

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 002-19387 Rev. *A Revised October 16, 2017

Features

▪ Full LIN 2.2, 2.1 or 2.0 Slave Node implementation

▪ Supports compliance with LIN 1.3 specification

▪ Supports partial compliance with SAE J2602-1 specification

▪ Automatic baud rate synchronization

▪ Fully implements a Diagnostic Class I Slave Node

▪ Full transport layer support

▪ Automatic detection of bus inactivity

▪ Full error detection

▪ Automatic configuration services

▪ Customizer for fast and easy configuration

▪ Import of *.ncf/*.ldf files and *.ncf file export

▪ Editor for *.ncf/*.ldf files with syntax checking

General Description

The LIN Slave Component implements a LIN 2.2 slave node on PSoC 3, PSoC 4, and PSoC
5LP devices. Options for LIN 2.0, LIN 1.3 or SAE J2602-1[1] compliance are also available. This
Component consists of the hardware blocks necessary to communicate on the LIN bus, and an
API to allow the application code to easily interact with the LIN bus communication. The
Component provides an API that conforms to the API specified by the LIN 2.2 Specification.

This Component provides a good combination of flexibility and ease of use. A customizer for the
Component is provided that allows you to easily configure all parameters of the LIN Slave.

1 The J2602 protocol is not fully supported; SAE J2602-2 and SAE J2602-3 are not fully supported by the
Component.

LIN Slave
4.0

LIN Slave PSoC® Creator™ Component Datasheet

Page 2 of 52 Document Number: 002-19387 Rev. *A

For PSoC 4 devices only, the LIN Slave Component is certified by the C&S group GmbH based
on the standard protocol and data link layer conformance tests. A complete certification report
can be made available on request. Contact Cypress Technical Support or check the Component
web page for details.

For PSoC 3 and PSoC 5LP devices, the LIN Slave Component is a prototype Component,
because it is not certified for these devices.

Definitions

Many of the definitions given in this datasheet are from the LIN 2.2 specification. In these cases,
refer to the specified section of the LIN 2.2 specification for a proper understanding of the term.

Input/Output Connections

This section describes input and output connections for the LIN Slave.

TXD – Output

This is a digital output terminal. This terminal’s signal is the data that this LIN node sends onto
the LIN bus.

RXD – Input

This is a digital input terminal. This terminal’s signal is the CMOS form of the signals on the
physical LIN bus. Note that this terminal generally also receives any signals that come out of the
TXD terminal. This is because a LIN physical layer transceiver has a built-in loop back that
receives all signals on the bus, whether they are from some other LIN node, or from its own LIN
node.

Schematic Macro Information
For PSoC3/PSoC 5LP, the PSoC Creator Component Catalog contains a schematic macro for
the LIN Component. This macro contains already connected and configured pin Components.
The schematic macro with the default Component configuration is shown below.

https://secure.cypress.com/myaccount/index.cfm?id=25&createCase=CustomerMarketing
http://www.cypress.com/documentation/component-datasheets/lin-slave
http://www.cypress.com/documentation/component-datasheets/lin-slave

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 3 of 52

Component Parameters

Drag a LIN Slave Component onto your design and double click it to open the Configure LIN
dialog. The LIN Component contains parameters on several tabs.

General Tab

General Parameters

Use Automatic response_error Signal

This check box on the tab sets the automatic error signal selection. This box is always selected,
so a 1-bit signal is automatically added in the Signals tab of the customizer. This signal has a
default name of “Response_Error.” The Component sets it automatically whenever a response
error occurs. The Component also automatically clears this signal after it has been successfully
sent to the master. This signal provides the response error notification to the LIN master as
required by the LIN 2.2 specification.

LIN 1.3 Compatibility

This option selects whether this Component is compatible with the LIN 1.3 specification. The
status of this check box affects other areas of the customizer.

LIN Slave PSoC® Creator™ Component Datasheet

Page 4 of 52 Document Number: 002-19387 Rev. *A

LIN 2.0 Compatibility

This option selects whether this Component is compatible with the LIN 2.0 specification. The
status of this check box affects other areas of the customizer.

Enable J2602-1 Compliance

The SAE J2602-1 specification is parallel to the LIN 2.x specifications. It adds restrictions to the
LIN 2.x requirements. However, there are also a few extra features that are supported by this
Component that make it J2602-1 compliant. The status of this check box affects other areas of
the customizer.

Bus Inactivity Timeout Detection

This option controls the availability of the bus inactivity feature and its value. After a specified
time of bus inactivity, the corresponding status bit is set. The value of this bit can be obtained by
L_IOCTL_READ_STATUS operation of the l_ifc_ioctl() function. See the Function Description
section for more information.

Note The minimal timeout value in this field is restricted to 4000 milliseconds, as defined in the
LIN 2.2 specification. When the LIN 1.3 Compatibility option is enabled, this value could be
insufficient for a LIN 1.3 inactivity timeout (25000 bit-times) at bus speed > 6000 bit/s. In such a
case, the application must poll the activity bit using the l_ifc_read_status() function and
implement its own software inactivity timer.

This approach is less optimal in terms of resource usage; however, it is directly defined in the
LIN standard.Multiple instance support

This option enables/disables support for placement of two LIN Component instances in the same
project. If two LIN Component instances are present on the schematic, this option must be
selected for both instances, and these instances must have different interface numbers.

Interface number

This option defines the interface number of the current Component instance. This parameter is
passed in API dynamic calls as the interface handle definition, for example, if two LIN instances:
LIN_1 with interface number 1 and LIN_2 with interface number 2 are present on the
schematic, the values of these definitions are:

 LIN_1_IFC_HANDLE = 0, LIN_2_IFC_HANDLE = 1

Break Detection Threshold

This option configures slave node break detection threshold. Default value is 11 dominant local
slave bit times. See section 2.3.1.1 of the LIN 2.2 specification for more information about break
detection threshold selection criteria.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 5 of 52

General Toolbar

There is a toolbar at the top of the General tab. This toolbar provides access to operations with
files.

Import File

Clicking this button allows you to import a LIN Description File (LDF) or a Node Capability File
(NCF). An imported file configures the customizer settings to match the configuration of the node
that was selected from the list of the existing nodes of the NCF/LDF file.

If the syntax in the imported file is correct, a list of available nodes is displayed. A similar list is
shown in Figure 1. Choose one of the available node descriptions to import.

Figure 1. List of Available Nodes of NCF File to Import

The syntax for *.ncf and *.ldf files is verified according to the LIN Node Capability Language
Specification (Revision 2.2) and to the LIN Configuration Language Specification (Revision 2.2),
respectively.

If the imported file contains errors, a dialog window similar to Figure 2 is displayed. There are
two options in this case: edit the imported file to correct the errors using LIN Enhanced Editor
Tool (see LIN File Text Editor for more information) or cancel the import by clicking the No
button.

Note If the imported *.ncf or *.ldf file is using a syntax incompatible with one of the supported LIN
specifications (for example, LIN_protocol_version = “J2602_1_1.0” or LIN_language_version =
"J2602_3_1.0"), syntax errors may be reported during the import. To continue the import
procedure, set the LIN language and protocol versions to the supported values (one of “1.3”,
“2.0”, “2.1”, or “2.2”), and adjust the file appropriately using the LIN Enhanced Editor.

LIN Slave PSoC® Creator™ Component Datasheet

Page 6 of 52 Document Number: 002-19387 Rev. *A

Figure 2. NCF File Import Failed

After the node to import is chosen and the import to the customizer is completed, a dialog box
that describes the importing results is displayed (see Figure 3). The importing results contain the
LIN Slave Component parameters that were not affected during import.

Figure 3. NCF File Import Information

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 7 of 52

Export File

This tool enables you to save information about the Component configuration into a Node
Capability File (NCF).

Figure 4. NCF File Export Information

LIN Slave PSoC® Creator™ Component Datasheet

Page 8 of 52 Document Number: 002-19387 Rev. *A

LIN File Text Editor

This tool is used to create, edit, and verify the syntax of the NCF/LDF file. The syntax for *.ncf
files is verified according to LIN Node Capability Language Specification (Revisions 2.2, 2.1, and
2.0). The syntax for *.ldf files is verified according to LIN Configuration Language Specification
(Revisions 2.2, 2.1, 2.0, and 1.3).

Figure 5. LIN File Text Editor Tool

There is a toolbar at the top of the LIN Enhanced Editor Tool window (see Figure 6).

Figure 6. LIN File Text Editor Toolbar

▪ New File – Creates a new file of the selected LIN file type.

▪ Open File – Opens the specified existing LIN file.

▪ Save File – Saves the created LIN file to the specified location.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 9 of 52

▪ Check Syntax – This control allows you to check whether an *.ncf/*.ldf file syntax is
correct. If there are any syntax errors, the errors are listed in the output area of the editor
window with the line and column numbers of their location and a short error description
(Figure 7). The code lines containing errors are highlighted in red.

Double-clicking the error line in the output area navigates to the line containing an error in
file.

Figure 7. LIN File Syntax Check

▪ Find – This tool allows you to find the term specified in the search field in a LIN file. The
Find Next button allocates the next match. If the Mark Line check box of the tool is
selected, the lines containing the necessary term are labeled with yellow circles after
clicking the Find All button. The Style found token check box enables or disables
highlighting of the found token in yellow after clicking the Find All button, as shown in
Figure 8. The Clear button removes all highlighted tokens.

LIN Slave PSoC® Creator™ Component Datasheet

Page 10 of 52 Document Number: 002-19387 Rev. *A

Figure 8. LIN File Finding Results

All tools are also available in the File menu of the LIN Enhanced Editor Tool (see Figure 5) and
through the appropriate toolbar commands.

Baud Rate Tab

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 11 of 52

Automatic Baud Rate Synchronization

This option allows you to enable or disable automatic baud rate synchronization. By default, this
option is enabled.

If this option is enabled, the Component measures the exact baud rate of the bus from the sync
byte field of each LIN frame header.

If this option is disabled, the Component does not measure the baud rate from the sync byte
field. Instead, it receives the sync byte field as a 0x55 data byte.

As required by the LIN 2.2 specification, LIN slave nodes with a frequency deviation of
±1.5 percent or less do not need to use automatic baud rate synchronization to measure the
sync byte field of each frame. However, if the frequency deviation of the LIN slave node is more
than ±1.5 percent, then the slave node must use automatic baud rate synchronization to
measure the sync byte field of each frame.

Therefore, frequency deviation specifications must be checked for the clock source from which
Master clock for PSoC 3 / PSoC 5LP devices or HFCLK clock for PSoC 4 devices is derived (this
is typically the Internal Main Oscillator (IMO)).

Nominal LIN Bus Baud Rate

Enter the nominal LIN bus baud rate at which this LIN slave node must operate. The maximum
value is 20000 baud and the minimum value is 1000 baud. The customizer does not allow you to
select baud rates outside of this range. The values in the drop down list are 19200, 10417, 9600,
and 2400. However, you can type in any value between 1000 and 20000 in the combo box. If
Nominal LIN Bus Baud Rate is modified, press the Apply button to get new values for the
Source Clock Frequency, Source Clock Divider, and Actual LIN Bus Baud Rate fields.

Source Clock Frequency

This is the clock frequency, oversampled by 16, that is used for the data transmission.

Source Clock Divider

This is the value of the clock divider that is used to get the clock frequency specified in Source
Clock Frequency from the Master clock for PSoC 3 / PSoC 5LP devices or HFCLK clock for
PSoC 4 devices.

Actual LIN Bus Baud Rate

The actual value of the bus baud rate is displayed here. The LIN slave will work on this baud
rate. The Master clock for PSoC 3 / PSoC 5LP devices or HFCLK clock for PSoC 4 devices
value can be modified to make Nominal LIN Bus Baud Rate equal to Actual LIN Bus Baud
Rate.

LIN Slave PSoC® Creator™ Component Datasheet

Page 12 of 52 Document Number: 002-19387 Rev. *A

Frames Tab

This tab is used to configure how the LIN Slave responds to PID values that are sent by the
master on the bus. The settings configured on this tab are used to correctly generate the
Component API and ISR code. During operation, the LIN slave receives a PID with a frame ID in
it that determines how the LIN Slave (the Component) must respond.

Frame Configuration Table

The configuration table contains rows and columns. Each row corresponds to one LIN frame.
Note that this tab shows only “user” LIN frames. The MRF and SRF frames are supported by this
Component but are not shown in this table.

There are eight possible columns in the data field, as follows:

▪ The fields in the Index column show an ordering number of each used frame. These
numbers cannot be directly modified.

▪ The fields in the Name column are used to enter the name of each frame. Any string that
would be valid in C code may be entered. The name of each frame must be unique.

▪ The fields in the Default ID column are used to define the frame ID that the frame will use
before any configuration requests by the master. Note that these frame IDs are dynamic.
In other words, the LIN master can reconfigure frame IDs at run time. You must enter a

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 13 of 52

value from 0x00 to 0x3B into these cells. The values can be entered in hex or decimal
format.

▪ The Message ID column is not normally visible. This column is only available if the LIN
2.0 Compatibility check box in the General tab of the customizer has been selected. Any
16-bit value can be entered. The value can be entered in hex or decimal format. All
message ID values must be unique. Also, message ID values entered into this table
should be unique for the entire LIN cluster. For example, if some other LIN slave has a
frame with a message ID of 0x000F, this Component should not have any frames with a
message ID of 0x000F.

▪ The fields in the Direction column define which direction the data for the frame is sent
(with respect to this slave). Publish means a data transmission; Subscribe means a data
reception.

▪ The fields in the Length column define how many bytes are received or sent for each
frame. Values from 1 to 8, inclusive, are valid.

▪ The fields in the Type column are used to define the type of the LIN frame. There are two
types of frames for LIN slave devices: Unconditional and Event-Triggered. You cannot
choose the event-triggered type when the frame is a subscribe frame. In this case, this
cell cannot be modified. If you change this cell from Event-Triggered to Unconditional,
you must change the name of this frame to None in the Association column, if its name
appears in any cells in that column.

Note If J2602-1 Compliance is enabled, the Event-Triggered frames are not accessible.

▪ The fields in the Association column are used to associate unconditional frames with
event-triggered frames. An event-triggered frame must have at least one unconditional
frame that is associated with it, according to the LIN specification. Therefore, the
Association setting allows the selection of the frame name of any unconditional frames
that are not already associated with an event-triggered frame. The valid values for this
setting are the names of any existing unassociated unconditional frames. Only one
unconditional frame can be associated with an event-triggered frame. As a result, when
one of these cells has the name of an unconditional frame in it, this unconditional frame
name cannot be available to any of the other rows. An event-triggered frame that is
associated with an unconditional frame must have the same length and direction as the
unconditional frame with which it is associated. Therefore, the name of an event-triggered
frame appears only in unconditional frame rows in which these criteria apply. If you click
the global OK button of the customizer, or if you exit this tab by clicking on another tab,
the customizer checks to make sure that there are no event-triggered frames that are not
associated with any unconditional frames.

Note: The total number of frames cannot exceed 60. The total size of all frames is limited
to 256 bytes.

LIN Slave PSoC® Creator™ Component Datasheet

Page 14 of 52 Document Number: 002-19387 Rev. *A

Frames Tab Buttons

There are four buttons available on this tab.

▪ The Add button adds a new frame to the table.

▪ The Delete button deletes the currently selected frame from the table. The index number
fields are changed accordingly. If a frame is deleted on this tab, any signals that are
packed into it (configured with the Signals tab) are moved into the Unplaced Signals
region (See Sort Signals button in the Signals Tab section).

▪ You can use the Up and Down buttons to reorder the Index number values for each
frame.

Signals Tab

This tab is used to define the “signals” that are packed into the LIN frames.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 15 of 52

Frames & Signals relations

This graphical region of the Signals tab displays interactive graphics of the frames and the
signals that you have defined with the customizer.

▪ Frame Graphics – One frame graphic represents each frame defined in the Frames tab
of the customizer.

▪ Signal Graphics – Each signal graphic represents one signal defined for the LIN slave.
The graphic for a signal appears as a solid bar. A signal can be placed on top of the
frames using drag and drop. These signals occupy bits or bytes of the frames.

Clicking on a signal selects that signal. Rolling over a signal causes relevant information about
that signal to appear in a tool-tip.

Unplaced Signals

This graphical region is a temporary region where the signals are stored after they have been
added, but not placed. Signals can be moved back and forth between the Unplaced Signals
region and the Frames & Signals relations region.

Note If a frame is deleted on the Frames tab, any signals that are packed into it (configured with
the Signals tab) are moved into the Unplaced Signals region.

response_error

The 1-bit response_error signal is automatically added in the Signals tab of the customizer. You
can change the name of the response_error signal, but you cannot delete it from the Signals
tab.

There can be only one instance of the response_error signal and its name must be unique for
this Component. The response_error signal is a Boolean signal and can be placed anywhere on
a frame that is published by the LIN slave.

The purpose of this signal is to report status information to the LIN master.

For additional information about this signal see section 2.7.3 “Reporting to the Cluster” of the LIN
2.2 specification.

Signals Toolbar

There is a toolbar at the top of the Signals tab. This toolbar provides an easy way to manage the
signals on the tab.

LIN Slave PSoC® Creator™ Component Datasheet

Page 16 of 52 Document Number: 002-19387 Rev. *A

1. Add/Delete buttons

The Add Signal button adds a signal to the Unplaced Signals region. The Delete Signal
button removes selected signals from the Component. The Delete All Signals button
removes all existing signals.

2. Signal Properties button

This control opens the Signal Properties window for the selected signal. This window
can be used to change the properties for the signal. Note that the properties window for a
signal can also be accessed by double clicking on a signal.

3. Find Signal button

This button allows you to search for a certain signal.

4. Sort Signals button

This button sorts the signals in the Unplaced Signals region. Signals can be sorted by
Name, Length, or Type.

5. Renumber Signals button

This button renumbers the signal index values in ascending order.

6. Move buttons

The Unplace Signal button moves the selected signal from the Frames & Signals
relations region to the Unplaced Signals region.

The Unplace All Signals button moves all signals to the Unplaced Signals region.

7. Show/Hide Event-triggered frames button

This button allows you to show or hide the frames graphics that correspond to event-
triggered frames in the Frames & Signals relations region.

8. Show/Hide Legend button

This button allows you to show or hide the legend area describing the signals’ properties.

9. Signals Transparency slider

This slider sets the transparency for signals graphics.

10. Print buttons

These buttons print out the Frames & Signals relations region.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 17 of 52

Signal Properties Window

Adding Signals

There is an Add Signal button on the tool bar. This button causes a new window to appear with
signal property options that can be configured (see Figure 9). After the properties have been
configured, a new signal is added. The various signal properties that can be configured on this
window are described in this section.

Figure 9. Signal Properties Window

Name

The Name property is used to choose the name of the signal. The default signal name is
Signalx, where ‘x’ is equal to the index number of the signal. The name entered for the signal
must be a valid symbol name in C code.

Note If several signals have the same name:

▪ These signals must have equal “Type”, “Length”, and “Initial Value” properties.

▪ One Frame cannot accept two or more duplicates.

▪ Signals can have duplicates only on Data Frames which “Direction” property is set to
“Publish.”

LIN Slave PSoC® Creator™ Component Datasheet

Page 18 of 52 Document Number: 002-19387 Rev. *A

Type

This property is used to select the type of the signal. There are two types of signal, as defined in
the LIN 2.2 specification. A Scalar signal is 1 to 16 bits in length and a ByteArray signal is 1 to 8
bytes in length.

Length

This property is used to select the length of the signal. Scalar signals can have a length of 1 to
16 bits. A ByteArray signal can have a length of 1 to 8 bytes.

Initial Value

This property is used to select the initial value for the signal. This value must be entered in
decimal format.

Fill Color

This control is used to select a color for the signal graphic.

Signal Description

This property can be used to enter any relevant description or other information related to the
signal.

Preview

This graphical area shows what the signal will look like when it is added.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 19 of 52

Transport Layer Tab

Use Transport Layer

If the Use Transport Layer check box is not selected, the slave node will not support the
Transport Layer. If it is selected, the slave node Component will support the Transport Layer.
See the LIN 2.2 specification for detailed information on the Transport Layer.

API Format Selection

This control is used to select the format for the Transport Layer API functions. There is a
Cooked Transport Layer API option and a Raw Transport Layer API option. Typically, the
cooked format is recommended for LIN slave applications. Raw API is intended for LIN
gateway applications.

The cooked format is used to send and receive Transport Layer messages using just one API
function for each message. The raw format is used to send or receive each frame that makes up
a Transport Layer message using one API function call for each frame.

The two formats of the Transport Layer API are defined by the LIN 2.2 specification in section
7.4.

LIN Slave PSoC® Creator™ Component Datasheet

Page 20 of 52 Document Number: 002-19387 Rev. *A

Initial NAD

This field is used to select the Network Address (NAD) of the slave node. The NAD is used in
MRF and SRF frames to address one particular slave node in a cluster. Note that this field is
used to select the Initial NAD for the node. The NAD of a slave node can change at run time.

By default, the Initial NAD value can be in the range from 0x01 to 0xFF. The NAD value of 0x00
is reserved for a “Go To Sleep” command. The NAD value of 0x7E is reserved as a “Functional
NAD” which is used for diagnostic services. The NAD value of 0x7F is reserved as a “wildcard”
NAD. Therefore, the customizer restricts you from entering 0x00, 0x7E, or 0x7F into this field.

If J2602-1 Compliance checkbox is checked, the Initial NAD value on the Transport Layer Tab is
restricted to 0x60 to 0x6F. The default value is 0x60. The initial value range is further restricted
based on the number of frames that are used on the Frames tab of the customizer. See Table 1
for more information.

Table 1. Initial NAD Restriction Based on the Number of Frames Used in Slave Node

Number of Frames Available Initial NAD Values

1 to 4 0x60 to 0x6F

5 to 8 0x60, 0x62, 0x64, 0x66, 0x68, 0x6A, 0x6C, 0x6E, 0x6F

9 to 16 0x60, 0x64, 0x68, 0x6E, 0x6F

More than 16 0x6E, 0x6F

Maximum Message Length

This property is used to select the maximum Transport Layer message length that this slave
node supports. The minimum value is 6, because there are up to six Transport Layer message
data bytes in messages that use only one frame. This Component only supports Transport Layer
messages with lengths up to 4095 bytes. Note that the actual Transport Layer message buffer is
located in the application code of the node.

TX Queue Length/RX Queue Length

These properties are only applicable when the Raw Transport Layer API format is selected.
When using the raw API format, there is a message “queue” that buffers the frame response
data that is being sent or received. If the slave cannot update the queues very quickly, then the
queue lengths should be made longer. If the slave can update the queues very quickly, then the
queues can be made shorter to decrease RAM use. The Component supports queue lengths
from 8 to 2048 with 8-byte steps. The default size of each queue is 32 bytes.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 21 of 52

Configuration Services Tab

The LIN 2.2 specification defines Configuration Service requests that the slave must support
(some are mandatory and some are optional with regard to the LIN 2.2 specification). This
Component supports all mandatory requests and some optional service requests.

There are eight total configuration service requests (0xB0 to 0xB7). There is a list of these
services in Table 4.6 of the LIN 2.2 specification. This Component supports some of them. You
have the option of disabling or enabling each of the supported services individually. The
configuration service requests are described in section 4.2.5 of the LIN 2.2 specification.

Automatic Configuration Request Handling

The Component is designed so that it automatically handles configuration service requests. In
other words, you do not have to use any API or application code to service these requests from
the master. However, you can disable this automatic handling and handle these requests with
your own custom application code.

To simplify this option, there is an Automatic Configuration Request Handling check box on
this tab. If the box is selected, all of the other options on the tab are available. If the box is not
selected, then all of the other options on the tab are disabled.

Any service that is enabled in this tab is automatically handled by this Component. Whenever
any of these automatically handled requests occur during LIN bus operation, the corresponding
MRF and SRF frames will not be available to the application through the Transport Layer API. If
a service request is not automatically handled (that is, if it is not enabled on this tab), then the

LIN Slave PSoC® Creator™ Component Datasheet

Page 22 of 52 Document Number: 002-19387 Rev. *A

corresponding MRF and SRF frames of the configuration service request must be received or
sent by the application using the Transport Layer API.

Configuration Service Selection

Each of the supported configuration service requests is listed on the tab with a check box. You
can individually select the services that you want to be automatically handled.

▪ Service 0xB0 – “Assign NAD”

This is an optional service in the LIN 2.2 specification.

This is a service request where a new NAD value is assigned to the slave node.

This service request is not likely to be needed for this Component, due to the highly-
programmable nature of PSoC devices. The PSoC can easily configure its NAD to a
desired value after it boots up, and probably does not need the LIN master to request a
NAD change.

▪ Service 0xB1 – “Assign Frame Identifier”

This is an obsolete service in the LIN 2.2 specification. It is only available if the LIN 2.0
Compatibility checkbox has been selected on the General tab of the customizer.

This configuration service request is used to change the frame ID value for a frame to
which this slave node responds.

This service is not described in the LIN 2.2 specification. It is only described in the LIN 2.0
specification in section 2.5.1. This service is available in this Component for backwards
compatibility purposes.

▪ Service 0xB2 – “Read by identifier”

This configuration service request is mandatory according to the LIN 2.2 specification.
This request is used to allow the LIN master to read the slave's identification information
(Supplier ID, Function ID, Variant). This Component only supports the LIN Product
Identification version of this request.

▪ Service 0xB3 – “Conditional Change NAD”

This is an optional service in the LIN 2.2 specification.

This is very similar to the Assign NAD configuration service. One major difference is that
this service uses the slave’s current (volatile) NAD instead of the initial (nonvolatile) NAD.
When this request occurs, the slave does some logic processing on the data bytes
received from the master and only updates its current (volatile) NAD if the result of the
processing is zero.

▪ Service 0xB4 – “Data Dump”

This service request is optional in the LIN 2.2 specification and is not supported by this
Component.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 23 of 52

▪ Service 0xB5 – “Assign NAD via SNPD” (Targeted Reset)

“Assign NAD via SNPD” (0xB5) service is not supported by the LIN 2.2 specification.
However, when the Enable J2602-1 Compliance check box is selected on the General
tab, this service (0xB5) has a different meaning: Targeted Reset, which is supported by
the Component.

If a Targeted Reset request is processed by this slave, a flag is set in the
L_IOCTL_READ_STATUS operation of the l_ifc_ioctl() function to let the application know
that a Targeted Reset should occur. Refer to the API description for more information.

▪ Service 0xB6 – “Save Configuration”

This is an optional service request in the LIN 2.2 specification.

The slave device can save its configuration data (NAD value and PID values) in
nonvolatile memory (flash). However, the application code must implement the actual
flash writing operations.

When this configuration service request occurs, the Save Configuration flag in the status
returned by the l_ifc_read_status() API function is set. This lets the application know that it
must save its current LIN slave node configuration information to nonvolatile memory
(flash).

▪ Service 0xB7 – “Assign frame identifier range”

This is a mandatory configuration service request in the LIN 2.2 specification.

This service allows the LIN master to change the volatile frame PID values for the slave’s
frames.

Slave Information

If you have checked the Automatic Configuration Request Handling check box, three fields
become available.

The fields are Supplier ID, Function ID, and Variant. The Supplier ID is a 16-bit value, but its
valid range is from 0x0000 to 0x7FFE. The Function ID is also 16 bits, and its valid range is
0x0000 to 0xFFFE. The Variant is 8 bits and its valid range is from 0x00 to 0xFF.

These values are used in the configuration service requests to differentiate between the different
slave nodes in a LIN cluster. So, these values act as a type of slave address in some ways.

Clock Selection

PSoC Creator calculates the needed frequency and clock source and generates the resource
needed for implementation. The clock tolerance must be ±1.5 percent when the Automatic
Baud Rate Synchronization option is disabled and ±14 percent when it is not. A warning will be
displayed if the clock cannot be generated within this limit. In this case, you should modify the
Master Clock source in the DWR.

LIN Slave PSoC® Creator™ Component Datasheet

Page 24 of 52 Document Number: 002-19387 Rev. *A

Placement

Only one Component instance can be placed per PSoC 3 or PSoC 5LP design.

Placement of two Components is allowed for PSoC 4 design with the assistance of the
LIN_Dynamic Component.

LIN_Dynamic Component

The LIN Component is linked with a hidden design-wide LIN_Dynamic Component, which is
always present in a design to support the placement of multiple instances of the LIN Component.

The LIN_Dynamic Component routes all LIN dynamic API calls to the appropriate instance of the
Component. Dynamic API functions consist of a single switch statement that calls the
corresponding static API function depending on the passed parameters:

▪ l_signal_handle for signal interaction functions

▪ l_flag_handle for notification functions

▪ l_ifc_handle for interface management and transport layer functions

Notes:

▪ The l_signal_ and l_flag_handles are defined in the LIN.h file and enumerated in range
(0..127) for the first LIN instance and in range(128..255) for the second instance.

▪ The l_ifc_handles are also defined in the LIN.h file. They are equal to 0 for the first LIN
instance and 1 for second instance.

Additionally, the LIN_Dynamic Component contains an implementation of l_sys_init() API
function, which is common for all LIN Component instances as defined by the LIN Specification.

LIN Version and Updates

The LIN_Dynamic version must be the same as LIN Component used in the design. Therefore,
both the LIN and the LIN_Dynamic Components must be updated synchronously.

The LIN_Dynamic Component is also shown in the Component Update Tool because of its
nature as a design-wide Component. If you do not have a LIN Component in your design, then
no action is required, and the LIN_Dynamic Component is inactive and colored gray.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 25 of 52

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the Component using
software. The following tables list and describe the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “LIN_1” to the first instance of a
Component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “LIN.”

Core API Functions

Initialization Subgroup

Function Description

l_sys_init() Initializes the LIN core.

l_bool l_sys_init()

Description: Initializes the LIN core. If the Automatic Baud Rate Synchronization parameter is
enabled in the Configure dialog, then this function saves the initial SYSCLK-to-
UARTCLK divider’s value, calculated by PSoC Creator. If the parameter is not
enabled, this function does nothing.

Static Prototype: l_bool l_sys_init(void)

Return Value: Always returns zero.

Signal Interaction Functions Subgroup

In all static signal API calls that follow, the “sss” is the name of the signal, for example,
l_u8_rd_EngineSpeed(). For dynamic signal API calls that follow, the “sss” is a signal handle, as
defined in Application Programming Interface.

Function Description

l_bool_rd() Reads and returns the current value of the signal for one-bit signals.

l_u8_rd() Reads and returns the current value of the signal for signals of two to eight bits.

l_u16_rd() Reads and returns the current value of the signal for signals of 9 to 16 bits.

l_bytes_rd() Reads and returns the current values of the selected bytes in the signal.

l_bool_wr() Sets the current value of the signal for one-bit signals to v.

l_u8_wr() Sets the current value of the signal for signals of two to eight bits.

LIN Slave PSoC® Creator™ Component Datasheet

Page 26 of 52 Document Number: 002-19387 Rev. *A

Function Description

l_u16_wr() Sets the current value of the signal for signals of 9 to 16 bits.

l_bytes_wr() Sets the current values of the selected bytes in the signal.

l_bool_rd()

Description: Reads and returns the current value of the signal for one-bit signals. If an invalid
signal handle is passed into the function, no action is taken, function returns 0x00.

Static Prototype: l_bool l_bool_rd_sss(void)

Dynamic Prototype: l_bool l_bool_rd(l_signal_handle sss)

Parameters: sss: Signal handle of the signal to read.

Return Value: Returns the current value of the signal.

l_u8_rd()

Description: Reads and returns the current value of the signal. If an invalid signal handle is
passed into the function, no action is taken, function returns 0x00.

Static Prototype: l_u8 l_u8_rd_sss(void)

Dynamic Prototype: l_u8 l_u8_rd(l_signal_handle sss)

Parameters: sss: Signal handle of the signal to read

Return Value: Returns the current value of the signal.

l_u16_rd()

Description: Reads and returns the current value of the signal. If an invalid signal handle is
passed into the function, no action is taken, function returns 0x00.

Static Prototype: l_u16 l_u16_rd_sss(void)

Dynamic Prototype: l_u16 l_u16_rd(l_signal_handle sss)

Parameters: Sss: Signal handle of the signal to read

Return Value: Returns the current value of the signal.

Side Effects: This function does not guarantee that the data bytes that are read are atomic. If it is
necessary for the data bytes to be atomic, then the application must ensure that this
is the case.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 27 of 52

l_bytes_rd()

Description: Reads and returns the current values of the selected bytes in the signal. The sum of
the start and count parameters must never be greater than the length of the byte
array. Note that when the sum of start and count is greater than the length of the
signal byte array, an accidental data is read.

If an invalid signal handle is passed into the function, no action is taken.

Assume that a byte array is 8 bytes long, numbered 0 to 7. Reading bytes from 2 to 6
from a user-selected array requires start to be 2 (skipping byte 0 and 1) and count
to be 5. In this case, byte 2 is written to user_selected_array[0] and all consecutive
bytes are written into user_selected_array in ascending order.

Static Prototype: void l_bytes_rd_sss(l_u8 start, l_u8 count, l_u8* const data)

Dynamic Prototype: void l_bytes_rd(l_signal_handle sss, l_u8 start, l_u8 count, l_u8* const data)

Parameters: sss: Signal handle of the signal to read

start: First byte to read from

count: Number of bytes to read

data: Pointer to array, in which the data read from the signal is stored

Side Effects: This function does not guarantee that the data bytes that are read are atomic. If it is
necessary for the data bytes to be atomic, then the application must ensure that this
is the case.

l_bool_wr()

Description: Writes the value v to the signal. If an invalid signal handle is passed into the
function, no action is taken.

Static Prototype: void l_bool_wr_sss(l_bool v)

Dynamic Prototype: void l_bool_wr(l_signal_handle sss, l_bool v)

Parameters: sss: Signal handle of the signal to write

v: Value of the signal to be set

l_u8_wr()

Description: Writes the value v to the signal. If an invalid signal handle is passed into the function,
no action is taken.

Static Prototype: void l_u8_wr_sss(l_u8 v)

Dynamic Prototype: void l_u8_wr(l_signal_handle sss, l_u8 v)

Parameters: sss: Signal handle of the signal to write

v: Value of the signal to be set

LIN Slave PSoC® Creator™ Component Datasheet

Page 28 of 52 Document Number: 002-19387 Rev. *A

l_u16_wr()

Description: Writes the value v to the signal. If an invalid signal handle is passed into the function,
no action is taken.

Static Prototype: void l_u16_wr_sss(l_u16 v)

Dynamic Prototype: void l_u16_wr(l_signal_handle sss, l_u16 v)

Parameters: sss: Signal handle of the signal to write;

v: Value of the signal to be set.

Side Effects: This function does not guarantee that the data bytes that are written will be read
atomically by the LIN master. If it is necessary for the data bytes to be atomic, then
the application must ensure that this is the case.

l_bytes_wr()

Description: Writes the current value of the selected bytes to the signal specified by the name sss.
The sum of start and count must never be greater than the length of the byte array,
although the device driver may choose not to enforce this in run time. Note that when
the sum of start and count is greater than the length of the signal byte array an
accidental memory area is affected.

If an invalid signal handle is passed into the function, no action is taken.

Assume that a byte array signal is 8 bytes long, numbered 0 to 7. Writing byte 3 and 4
of this array requires start to be 3 (skipping bytes 0, 1, and 2) and count to be 2. In this
case, byte 3 of the byte array signal is written from user_selected_array[0] and byte 4
is written from user_selected_array[1].

Static Prototype: void l_bytes_wr_sss(l_u8 start, l_u8 count, const l_u8* const data)

Dynamic Prototype: void l_bytes_wr(l_signal_handle sss, l_u8 start, l_u8 count, const l_u8* const data)

Parameters: sss: Signal handle of the signal to write

start: First byte to write to

count: Number of bytes to write

data: Pointer to array, in which the data to transmit to LIN master is located

Side Effects: This function does not guarantee that the data bytes that are written are read atomically
by the LIN master. If it is necessary for the data bytes to be atomic, then the application
must ensure that this is the case.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 29 of 52

Notification Functions Subgroup

Notification flags are used to synchronize the application program with the LIN core. The flags
are automatically set by the LIN core and can only be tested or cleared by the application
program. A notification flag can correspond with a signal, a signal in a particular frame (in the
case that the same signal is packed into multiple frames), or a frame. A flag is set by this
Component when the corresponding signal or frame is successfully sent or received.

In all of the following flag API routines the “fff” is the name of the flag, for example,
l_flg_tst_RxEngineSpeed(). For the dynamic flag API routines the “fff” is a signal handle, as
defined earlier in Application Programming Interface.

Function Description

l_flg_tst() Returns a boolean indicating the current state of the flag.

l_flg_clr() Sets the current value of the flag to zero.

l_flg_tst()

Description: This function returns current state of the flag specified by the name “fff.” It returns
false if the flag is cleared and true otherwise. If this routine returns a “true” value, then
it indicates that the corresponding signal or frame has been successfully sent or
received.

Static Prototype: l_bool l_flg_tst_fff(void)

Dynamic Prototype: l_bool l_flg_tst(l_flag_handle fff)

Parameters: fff: Name of the flag handle

Return Value: Returns a C boolean indicating the current state of the flag specified by the name “fff”.

false: The flag is cleared;

true: The flag is not cleared.

l_flg_clr()

Description: Clears the flag that is specified by the name “fff”. This routine should be used to clear
a flag after it has been tested (after l_flg_tst() API). The Component does not
automatically clear notification flags. This routine is the only way that a notification
flag can be cleared.

Static Prototype: void l_flg_clr_fff(void)

Dynamic Prototype: void l_flg_clr(l_flag_handle fff)

Parameters: fff: Name of the flag handle

LIN Slave PSoC® Creator™ Component Datasheet

Page 30 of 52 Document Number: 002-19387 Rev. *A

Interface Management Functions* Subgroup

These calls manage the specific interfaces (the logical channels to the bus). Each interface is
identified by its interface name, denoted by the “iii” extension for each static API call, for
example, l_ifc_init_MyLinIfc(). For static prototypes, the interface name is the same as the
Component instance name. This Component supports a maximum of two interfaces. Therefore,
there will never be more than two valid identifiers for “iii.” For dynamic prototypes, iii is a number
defined as MyLinIfc_IFC_HANDLE. It is equal to 0 for a single instance and equal to 0 or 1 when
both interfaces are present in the schematic.

Function Description

l_ifc_init() Initializes the LIN Slave Component.

l_ifc_wake_up() Transmits one wakeup signal.

l_ifc_ioctl() Controls functionality beyond the specification.

l_ifc_rx() The LIN Slave Component calls this API routine automatically.

l_ifc_tx() The LIN Slave Component calls this API routine automatically.

l_ifc_aux() The LIN Slave Component calls this API routine automatically.

l_ifc_read_status() Returns the status of the specified LIN interface.

l_ifc_init()

Description: l_ifc_init() initializes the LIN Slave Component instance that is specified by the name
“iii.” It sets up internal functions such as the baud rate and starts up digital blocks that
are used by the LIN Slave Component. This is the first call that must be performed,
before using any other interface-related LIN Slave API functions.

Static Prototype: l_bool l_ifc_init_iii(void)

Dynamic Prototype: l_bool l_ifc_init(l_ifc_handle iii)

Parameters: iii: Name of the interface handle

Return Value: The function returns zero if the initialization was successful and nonzero if it failed.

l_ifc_wake_up()

Description: This function transmits one wakeup signal. The wakeup signal is transmitted directly
when this function is called. When you call this API function, the application is
blocked until a wakeup signal is transmitted on the LIN bus. The CyDelayUs()
function is used as the timing source. The delay is calculated based on the clock
configuration entered in PSoC Creator.

Static Prototype: void l_ifc_wake_up_iii(void)

Dynamic Prototype: void l_ifc_wake_up(l_ifc_handle iii)

Parameters: iii: Name of the interface handle

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 31 of 52

l_ifc_ioctl()

Description: This API controls functionality that is not covered by the other API calls. This function
is used to control this Component in device-specific ways.

For the operations that are supported by this function, refer to the Component
Parameters section.

Static Prototype: l_u16 l_ifc_ioctl_iii(l_ioctl_op op, void* pv)

Dynamic Prototype: l_u16 l_ifc_ioctl(l_ifc_handle iii, l_ioctl_op op, void* pv)

Parameters: iii: Name of the interface handle to which the operation defined in op is applied

op: Parameter used to specify the operation

pv: Pointer to a set of optional parameters for the specified operation that must be
provided to the function

The following table describes the possible operations and their code values supported
by the l_ifc_ioctl API function. The parameter list in the table shows how many
parameters there are and what data type they have.

“op” Operation
(Symbolic Name)

Value
“pv” Parameter

List
Description

L_IOCTL_READ_STATUS 0x00u None Optional status indicators

L_IOCTL_SET_BAUD_RATE 0x01u l_u16 Modify baud rate

L_IOCTL_SLEEP 0x02u None
Prepare device for low-power-mode
entry

L_IOCTL_WAKEUP 0x03u None
Restore Component state after
wakeup

L_IOCTL_SYNC_COUNTS 0x04u None
Return current number of sync field
timer counts

L_IOCTL_SET_SERIAL_NUMBER 0x05u l_u8* Update the pointer to the serial
number

Return Value: There is no error code value returned for the operation selected. This means that you
must ensure that the values passed into the function are correct.

L_IOCTL_READ_STATUS operation

The first bit in this byte is the flag that indicates that there has been no signaling on
the bus for a certain elapsed time (available when the Bus Inactivity Timeout
Detection option is enabled). If the elapsed time is past a certain threshold, this flag is
set. Calling this API clears all status bits after they are returned. The second bit is the
flag that indicates that a Targeted Reset service request (0xB5) was received (when
J2602-1 Compliance is enabled).

LIN Slave PSoC® Creator™ Component Datasheet

Page 32 of 52 Document Number: 002-19387 Rev. *A

Return Value:
(cont.)

Symbolic Name Value Description

LIN_IOCTL_STS_BUS_INACTIVITY 0x0001u
No signal was detected on the bus for a certain
elapsed time

LIN_IOCTL_STS_TARGET_RESET 0x0002u
Targeted Reset service request (0xB5) was
received

L_IOCTL_SET_BAUD_RATE operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

L_IOCTL_SLEEP operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

L_IOCTL_WAKEUP operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

L_IOCTL_SYNC_COUNTS operation

Returns current number of sync field timer counts for it 8 of the synchronization field
byte.

L_IOCTL_SET_SERIAL_NUMBER operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

l_ifc_rx()

Description: The LIN Slave Component calls this API routine automatically. Therefore, this API
routine must not be called by the application code. It is only listed here to show
compliance with the LIN specification.

Static Prototype: void l_ifc_rx_iii(void)

Dynamic Prototype: void l_ifc_rx(l_ifc_handle iii)

Parameters: iii: Name of the interface handle

l_ifc_tx()

Description: The LIN Slave Component calls this API routine automatically. Therefore, this API
routine must not be called by the application code. It is only listed here to show
compliance with the LIN specification.

Static Prototype: void l_ifc_tx_iii(void)

Dynamic Prototype: void l_ifc_tx(l_ifc_handle iii)

Parameters: iii: Name of the interface handle

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 33 of 52

l_ifc_aux()

Description: The LIN Slave Component calls this API routine automatically. Therefore, this API
routine must not be called by the application code. It is only listed here to show
compliance with the LIN specification.

Static Prototype: void l_ifc_aux_iii(void)

Dynamic Prototype: void l_ifc_aux(l_ifc_handle iii)

Parameters: iii: Name of the interface handle

l_ifc_read_status()

Description: This function returns the status of the previous communication. Refer to the LIN 2.2
specification for detailed information on each status information field in the LIN Slave
status word.

Static Prototype: l_u16 l_ifc_read_status_iii(void)

Dynamic Prototype: l_u16 l_ifc_read_status(l_ifc_handle iii)

Parameters: iii: Name of the interface handle

Return Value: The call returns the status word (16-bit value), as shown in the following table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Last frame PID 0 Save
configu
ration

Event
triggered
frame
collision

Bus
activity

Go
to
sleep

Over
run

Successful
transfer

Error in
response

The status word is only set based on a frame transmitted or received by the node
(except bus activity). The status word is cleared after API is called.

User-Provided Callouts

The Component does not need these callouts because it works only on Cypress chips; you can
enable/disable interrupts using PSoC Creator macros.

l_sys_irq_disable()

Node Configuration Functions

Function Description

ld_read_configuration() Serializes the current configuration and copies it to the area (data pointer) provided
by the application.

ld_set_configuration() Configures the NAD and the PIDs according to the configuration specified by input
parameter.

ld_read_by_id_callout() Used when the master node transmits a read by identifier request with an identifier in
the user defined area.

LIN Slave PSoC® Creator™ Component Datasheet

Page 34 of 52 Document Number: 002-19387 Rev. *A

ld_read_configuration()

Description: This function is used to read the NAD and PID values from volatile memory. This
function can be used to read the current configuration data, and then save this data
into nonvolatile (flash) memory. The application should save the configuration data to
flash when the “Save Configuration" bit is set in the LIN status register (returned by
l_ifc_read_status()).

The configuration data that is read is a series of bytes. The first byte is the current
NAD of the slave.

The next bytes are the current PID values for the frames that the slave responds to.
The PID values are in the order in which the frames appear in the LDF or NCF file.

Dynamic Prototype: l_u8 ld_read_configuration(l_ifc_handle iii, l_u8* const pData, l_u8* length)

Parameters: iii: Name of the interface handle;

pData: Array into which configuration data is to be read

length: Size of configuration data in bytes. The value pointed to the length pointer
parameter is set to the actual length of the configuration data.

Return Value: The function returns values listed in the following table.

Symbolic Name Description

LD_READ_OK Returned if the configuration data read was successful

LD_LENGTH_TOO_SHORT Returned if the value pointed to by the length pointer parameter is
less than the actual length of the configuration data

ld_set_configuration()

Description: This function is used to set the volatile NAD and PID values of the slave node. This
can be used to modify the NAD and PID values at run time. This should normally only
be done just after bootup or after the master requests it. Otherwise, if the slave
changes its NAD or PID values, or both, the master may no longer be able to
communicate with the slave.

See the ld_read_configuration() function for information on what the configuration
data contains and how it is stored.

Dynamic Prototype: l_u8 ld_set_configuration(l_ifc_handle iii, const l_u8* const pData, l_u16 length)

Parameters: iii: Name of the interface handle

pData: Array of configuration data which is to be applied to the slave node

length: Size of configuration data in bytes

Return Value: The function return values are listed in the following table.

Symbolic Name Description

LD_SET_OK Returned if the configuration data was successfully set

LD_LENGTH_NOT_CORRECT Returned if the value of the length parameter is not equal to the
value of the configuration data of the slave node

LD_DATA_ERROR Returned if the configuration data was not set correctly

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 35 of 52

ld_read_by_id_callout()

Description: This callout is used when the master node transmits a read by identifier request with
an identifier in the user-defined area. The slave node application is called from the
driver when such a request is received.

Note This function has no implementation. Implement this function with the desired
functionality and override the default return value of the function which is
LD_NEGATIVE_RESPONSE.

Dynamic Prototype: l_u8 ld_read_by_id_callout (l_ifc_handle iii, l_u8 id, l_u8* frameData)

Parameters: iii: Name of the interface handle

id: Identifier in the user defined area (32 to 63), from the read by identifier
configuration request

frameData: Points to a data area with 5 bytes. This area is used by the application to
set up the positive response.

Return Value: The function return values are listed in the following table.

Symbolic Name Description

LD_NEGATIVE_RESPONSE The default returns status of the API. It is always returned if you do
not modify the API and reassign this to some other status.

LD_NO_RESPONSE You can set this status manually. If set, it specifies that no
response will be provided for the service.

LD_POSITIVE_RESPONSE You can set this status manually. If set, it specifies that response
will be provided for the service. The response will be pointed by the
frameData parameter.

Transport Layer Functions

The Transport Layer is a higher-level layer of the LIN network stack. This layer allows the
application to send or receive data in “message” format instead of “frame” format. Messages can
be many bytes that are sent or received using multiple frames. The Transport Layer is used for
configuration services, diagnostic service, or custom user-defined implementations.

API functions that send and receive Transport Layer messages have two different formats. There
is a cooked format and a raw format. This Component only supports using one format of the
Transport Layer API functions. The API format is chosen in the Transport Layer tab of the
Component customizer.

Note To use the LIN Transport Layer API functions, Transport Layer use must be enabled on the
Transport Layer tab of the LIN Slave Component customizer.

Initialization Subgroup

Function Description

ld_init() Initializes or reinitializes the raw and the cooked layers. All transport layer buffers will
be initialized. If there is an ongoing diagnostic frame transporting a cooked or raw
message on the bus, it will not be aborted.

LIN Slave PSoC® Creator™ Component Datasheet

Page 36 of 52 Document Number: 002-19387 Rev. *A

ld_init()

Description: This routine initializes or reinitializes the Transport Layer of the slave node. This API
must be called before using any Transport Layer API functions. It must also be
called before the slave node can do any Transport Layer communication. If the API
is called in the middle of an ongoing diagnostic frame transporting a cooked or raw
message on the bus, the message is be aborted; instead, the API waits until the
message is completed.

Dynamic Prototype: void ld_init(l_ifc_handle iii)

Parameters: iii: Name of the interface handle

Raw Transport Layer API Functions Subgroup

Function Description

ld_put_raw() The call queues the transmission of 8 bytes of data in one frame.

ld_get_raw() Copies the oldest received diagnostic frame data to the memory specified by input
parameter.

ld_raw_tx_status() Returns the status of the raw frame transmission function.

ld_raw_rx_status() Returns the status of the raw frame receive function

ld_put_raw()

Description: This function is used to allow the application code to send data using the Transport
Layer. It essentially copies some data from a user application array to a frame buffer
array. This function is used to send one frame of a complete Transport Layer
message at a time. Therefore, a multiframe Transport Layer message requires
multiple calls to this API function. You should always check to see if there is a place
for the frame in the buffer before calling this API.

Dynamic Prototype: void ld_put_raw(l_ifc_handle iii, const l_u8* const ld_data)

Parameters: iii: Name of the interface handle

ld_data: Array of data bytes to be sent

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 37 of 52

ld_get_raw()

Description: This function is used to allow the application code to receive data using the
Transport Layer. It essentially copies some data from a frame buffer array to a user
application array. This function is used to receive one frame of a complete
Transport Layer message at a time. Therefore, a multiframe Transport Layer
message requires multiple calls to this API function. If the receive queue is empty,
no data is copied. You should always check to see if there is a place for the frame
in the buffer before calling this API.

Dynamic Prototype: void ld_get_raw(l_ifc_handle iii, l_u8* const ld_data)

Parameters: iii: Name of the interface handle

ld_data: Array to which the oldest received diagnostic frame data will be copied

ld_raw_tx_status()

Description: This call returns the status of the last performed frame transmission on the bus when
a raw API was used.

Dynamic Prototype: l_u8 ld_raw_tx_status(l_ifc_handle iii)

Parameters: iii: Name of the interface handle

Return Value: Symbolic Name Description

LD_QUEUE_EMPTY The transmit queue is empty. If previous calls to ld_put_raw() have
been made, all frames in the queue have been transmitted.

LD_QUEUE_AVAILABLE The transmit queue contains entries, but is not full.

LD_QUEUE_FULL The transmit queue is full and cannot accept further frames.

LD_TRANSMIT_ERROR LIN protocol errors occurred during the transfer; initialize and redo the
transfer.

ld_raw_rx_status()

Description: This call returns the status of the last performed frame reception on the bus when a
raw API was used.

Dynamic Prototype: l_u8 ld_raw_rx_status(l_ifc_handle iii)

Parameters: iii: Name of the interface handle.

Return Value: Symbolic Name Description

LD_NO_DATA The receive queue is empty.

LD_DATA_AVAILABLE The receive queue contains data that can be read.

LD_RECEIVE_ERROR LIN protocol errors occurred during the transfer. Initialize and redo the
transfer.

LIN Slave PSoC® Creator™ Component Datasheet

Page 38 of 52 Document Number: 002-19387 Rev. *A

Cooked Transport Layer API Functions Subgroup

Function Description

ld_send_message() Packs the information specified by data and length into one or multiple diagnostic
frames. The frames are transmitted to the master node with the address NAD.

ld_receive_message() Prepares the LIN diagnostic module to receive one message and store it in the buffer
pointed to by data. At the call, length specifies the maximum length allowed. When the
reception has completed, length is changed to the actual length and NAD to the NAD
in the message.

ld_tx_status() Returns the status of the last made call to ld_send_message().

ld_rx_status() Returns the status of the last made call to ld_receive_message().

ld_send_message()

Description: This function allows the application code to send data using the Transport Layer. It
is responsible for queuing up data to automatically be sent over the course of
multiple SRF frames. This function is used to send a complete Transport Layer
message. Therefore, a multiframe Transport Layer message requires only one call
to this API function. The length value must be between 6 and 4095 bytes.

If there is a message in progress, the call returns with no action.

Dynamic
Prototype:

void ld_send_message(l_ifc_handle iii, l_u16 length, l_u8 nad, const l_u8* const
ld_data)

Parameters: iii: Name of the interface handle

length: Size of data to be sent in bytes

nad: Address of the slave node to which data is sent

ld_data : Array of data to be sent. The value of the RSID is the first byte in the data
area

Side Effects: The call is asynchronous, that is, not suspended until the message has been sent,
and the buffer may not be changed by the application as long as calls to
ld_tx_status() return LD_IN_PROGRESS.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 39 of 52

ld_receive_message()

Description: This function allows the application code to receive data using the Transport Layer.
It is responsible for receiving multiple MRF frames and copying all of the data of the
message to a user application buffer array. This function is used to receive a
complete Transport Layer message. Therefore, a multiframe Transport Layer
message requires only one call to this API function. The length value must be
between 6 and 4095 bytes.

Dynamic Prototype: void ld_receive_message(l_ifc_handle iii, l_u16* const length, l_u8* const nad,
l_u8* const ld_data)

Parameters: iii: Name of the interface handle

length: Size of data to be received in bytes

nad: Address of the slave node from which data is received

ld_ata: Array of data to be received. The value of the SID is the first byte in the data
area.

Side Effects: The call is asynchronous, that is, not suspended until the message has been
received, and the buffer may not be changed by the application as long as calls to
ld_tx_status() return LD_IN_PROGRESS.

ld_tx_status()

Description: This function returns the status of the last call made to ld_send_message() and the
last Transport Layer data transmission on the bus.

Dynamic Prototype: l_u8 ld_tx_status(l_ifc_handle iii)

Parameters: iii: Name of the interface handle.

Return Value: The following values can be returned.

Symbolic Name Description

LD_IN_PROGRESS The transmission is not yet completed.

LD_COMPLETED The transmission has completed successfully (and you can issue a new
ld_send_message call()). This value is also returned after initialization of
the transport layer.

LD_FAILED The transmission ended in an error. The data was only partially sent. The
transport layer must be reinitialized before processing further messages.
To find out why a transmission has failed, check the status management
function l_read_status().

LD_N_AS_TIMEOUT The transmission failed because of an N_As timeout, and current message
transmission will be aborted. See Section 3.2.5 of the LIN 2.2 specification.

Note If the transmission failed, the error status (e.g., LD_FAILED) could be read just once
by this function. The next read will return LD_COMPLETED status.

This is because the LIN Component automatically initializes the status to
LD_COMPLETED during transport layer re-initialization, due to an error in the
message transmission. This is a result of the automated recovery mechanism
embedded in the LIN Slave Component.

LIN Slave PSoC® Creator™ Component Datasheet

Page 40 of 52 Document Number: 002-19387 Rev. *A

ld_rx_status()

Description: This function returns the status of the last call made to ld_receive_message() and the
last Transport Layer data reception on the bus.

Dynamic Prototype: l_u8 ld_rx_status(l_ifc_handle iii)

Parameters: Iii: Name of the interface handle

Return Value: The following values can be returned:

Symbolic Name Description

LD_IN_PROGRESS The reception is not yet completed.

LD_COMPLETED The reception has completed successfully and all information (length, NAD,
data) is available. You can also issue a new ld_receive_message() call.
This value is also returned after initialization of the transport layer.

LD_FAILED The reception ended in an error. The data was only partially received and
should not be trusted. Initialize before processing further transport layer
messages. To find out why a reception has failed, check the status
management function l_read_status().

LD_N_CR_TIMEOUT The reception failed because of an N_Cr timeout, and current message
reception will be aborted. See Section 3.2.5 of the LIN 2.2 specification.

LD_WRONG_SN The reception failed because of an unexpected sequence number.

Note If the reception failed, the error status (e.g., LD_WRONG_SN) could be read just once
by this function. The next read will return LD_COMPLETED status.

This is because the LIN Component automatically initializes the status to
LD_COMPLETED during transport layer re-initialization, due to an error in the
received message. This is a result of the automated recovery mechanism embedded
in the LIN Slave Component.

Non-LIN-Specified API

Function Description

LIN_Start() Starts the Component operation.

LIN_Stop() Stops the Component operation.

LIN_Start()

Description: Starts the Component operation. This function is not required.

Dynamic Prototype: l_bool LIN_Start()

Return Value: Zero: The initialization succeeded.

Nonzero: The initialization failed.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 41 of 52

LIN_Stop()

Description: Stops the Component operation. This function is not required.

Dynamic Prototype: l_bool LIN_Stop()

Macro Callbacks

Macro callbacks allow users to execute code from the API files that are automatically generated
by PSoC Creator. Refer to the PSoC Creator Help and Component Author Guide for the more
details.

In order to add code to the macro callback present in the Component’s generated source files,
perform the following:

▪ Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will
“uncomment” the function call from the Component’s source code.

▪ Write the function declaration (in cyapicallbacks.h). This will make this function visible by
all the project files.

▪ Write the function implementation (in any user file).

Callback Function [2] Associated Macro Description

LIN_BLIN_ISR_EntryCallback LIN_BLIN_ISR_ENTRY_CALLBACK Used at the beginning of the LIN_BLIN_ISR()
interrupt handler to perform additional application-
specific actions.

LIN_BLIN_ISR_ExitCallback LIN_BLIN_ISR_EXIT_CALLBACK Used at the end of the LIN_BLIN_ISR() interrupt
handler to perform additional application-specific
actions.

LIN_UART_ISR_EntryCallback LIN_UART_ISR_ENTRY_CALLBACK Used at the beginning of the LIN_UART_ISR()
interrupt handler to perform additional application-
specific actions (PSoC 3/PSoC 5LP).

LIN_UART_ISR_ExitCallback LIN_UART_ISR_EXIT_CALLBACK Used at the end of the LIN_UART_ISR() interrupt
handler to perform additional application-specific
actions (PSoC 3/PSoC 5LP).

l_ifc_rx_LIN_Callback L_IFC_RX_LIN_CALLBACK Used in the l_ifc_rx_LIN() function to perform
additional application-specific actions.

l_ifc_aux_LIN_Callback L_IFC_AUX_LIN_CALLBACK Used in the l_ifc_aux_LIN() function to perform
additional application-specific actions.

ld_read_by_id_callout_LIN_Cal
lback

LD_READ_BY_ID_CALLOUT_LIN_C
ALLBACK

Used in the ld_read_by_id_callout_LIN() function to
perform additional application-specific actions.

2 The callback function name is formed by Component function name optionally appended by short explanation
and “Callback” suffix.

LIN Slave PSoC® Creator™ Component Datasheet

Page 42 of 52 Document Number: 002-19387 Rev. *A

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For Component-specific examples, open the dialog from the
Component Catalog or an instance of the Component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the Component. There
are two types of deviations defined:

▪ project deviations – deviations that are applicable for all PSoC Creator Components

▪ specific deviations – deviations that are applicable only for this Component

This section provides information on Component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The LIN Slave Component has the following specific deviations:

MISRA-
C:2004
Rule

Rule Class
(Required/
Advisory) Rule Description Description of Deviation(s)

1.1 R This rule states that code shall
conform to C ISO/IEC 9899:1990
standard.

Nesting of control structures (statements)
exceeds 15 - program does not conform
strictly to ISO:C90.

In practice, most compilers will support a
much more liberal nesting limit and therefore
this limit may only be relevant when strict
conformance is required. By comparison,
ISO:C99 specifies a limit of 127 "nesting
levels of blocks.

8.7 R Objects shall be defined at block scope
if they are only accessed from within a
single function. That is, minimize the
scope of objects and variables.

The reason of this violation is that in some
configurations following internal variables are
used only in one function:

LIN_LinSlaveConfig,

LIN_prevPci,

messageIdTable

11.3 A Cast between a pointer to volatile
object and an integral type.

Casting performed when accessing SCB
internal registers.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 43 of 52

MISRA-
C:2004

Rule

Rule Class
(Required/
Advisory) Rule Description Description of Deviation(s)

11.4 A A cast should not be performed
between a pointer to object type and a
different pointer to object type.

Section 7.2.5.4 of LIN 2.2 specification
defines l_ifc_ioctl() with following prototype –
l_u16 l_ifc_ioctl (l_ifc_handle iii, l_ioctl_op
op, void* pv).

Depending on the operation the “pv”
parameter may be converted to pointer to
unsigned char or to unsigned short (l_u16).

12.1 A Limited dependence should be placed
on C’s operator precedence rules in
expressions.

Extra parentheses recommended to be used
to emphasise order of operations for
LIN_ET_FRAMES_FLAGS_SIZE define
evaluation.

12.4 R Right hand operand of '&&' or '||' is an
expression with possible side effects.

Expression operates with volatile variable. It
is safe as these variables are accessed only
from interrupt routine.

13.7 R Boolean operations whose results are
invariant shall not be permitted.

Depending on the Component setup there
may be condition checks whose results are
invariant. For example when
ld_read_by_id_callout() is used it always
returns LD_NEGATIVE_RESPONSE unless
the user will override it. But Component
performs condition check for all of three
possible return values in its source code.

14.1 R There shall be no unreachable code.
This refers to code which cannot,
under any circumstances, be reached.

This comes in pair with 13.7. Depending on
the Component setup there may be condition
checks whose results are invariant. This
results in unreachable code.

14.7 R A function shall have a single point of
exit at the end of the function.

The l_ifc_rx() function has a complex
conditional structure and two more `return`
paths are added to return immediately
after receiving of BREAK sequence or if
spurious interrupt occurs.

15.5 R This 'switch' statement contains only a
single path - it is redundant.

This 'switch' is generated in customizer.
Number of its paths depends on quantity of
signals or frames defined by user.

16.7 A A pointer parameter in a function
prototype should be declared as
pointer to const if the pointer is not
used to modify the addressed object.

Section 7.2.5.4 of LIN 2.2 specification
defines l_ifc_ioctl() with following prototype –
l_u16 l_ifc_ioctl (l_ifc_handle iii, l_ioctl_op
op, void* pv).

In some cases, depending on configuration
the “pv” parameter of may not be modified.

LIN Slave PSoC® Creator™ Component Datasheet

Page 44 of 52 Document Number: 002-19387 Rev. *A

MISRA-
C:2004
Rule

Rule Class
(Required/
Advisory) Rule Description Description of Deviation(s)

17.4 R Array indexing shall be the only
allowed form of pointer arithmetic. This
still bans the incrementing of a pointer
that was not declared as an array.

To conform to the LIN 2.2 specification the
Component defines several API functions
that use pointers as parameters. These
pointers are used to define arrays of data
and array indexing is used to access the
data.

19.7 A A function shall be used in preference
to a function-like macro

The following macro is used to increase
performance:

LIN_SWAP_U8_TO_U16();

LIN_ABS().

19.11 R All macro identifiers in preprocessor
directives shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and the
defined() operator.

The macro 'LIN_1_NCS_0xB5_SEL' used in
'#if' expression in l_ifc_ioctl_LIN_1() function
is not defined in case if Automatic
Configuration Request Handling option is
unchecked.

PSoC 3 Reentrancy Support

The CyIntClearPending() function can be concurrently called because it is called from two
different interrupts inside of the LIN Component. While not reentrant by default, it can be made to
support reentrancy to eliminate “MULTIPLE CALL TO FUNCTION” warning during compilation.
Refer to the “Reentrant Code in PSoC 3” topic in the PSoC Creator Help for more information.
Also, the Component example project has reentrancy support added.

API Memory Usage

The Component memory usage varies significantly, depending on the compiler, device, number
of APIs used and Component configuration. The following table provides the memory usage for
all APIs available in the given Component configuration.

The measurements have been done with associated compiler configured in Release mode with
optimization set for Size. For a specific design the map file generated by the compiler can be
analyzed to determine the memory usage.

Configuration

PSoC 3 (Keil_PK51) PSoC 5LP (GCC) PSoC 4 (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

LIN_Slave_Example project 8115 169 4638 179 4222 181

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 45 of 52

Functional Description

PSoC and LIN Bus Hardware Interface

You need a LIN physical layer transceiver device when the PSoC LIN slave node is connected
directly to a LIN bus. In this case, the TxD pin of the LIN Component connects to the TXD pin of
the transceiver, and the RxD pin connects to the RXD pin of the transceiver. The LIN transceiver
device is required because the PSoC's electrical signal levels are not compatible with the
electrical signals on the LIN bus.

Some LIN transceiver devices also have an "enable" or "sleep" input signal that is used to control
the operational state of the device. The LIN Component does not provide this control signal.
Instead, use a pin used to output the desired signal to the LIN transceiver device if this signal is
needed.

Note After the Component goes into Sleep mode, the SCB is disconnected from the Txd pin and
this pin goes into high-impedance state. It is a responsibility of the user's code to avoid
generation of low-level pulse. The simplest way is to disable the external LIN transceiver before
entering Sleep mode. While disabled, the transceiver can still transfer wake-up pulses from the
LIN bus to the Rxd pin, so a wake-up event will not be missed.

Figure 10. Hardware Interface between PSoC and LIN Bus

Pin

LIN

component

rxd

txd

PSoC LIN Transceiver

RXD

TXD

NSLP

RXD Signal

TXD Signal

Control Signal (optional)
L

IN
 B

u
s

LIN Slave PSoC® Creator™ Component Datasheet

Page 46 of 52 Document Number: 002-19387 Rev. *A

SysTick Timer Usage

For PSoC 4 devices, this Component uses the SysTick timer to monitor LIN bus inactivity and
measure sleep delays.

The SysTick timer is part of the cy_boot Component. All manipulation with the SysTick timer can
be done by using cy_boot APIs. The SysTick timer is configured by cy_boot and enabled by
default. If the SysTick timer is disabled before LIN initialization, then the LIN_TimerEnableInt()
function configures and enables it. For more information about cy_boot, refer to the System
Reference Guide.

The Bus Inactivity Timer is based on the Cortex-M0 CPU’s SysTick timer. It is configured by
default at Reset time to interrupt period 1 mS. The LIN Component uses one callback handler
(out of five) from the SysTick timer. Two LIN instances in the project use two callback handlers
from the SysTick timer.

The CapSense Component can share SysTick timer usage. It also configures the SysTick timer
to 1 millisecond period.

A LIN user may use the SysTick interrupt for custom purposes and change the interrupt period.
In that case, the LIN inactivity function will get overridden and bus inactivity will not be detected.
The LIN Component relies on a 1 milisecond interrupt period.

If the SysTick interrupt period remains 1 milisecond, there are two options for using the SysTick
interrupt along with the LIN Component:

▪ set the register callback for the SysTick interrupt by using the CySysTickSetCallback()
function

▪ use the LIN_BASE_ISR_CODE user section at the end of l_ifc_aux_LIN() API:

/**

* Place your BASE ISR code here

**/

/* `#START LIN_BASE_ISR_CODE` */

/* `#END` */

Resources

The LIN Component (for PSoC 3/PSoC 5LP) is placed throughout the UDB array. The
Component uses the following resources.

Configuration

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

DMA
Channels

Interrupts

LIN_Slave_Example project 4 42 3 3 – 2

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 47 of 52

The LIN Component (for PSoC 4) is based on an SCB fixed block. The Component uses the
following resources.

Configuration

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

DMA
Channels

Interrupts

P4_SCB_LIN_Slave_
Example project

– – – – – 1+1

(SysTick callback
handler)

P4_SCB_LIN_Slave_Multi_
Instance Example project

– – – – – 2+2

(SysTick callback
handlers)

DC and AC Electrical Characteristics

For information about DC and AC Electrical Characteristics refer to the “LIN Physical Layer
Specification” chapter of the LIN 2.2 Specification.

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

Note Final characterization data for PSoC Analog Coprocessor device is not available at this
time. Once the data is available, the Component datasheet will be updated on the Cypress web
site.

DC Characteristics

Fixed UART DC Specifications

Parameter Description Min Typ Max Units

IUART1 Block current consumption at 100 Kbit/s – – 9 µA

IUART1 Block current consumption at 100 Kbit/s for
PSoC 4100 / PSoC 4200,
PSoC 4100 BLE / PSoC 4200 BLE,
PSoC 4100M / PSoC 4200M,
PSoC 4200L, PSoC 4000S, and PSoC 4100S

– – 55 µA

UDB based UART DC Specifications

Parameter Description Min Typ Max Units

IUART2 Block current consumption at 1000 Kbit/s – – 85 µA

LIN Slave PSoC® Creator™ Component Datasheet

Page 48 of 52 Document Number: 002-19387 Rev. *A

Parameter Description Min Typ Max Units

IUART2 Block current consumption at 1000 Kbits/sec for
PSoC 4200L and PSoC 4100S

– – 312 µA

Performance Characteristics

Symbol Description Conditions Min Typ Max Units

FBAUD Baud Rate Clock = 66 MHz

Clock = 48 MHz

Clock = 24 MHz

Clock = 12 MHz

Clock = 6 MHz

Clock = 3 MHz

1

1

1

1

1

1

-

-

-

-

-

-

20

20

20

10

5

2.5

kbaud

kbaud

kbaud

kbaud

kbaud

kbaud

NISR ISR Length - - 729 CPU
Cycles

tISRLAT ISR Latency - - 1/ (FBAUD) s

FBAUD parameter is limited by Master clock for PSoC 3 / PSoC 5LP devices or HFCLK clock for
PSoC 4 devices, only when automatic baud rate synchronization is enabled (for clock source
with a frequency deviation of ±1.5 percent or more).

Above FBAUD values are calculated from formulae:

 FBAUD MAX < FBUS_CLK /(16* DIVIDER_VALUE)

Where DIVIDER_VALUE = 75. This conservative value provides frequency tuning with granularity of
1/75=1,33%. As LIN Spec. defines deviation after synchronization < +/-2%, DIVIDER_VALUE can be
reduced to 25 (4%) for clock source with low short-term deviation.

Maximal ISR Latency is 1 bit-time because transmitter must be disabled at the edge of new
symbol when previously sent symbol received back as erroneous.

Component Errata
Cypress ID Version Problem Workaround

203203 All On PSoC 3/PSoC 5LP, the Automatic
baud rate syncronization fails when
consequental Break symbols arrive
without SYNC byte between them.

Use External clock source (with tolerance < +/-
0.5%) when using Component on PSoC3/5.

Disable ‘Automatic baud rate syncronization’
checkbox in the customizer

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 49 of 52

Cypress ID Version Problem Workaround

244944 All The LIN GUI limits NAD configuration
in the range from 1 to 127. That is,
diagnostic frames in the range from
128 (0x80) to 255 (0xFF) are not
available. Per LIN specification, those
diagnostic frames are based on a
user-defined diagnostic, non-
standardized, and hence, non-
portable. This also means that they
will not be useful for general
purposes.

To define diagnostic frames (use NADs in the
range 128-255) for a specific device, set the
required NAD in a User section, located at the
top of LIN.c file. The following example sets NAD
to 0xFF for a LIN instance called "LIN":

/* `#START LIN_DECLARATIONS` */

#undef LIN_TL_INITIAL_NAD

#define LIN_TL_INITIAL_NAD (0xFFu)

/* `#END` */

Component Changes

This section lists the major changes in the Component from the previous version.

Version Description of Changes Reason for Changes / Impact

4.0.a Edited datasheet. Updated certification statement for PSoC 4 devices.

4.0 Updated LIN_ProcessMrf() API implementation. Fixed Component Errata with Cypress ID 245706.

Updated ClrRxBuffer(), ClrTxBuffer() and
ld_tx_status_LIN(), ld_tx_status_LIN() APIs
implementation.

Fixed Component Errata with Cypress ID 250810.

3.40.d Edited datasheet. Added Errata item, Cypress ID 244944, to
document using diagnostic frames.

Added Errata item, Cypress ID 250810, to
document behavior when erroneous TL packets
reseived.

Updated ld_rx_status() API descriptoin, to
document Component behavior when receiving a
broken packet.

Added clarification about partial compliance with
SAE J2602-1 specification.

Added SysTick timer usage section.

Added final characterization data for the
PSoC 4100S device.

3.40.c Edited datasheet. Added Errata item, Cypress ID 245706, to
document issue with the cooked transport layer.

Added final characterization data for PSoC 4000S
device.

3.40.b Edited datasheet. Added a note that certification is pending for the
3.40 version of this Component.

LIN Slave PSoC® Creator™ Component Datasheet

Page 50 of 52 Document Number: 002-19387 Rev. *A

Version Description of Changes Reason for Changes / Impact

3.40.a Fixed the following issues in the l_ifc_rx_LIN()
function related to the Transport layer:

- An incorrect frame length value was placed in
the corresponding field of the first frame of the
Segmented Response message;

- The actual NAD address was not updated in
the TL frame header each time when the frame
was constructed.

- Erroneous length check was applied to the
last frame of the Segmented Response
message.

Customer Request.

Edited datasheet. Final characterization data for PSoC 4000S,
PSoC 4100S and PSoC Analog Coprocessor
devices is not available at this time. Once the data
is available, the Component datasheet will be
updated on the Cypress web site.

Updated MISRA section.

3.40 Updated versions of the embedded SCB
Component to the most current version.

Out of date Components may contain defects or
incompatibilities.

3.30 Added PSoC 4200L device support, and
updated characterization data.

New device support.

3.20.b Datasheet update. Added Macro Callbacks section.

Added certification statement for PSoC 4 devices,
as well as a statement to explain that this a
prototype Component for PSoC 3 and PSoC 5LP.

3.20.a Added a note to the Bus Inactivity Timeout
Detection parameter section.

Clarified the minimal timeout value and compatibility
with LIN 1.3.

3.20 Added Errata section Component validation

Added LIN_Dynamic Component section. To explain the use of the LIN_Dynamic Component.

Added recommendations about Sleep mode
entering procedure concerned to control of
external transceiver

Validation report

Added 11.3,12.4,14.7,15.5 MISRA violations MISRA related change.

Added support for SCB based LIN Component Component support for PSoC 4200 device family.

Break Detection Threshold setting options
needs to be changed based on the hardware
implementation

The break width options available for SCB are
limited (only whole no. values). This automatically
has to update the drop down options based on
hardware implementation (UDBs for PSoC 3/
PSoC 5LP; SCB for PSoC 4).

Any integer field in an imported NCF/LDF file
should be imported properly if it is an integer
value in decimal float format (example: 10.0).

Customer Request.

PSoC® Creator™ Component Datasheet LIN Slave

Document Number: 002-19387 Rev. *A Page 51 of 52

Version Description of Changes Reason for Changes / Impact

Allow multiple instances of LIN Component
(v2.x and v1.3) in a single project based on
hardware availability.

Customer Request.

Component APIs might get affected based on the
number of Component instance in the project.

Added Hover window settings as Auto Baud
rate sync, LIN bus Baud rate and slave
information (Supplier ID & Function ID)

Based on review comments

Edited the datasheet. Updated DC and AC Electrical Characteristics
section with PSoC 4100M/PSoC 4200M data.

1.30.b Added Component Errata section applicable to
v1.30 only.

Document that the Component was changed, but
there is no impact to designs.

1.30.a Minor datasheet edits.

1.30 Support of PSoC 5 family devices was removed
from the Component.

Following variables were declared as “static”:

LIN_Slave_FindPidIndex();

LIN_Slave_EndFrame();

LIN_Slave_SetAssociatedFlags();

LIN_Slave_GetEtFlagValue();

LIN_Slave_ClearEtFlagValue();

LIN_Slave_ProcessMrf();

LIN_Slave_LinProductId();

LIN_Slave_MessageId().

MISRA related change. These functions are
designated only for internal Component’s usage.

The number of 45 global variables were
declared as “static”

MISRA related change. These variables are
designated only for internal Component’s usage.

The MISRA Compliance section was updated. The Component was verified for MISRA
compliance.

The API Memory Usage section was updated The new API memory usage numbers were
inserted.

1.20 Added MISRA Compliance section. The Component was not verified for MISRA
compliance.

Updated LIN Slave with the latest version of the
Clock and Interrupt Components

1.10 Updated Component characterization data.

Added PSoC 5LP support.

Added all Component APIs with the
CYREENTRANT keyword when they are
included in the .cyre file.

Not all APIs are truly reentrant. Comments in the
Component API source files indicate which
functions are candidates.

LIN Slave PSoC® Creator™ Component Datasheet

Page 52 of 52 Document Number: 002-19387 Rev. *A

Version Description of Changes Reason for Changes / Impact

This change is required to eliminate compiler
warnings for functions that are not reentrant used in
a safe way: protected from concurrent calls by flags
or Critical Sections.

Description of 0xB5 service was modified to
insert more clarity on the service usage
depending on Component configuration.

1.0.a Minor datasheet edits and updates

© Cypress Semiconductor Corporation, 2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”) . This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical Components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical Component is any
Component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	Definitions
	Input/Output Connections
	TXD – Output
	RXD – Input

	Schematic Macro Information
	Component Parameters
	General Tab
	General Parameters
	Use Automatic response_error Signal
	LIN 1.3 Compatibility
	LIN 2.0 Compatibility
	Enable J2602-1 Compliance
	Bus Inactivity Timeout Detection
	This approach is less optimal in terms of resource usage; however, it is directly defined in the LIN standard.Multiple instance support
	Interface number
	Break Detection Threshold

	General Toolbar
	Import File
	Export File
	LIN File Text Editor

	Baud Rate Tab
	Automatic Baud Rate Synchronization
	Nominal LIN Bus Baud Rate
	Source Clock Frequency
	Source Clock Divider
	Actual LIN Bus Baud Rate

	Frames Tab
	Frame Configuration Table
	Frames Tab Buttons

	Signals Tab
	Frames & Signals relations
	Unplaced Signals
	response_error
	Signals Toolbar

	Signal Properties Window
	Adding Signals
	Name
	Type
	Length
	Initial Value
	Fill Color
	Signal Description
	Preview

	Transport Layer Tab
	Use Transport Layer
	API Format Selection
	Initial NAD
	Maximum Message Length
	TX Queue Length/RX Queue Length

	Configuration Services Tab
	Automatic Configuration Request Handling
	Configuration Service Selection
	Slave Information

	Clock Selection
	Placement
	LIN_Dynamic Component
	LIN Version and Updates

	Application Programming Interface
	Core API Functions
	Initialization Subgroup
	l_bool l_sys_init()

	Signal Interaction Functions Subgroup
	l_bool_rd()
	l_u8_rd()
	l_u16_rd()
	l_bytes_rd()
	l_bool_wr()
	l_u8_wr()
	l_u16_wr()
	l_bytes_wr()

	Notification Functions Subgroup
	l_flg_tst()
	l_flg_clr()

	Interface Management Functions* Subgroup
	l_ifc_init()
	l_ifc_wake_up()
	l_ifc_ioctl()
	l_ifc_rx()
	l_ifc_tx()
	l_ifc_aux()
	l_ifc_read_status()

	User-Provided Callouts
	l_sys_irq_disable()

	Node Configuration Functions
	ld_read_configuration()
	ld_set_configuration()
	ld_read_by_id_callout()

	Transport Layer Functions
	Initialization Subgroup
	ld_init()

	Raw Transport Layer API Functions Subgroup
	ld_put_raw()
	ld_get_raw()
	ld_raw_tx_status()
	ld_raw_rx_status()

	Cooked Transport Layer API Functions Subgroup
	ld_send_message()
	ld_receive_message()
	ld_tx_status()
	ld_rx_status()

	Non-LIN-Specified API
	LIN_Start()
	LIN_Stop()

	Macro Callbacks
	Sample Firmware Source Code
	MISRA Compliance
	PSoC 3 Reentrancy Support
	API Memory Usage

	Functional Description
	PSoC and LIN Bus Hardware Interface
	SysTick Timer Usage

	Resources
	DC and AC Electrical Characteristics
	DC Characteristics
	Fixed UART DC Specifications
	UDB based UART DC Specifications

	Performance Characteristics
	Component Errata
	Component Changes

