evaluated in terms of the projected in-system rate of erasure for any given sector. The sectors used for data logging may rapidly accumulate erase cycles depending on the frequency and size of the data being captured. Such use may ultimately lead to those sectors failing first. As such, the shorter the Program/Erase interval time between Program/Erase cycles, the worse the data retention. Longer interval times between Program/Erase cycles can de-trap the excess trapped electrons between Program/Erase cycles, resulting in better data retention. Figure 8 shows an example of the retention lifetime over a variety of interval times, assuming 20 years retention lifetime after 10k Program/Erase cycles at an average of 55 degree Celsius cycling, under JEDEC test conditions.

Figure 8. Retention Lifetime Versus Interval Time Between Cycles of 10k Program/Erase Cycling

![Retention Lifetime Graph](image)

The following interpretation applies to Figure 8:

- Assume that the time required to complete 10k Program/Erase cycling is spread over 20 years at 55 degree Celsius in field. (1~2 Program/Erase cycles per day)
- Average interval time between Program/Erase cycles = 20 (years) x 8760 (hours per a year) x 3600 (seconds per hour) / 10000 (Program/Erase cycles) = 63072 (seconds)
- Calculated Retention lifetime = 110.5 (years) at 55 degree Celsius
- Total product lifetime = 20 (years for Program/Erase cycling period) + 110.5 (years for data retention after 10k Program/Erase cycles) = 130.5 (years)
- Slope between data retention and interval time = 0.66

Note: The assumption uses an average interval time between Program/Erase cycles. In field usage, there is a biased frequency about interval time between Program/Erase cycles.
6 Considerations with Respect to Field Usage Model

As a prerequisite, the baseline expectation for data retention is two years after 100k Program/Erase cycles at 55 degree Celsius and 20 years after 10k Program/Erase cycles at 55 degree Celsius in this section. Here, we present case studies for the usage models based on these assumptions.

6.1 Case Study 1

Figure 9 shows two representative curves. One is the retention lifetime after 10k Program/Erase cycles at each field average temperature and another one is the retention lifetime after 100k Program/Erase cycles at each field average temperature, based on a 1.5 year of Program/Erase cycling period (10k or 100k cycles will have completed at 1.5 years). This results in a cycling interval time for 10k Program/Erase cycling of 1.314 hours and 100k Program/Erase cycling of 7.884 minutes.

![Retention Lifetime at Each Field Temperature Versus Program/Erase Cycles by Each Interval Time](image)

- The bright green dot shows 10 years of data retention after 2728 Program/Erase cycles at 85ºC.
- Over 10 years of data retention is achieved when one assumes less than 65 degree Celsius average field temperature for 10k Program/Erase cycles.
- Over 1 year of data retention is achieved when one assumes less than 65 degree Celsius average field temperature for 100k Program/Erase cycles.

6.2 Case Study 2

The retention lifetime after Program/Erase cycling becomes better when one considers a longer interval time between Program/Erase cycles. As an example, Figure 9 becomes Figure 10 when 10k and 100k Program/Erase cycles are completed over a 10 year or 20 year period.

a) Assumption of 10 years Program/Erase cycling period
 - 10k Program/Erase cycling case – 8.76 hours interval time between Program/Erase cycles
 - 100k Program/Erase cycling case – 52.56 minutes interval time between Program/Erase cycles

b) Assumption of 20 years Program/Erase cycling period
 - 10k Program/Erase cycling case – 17.52 hours interval time between Program/Erase cycles
 - 100k Program/Erase cycling case – 1.752 hours interval time between Program/Erase cycles

Note: Interval time is approximate.
Data retention becomes better if the usage model takes a longer Program/Erase interval time and/or longer Program/Erase cycling period. Cypress guarantees minimum retention lifetime after Program/Erase cycling with proper Program/ Erase cycling period based on the evaluated data for using the JEDEC test procedure. Cypress can provide the possibility and/or ability of data retention after Program/Erase cycling based on more detailed usage model analysis and empirical data if a realistic usage mode in field is provided.

7 Error Correcting Code (ECC)

ECC can significantly improve the quality and reliability of NOR Flash family products, as shown in Figure 11. For ultra-high quality and reliability applications, it is recommended to use ECC to improve the reliability and data retention dramatically.

As shown in Figure 11, it allows a 1E-08 RBER (raw bit failure rate) to meet 10 ppm unit failure rate when 1-bit ECC per 32 bytes is used.
8 Summary

Endurance and data retention specifications are to be used as guidelines for designers to assess the ability of specific flash devices to meet end-of-life application requirements. Endurance and data retention are inter-dependent parameters. The effect of Program/Erase cycling can be mitigated by manipulation of how repetitively captured data is physically stored in flash memory array.

Data retention is a cell-level specification that indicates how long data can be expected to be reliably retrieved following programming under the usage model. The factors of endurance, system temperature in field, total number of Program/Erase cycling, and cycling interval time between Program/Erase cycles combined characterize the capability of flash memory. It should be noted that these factors can be controlled at the system level, provided that a good understanding of key factors is achieved.

If your application has a complex temperature profile, usage model, and/or utilizes stringent conditions, contact Cypress to obtain assistance to calculate data retention.
Document History

Document Title: AN217979 - Endurance and Data Retention Characterization of Cypress Flash Memory
Document Number: 002-17979

<table>
<thead>
<tr>
<th>Revision</th>
<th>ECN</th>
<th>Orig. of Change</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>5528064</td>
<td>YUOH</td>
<td>03/21/2017</td>
<td>New application note.</td>
</tr>
<tr>
<td>*A</td>
<td>5753474</td>
<td>YUOH</td>
<td>05/29/2017</td>
<td>Removed “confidential” marking from the footer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corrected tab in Figure 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Optimized tab in Figure 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Optimized to show the explanation of right side for Figure 10</td>
</tr>
</tbody>
</table>
Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm
Automotive cypress.com/automotive
Clocks & Buffers cypress.com/clocks
Interface cypress.com/interface
Internet of Things cypress.com/iot
Memory cypress.com/memory
Microcontrollers cypress.com/mcu
PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, should you and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.