Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.
Objective
This BLE example project demonstrates how to use the BLE Component’s Automation IO profile feature and related APIs.

Overview
This example project configures the CY8CKIT-042-BLE PSoC 4 Pioneer Kit as an Automation Input Output Server (AOIS) with two instances of a Digital characteristic, two instances of an Analog characteristic, and an Aggregate characteristic:

- The value of the CapSense® Linear Slider position is used as the input parameter for Instance 0 of the Analog characteristic. Instance 1 of the Analog characteristic is used for setting the Current Digital-to-Analog Converter (IDAC) output current.
- The value of the SW2 button is used as the input parameter for Instance 0 of the Digital characteristic and for indication of the Analog characteristic.
- Instance 1 of the Digital characteristic is used for the blue LED control on the CY8CKIT-042-BLE PSoC 4 Pioneer Kit.

In this example project, security connection (Mode 1, Level 4 option) is enabled with the passkey-based authenticated man-in-the-middle (MITM) attack prevention and automatic fallback to the legacy authenticated MITM mode if security connection is not supported by the peer device or selected BLE device family.

This example supports all the GATT sub-procedures defined in the AIOS specification.

Requirements
Tool: PSoC Creator 4.0 or later
Programming Language: C (GCC 4.9 or later)
Associated Parts: PSoC 4 BLE parts
Related Hardware: CY8CKIT-042-BLE PSoC 4 Pioneer Kit with the CY8CKIT-143A PSoC® 4 BLE 256-KB Module and CY5677 CySmart BLE 4.2 USB Dongle that supports Security Connection

Design
This example project consists of the following components:

- Bluetooth Low Energy (BLE)
- Current Digital-to-Analog Converter (IDAC)
- Capacitive Sensing (CapSense)
- Universal Asynchronous Receiver-Transmitter (UART)
- LEDs
- SW2

The schematic is shown in Figure 1.

This project demonstrates the functionality of the BLE Component configured as the AIO Server. It is designed to work with the CySmart PC application.
After a startup, the device initializes the BLE Component. For proper operation, the Component requires several callback functions to receive events from the BLE Stack. The AppCallBack() function is used to receive general BLE events. Another callback (AiosCallBack()) is used to receive events specific to the service-attribute operations.

The CYBLE_EVT_STACK_ON event indicates the successful initialization of the BLE Stack. After this event is received, the Component starts fast advertising with the packet structure as configured in the BLE Component Customizer (Figure 7).

The SW2 button on CY8CKIT-042 BLE is used to do the following:

- Accept the password displayed on a Windows terminal application such as HyperTerminal or PuTTY. (This can also be done by pressing y on HyperTerminal. Optionally, the example project can use legacy Security Mode 1 Level 3 (Authenticated pairing with encryption.)
- Change the value of the Digital characteristic
- Present an indication of the Aggregate characteristic
- Exit the low-power mode

The IDAC is used for the output value of Analog characteristic Instance 1.
The CapSense Linear Slider is used as the input value of Analog characteristic Instance 0.
The green LED on CY8CKIT-042 BLE indicates that BLE is in advertisement mode.
The red LED indicates that the Automation IO Server is disconnected or is in the low-power mode.
The blue LED is used to indicate the state of Digital characteristic Instance 1.
The UART is used to print debug information and scan commands from a terminal.

Figure 1. BLE Automation Input Output Server Example Project Schematic
Design Considerations
This code example is designed for the PSoC 4 BLE family and associated with the CY8CKIT-042-BLE PSOC 4 Pioneer Kit. The design is easily portable to other PSoC BLE devices and kits, typically by just changing the device and Components’ pin assignments.

Hardware Setup
1. Connect the BLE Pioneer Kit to the computer’s USB port, as Figure 2 shows.

 Figure 2. Connect USB Cable to J13

2. Connect the BLE Dongle to one of the USB ports on the computer.

 Figure 3. Connect BLE Dongle to USB Port
Software Setup

Using UART for Debugging
A HyperTerminal program is required in a PC to receive the debug information. If you do not have a HyperTerminal program installed, download and install any serial port communication program. Freeware such as HyperTerminal, Bray’s Terminal, or Putty are available on the web:

1. Connect the PC and kit with a USB cable.
2. Open the device manager program in your PC, find the COM port to which the kit is connected, and note the port number.
3. Open the HyperTerminal program and select the COM port to which the kit is connected.
4. Configure the baud rate, parity, stop bits, and flow control information in the HyperTerminal configuration window. The default settings are: baud rate – 115200, parity – none, stop bits – 1 and flow control – XON/XOFF. These settings have to match the configuration of the PSoC Creator UART Component in the project.
5. Start communicating with the device as explained in the project description.

Components
Table 1 lists the PSoC Creator Components used in this example, as well as the hardware resources used by each Component.

Table 1. List of PSoC Creator Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Hardware Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLE</td>
<td>BLE Subsystem</td>
</tr>
<tr>
<td>UART</td>
<td>GPIO rx – P1[4], tx – P1[5]</td>
</tr>
<tr>
<td>IDAC</td>
<td>GPIO P3[0]</td>
</tr>
<tr>
<td>Advertising_LED</td>
<td>GPIO P3[6]</td>
</tr>
<tr>
<td>Digital_Output_LED</td>
<td>GPIO P3[7]</td>
</tr>
<tr>
<td>LowPower_LED</td>
<td>GPIO P2[6]</td>
</tr>
<tr>
<td>SW2</td>
<td>GPIO P2[7]</td>
</tr>
</tbody>
</table>

Parameter Settings

BLE Component
The BLE Component is configured as the Automation IO Profile in the Automation IO Server (GATT Server) Profile role with the settings shown in the figures below.
Figure 4. GATT Settings

Figure 5. GAP Settings
Figure 6. GAP Settings: Advertisement Settings

![Image of GAP Settings: Advertisement Settings]

Figure 7. GAP Settings: Advertisement Packet

![Image of GAP Settings: Advertisement Packet]
IDAC

Figure 9 shows the settings for the IDAC Component. See the IDAC Component datasheet for additional information.

Figure 9. IDAC Component Parameters

CapSense

Figure 10 shows the settings for the CapSense Component. See the CapSense Component datasheet for additional information.

Figure 10. CapSense Component’s Basic Tab
Operation

1. Build and program the BLE Automation IO Server project into the CY8CKIT-042 PSoC® 4 Pioneer Kit with a PSoC 4 BLE device.
2. Run a Windows terminal application such as HyperTerminal or PuTTY.
3. To use the CySmart Windows application as the BLE Automation IO Client, connect the CySmart BLE dongle to a USB port on the PC (Figure 3).
4. Launch the CySmart application and select the connected dongle in the dialog window.
5. Reset the development kit to start advertising by pressing the SW1 button on the BLE Pioneer Kit.
6. Click the Start Scan button to discover available devices. Click Stop Scan.
7. Select Automation IO in the list of available devices and click Connect button:

 ![CySmart Window](Figure 11)

8. Click Stop Scan and Start Scan in CySmart. Select the IPS device.
9. Click Pair. Click Yes to the pairing request received from the peer device.
10. Compare the displayed passkeys on both devices. Click Yes on CySmart and y on the terminal application (or SW2 button) to confirm the comparison pairing procedure.
11. Click Discover All Attributes, and then click Read All Characteristics in the CySmart application. Observe the received characteristic values.
12. To read a slider position, touch the linear slider on the CY8CKIT-042 PSoC 4 Pioneer Kit (Figure 12) and observe the slider position in the terminal program.
13. Select Analog characteristic Instance 0 (handle 0x0017) in CySmart and click **Read Value.** The received value should be the same as the slider position in the terminal program. See Figure 13. For detailed information about the CapSense Component, refer to the **CapSense Component datasheet.**

Figure 13. Reading Slider Position
14. To set the IDAC current, select Analog characteristic Instance 1 (handle 0x0028) in CySmart, enter the value in the **Value** window, and click **Write Value** (Figure 14).

![Figure 14. Setting IDAC Current](image1)

15. Observe the result in the terminal program. Also, you can measure the IDAC output current between P3.0 and GND pins on the CY8CKIT-042 PSoC 4 Pioneer Kit using an ammeter (Figure 15).

![Figure 15. IDAC Current Measurement](image2)
16. The max value of the IDAC current is 304.8 µA (2.4 µA/day). The max value for Analog characteristic Instance 1 is 127.

For detailed information about the IDAC, refer to the IDAC Component datasheet.

17. Do the following to control the LEDs from CySmart:
 - Turn the blue LED ON: Write 1 to the Digital characteristic Instance 1 (handle 0x0021).
 - Turn the blue LED OFF: Write 0 to the Digital characteristic Instance 1 (handle 0x0021).

18. To execute the previous operation, do the following:
 - Select the Digital characteristic Instance 1 (handle 0x0021) in CySmart.
 - Enter the required value in the Value window.
 - Click Write Value (Figure 16).

Figure 16. LED Control
19. To read the **SW2** button, select the Digital characteristic Instance 0 (handle 0x0010) in CySmart and click **Read Value** (Figure 17).

Figure 17. LED Control

![CySmart application interface with LED control details](image-url)
20. To aggregate the characteristic indication, click **Enable ALL Notifications** in CySmart and press the **SW2** button on the CY8CKIT-042 PSoC 4 Pioneer Kit. Observe the indicated value in the Aggregate characteristic (handle 0x001E) value window (Figure 18).

Figure 18. Aggregate Characteristic Indication

For detailed information about the CySmart Central Emulation Tool, refer to the CySmart User Guide.
Related Documents

Table 2 lists all relevant application notes, code examples, knowledge base articles, device datasheets, and Component datasheets.

Table 2. Related Documents

<table>
<thead>
<tr>
<th>Application Notes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN91267 Getting Started with PSoC® 4 BLE</td>
<td>Introduces PSoC® 4 BLE, an ARM® Cortex™-M0 based Programmable System-on-Chip (PSoC) with a Bluetooth Low Energy.</td>
</tr>
<tr>
<td>AN94020 Getting Started with PRoC™ BLE</td>
<td>Introduces PRoC™ BLE, an ARM® Cortex®-M0 based programmable radio-on-chip with Bluetooth Low Energy.</td>
</tr>
<tr>
<td>AN91184 PSoC 4 BLE - Designing BLE Applications</td>
<td>Shows how to design the Bluetooth Low Energy (BLE) application based on PSoC 4 BLE, using standard profiles defined by the Bluetooth SIG included in the BLE Component in PSoC Creator. Demonstrates how to build an application with the BLE Health Thermometer Profile on the CY8CKIT-042-BLE kit.</td>
</tr>
</tbody>
</table>

Videos

- **PSoC 4 BLE 101: Intro to Bluetooth Low Energy**
 - This is the first installment of a series of getting-started videos on Cypress Bluetooth Low Energy solutions.
- **PSoC 4 BLE 101: 2 Configuring a Find Me Profile with BLE**
 - Using Cypress Pioneer kit with a PSoC 4 Radio module. Alan Hawse walks you through a simple example for a find-me tag application.
- **PSoC 4 BLE 101: 3 Finishing the Find Me Application with Firmware**
 - In this lesson, we take the Find Me profile you configured in the previous video and add the firmware required to make it work on the PSoC 4 BLE device.
- **PSoC 4 BLE 101: 4 Adding Battery Level Service and Testing with CySmart**
 - This lesson takes the Find Me profile built in the first two lessons and adds a Battery Level service.
- **PSoC 4 BLE 101: 5 Using CapSense with Bluetooth Low Energy**
 - In this BLE lesson, we show how to use PSoC Creator’s Custom Service to quickly and easily add a CapSense® slider to a BLE (Bluetooth Low Energy) design.
- **PSoC 4 BLE 101: 6 Extending Battery Life with PSoC Low Energy Modes**
 - Adds power savings into your BLE designs easily using PSoC and PSoC Creator. In the last lesson, we created Find Me peripheral with the Battery Level service.

Software and Drivers

- **CySmart – Bluetooth® LE Test and Debug Tool**
 - CySmart is a Bluetooth® LE host emulation tool for Windows PCs. The tool provides an easy-to-use Graphical User Interface (GUI) to enable customers to test their Bluetooth LE peripheral applications.

PSoC Creator Component Datasheets

- **Bluetooth Low Energy (BLE) Component**
 - The Bluetooth Low Energy (BLE) Component provides a comprehensive GUI-based configuration window to facilitate designing applications requiring BLE connectivity.
- **PSoC 4 Serial Communication Block (SCB) Component**
 - Supports a PSoC 4 multifunction hardware block that implements I²C, SPI, UART, and EZI2C communications.

Device Documentation

- **PSoC® 4: PSoC 4XX7_BLE Family Datasheet Programmable System-on-Chip (PSoC®)**
- **PSoC® 4: PSoC 4XX8_BLE Family Datasheet - Programmable System-on-Chip (PSoC®)**
- **PSoC® 4: PSoC 4XX8_BLE 4.2 Family Datasheet Programmable System-on-Chip (PSoC®)**

Development Kit (DVK) Documentation

- **Bluetooth® Low Energy Pioneer Kit (CY8CKIT-042-BLE)**
Document History

Document Title: CE217613 - Bluetooth Low Energy (BLE) Automation IO
Document Number: 002-17613

<table>
<thead>
<tr>
<th>Revision</th>
<th>ECN</th>
<th>Origin of Change</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>5550104</td>
<td>AZOV</td>
<td>12/12/2016</td>
<td>New code example.</td>
</tr>
</tbody>
</table>
Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

- ARM® Cortex® Microcontrollers - cypress.com/arm
- Automotive - cypress.com/automotive
- Clocks & Buffers - cypress.com/clocks
- Interface - cypress.com/interface
- Internet of Things - cypress.com/iot
- Memory - cypress.com/memory
- Microcontrollers - cypress.com/mcu
- PSoC - cypress.com/psoc
- Power Management ICs - cypress.com/pmic
- Touch Sensing - cypress.com/touch
- USB Controllers - cypress.com/usb
- Wireless Connectivity - cypress.com/wireless

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

PSoC® Solutions

- PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

- Forums | WICED IOT Forums | Projects | Videos | Blogs | Training | Components

Technical Support

- cypress.com/support

© Cypress Semiconductor Corporation, 2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS RESERVES THE RIGHT TO MAKE CHANGES TO THIS DOCUMENT WITHOUT FURTHER NOTICE. CYPRESS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE USE OR ANY PART OF THIS DOCUMENT.

The Software is not intended for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, for any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.