Objective

This BLE example project demonstrates how to create an indoor navigation system using the BLE broadcasting mode that can be configured over GATT connection.

Overview

This example project configures the BLE Pioneer Kit as a time-multiplexed broadcaster and a connectable Indoor Positioning Service (IPS) server. The GAP role is set to broadcaster or peripheral; the GATT role set to server. By default, the device broadcasts the IPS data and then switches over to the connectable advertisement mode on a button press. The IPS data broadcast interval is 100 ms and the IPS broadcast mode is indicated using the blue LED on the BLE Pioneer kit. The connectable advertisement interval (to configure the IPS data over a GATT connection) is set to 20-30 ms for 180 seconds and BLE device switches over to IPS broadcast mode on an advertisement timeout or on a button press. The connectable advertisement mode is indicated by the green LED and the connected state is indicated by the red LED on the BLE Pioneer kit.

In this example project, Security Connection (mode 1, level 4 option) is enabled with the passkey-based authenticated MITM and automatic fallback to the legacy authenticated MITM mode if Security Connection is not supported by the peer device or selected BLE device family.

This example supports all the GATT sub-procedures defined in the IPS specification.

Requirements

Tool: PSoC Creator 4.0 or later

Programming Language: C (GCC 4.9 or later)

Associated Parts: PSoC 4 BLE parts

Related Hardware: CY8CKIT-042-BLE PSoC 4 Pioneer Kit with the CY8CKIT-143A PSoC® 4 BLE 256-KB Module and CY5677 CySmart BLE 4.2 USB Dongle that supports Security Connection

Design

This example project consists of the following components:

- BLE
- Universal Asynchronous Receiver Transmitter (UART)
- LEDs
- SW2

The schematic is shown in Figure 1.

This project demonstrates the functionality of the BLE Component configured as IPS Server. It is designed to work with CySmart.

After startup, the device initializes the BLE Component. To operate, the Component requires several callback functions in order to receive events from the BLE Stack. The AppCallBack() is used to receive general BLE events. Another callback (IpsCallBack()) is used to receive events specific to the service’s attribute operations.

The CYBLE_EVT_STACK_ON event indicates the successful initialization of the BLE Stack. After this event is received, the Component starts fast advertising with the packet structure as configured in the BLE Component Customizer (see Figure 7).
You can connect to the IPS Server device with CySmart or any BLE 4.1- or BLE 4.2-compatible device configured in the GAP Central role and capable of discovering IPS. To connect to IPS Server, press the SW2 button on CY8CKIT-042 BLE to switch to connectable advertisement mode. The green LED indicates the connectable advertisement mode is enabled. The red LED indicates that Client is connected to the IPS Server.

The SW2 button on CY8CKIT-042 BLE is used to accept the password displayed on HyperTerminal. This can also be done by pressing ‘y’ on HyperTerminal. Optionally, the example project can use legacy Security Mode 1 Level 3 (Authenticated pairing with encryption).

UART is used to print the debug information and scan the commands from a terminal.

Design Considerations
This code example is designed for the PSoC 4 BLE family and associated with CY8CKIT-042 BLE. The design is easily portable to other PSoC BLE devices and kits, typically by just changing the device and components’ pin assignments.

Hardware Setup

1. Connect the BLE Pioneer Kit to the computer’s USB port, as shown in Figure 2.

2. Connect the BLE Dongle to one of the USB ports on the computer.
Software Setup

Using UART for Debugging
A HyperTerminal program is required in a PC to receive debugging information. If you don’t have a HyperTerminal program installed, download and install any serial port communication program. Freeware such as HyperTerminal, Bray’s Terminal, or Putty is available on the web.

1. Connect the PC and kit with a USB cable.
2. Open the device manager program in your PC, find the COM port in which the kit is connected, and note the port number.
3. Open the HyperTerminal program and select the COM port into which the kit is connected.
4. Configure the Baud rate, Parity, Stop bits, and Flow control information in the HyperTerminal configuration window. By default, the settings are following: Baud rate – 115200, Parity – None, Stop bits – 1 and Flow control – XON/XOFF. These settings have to match the configuration of the PSoC Creator UART component in the project.
5. Start communicating with the device as explained in the project description.

Components

Table 1 lists the PSoC Creator Components used in this example, as well as the placement used by each.

<table>
<thead>
<tr>
<th>Component</th>
<th>Hardware Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLE</td>
<td>BLE Sub-System</td>
</tr>
<tr>
<td>UART</td>
<td>GPIO rx – P1[4], tx – P1[5]</td>
</tr>
<tr>
<td>Connectable_LED</td>
<td>GPIO P3[6]</td>
</tr>
<tr>
<td>Non_Connectable_LED</td>
<td>GPIO P3[7]</td>
</tr>
<tr>
<td>Connected_LED</td>
<td>GPIO P2[6]</td>
</tr>
<tr>
<td>SW2</td>
<td>GPIO P2[7]</td>
</tr>
</tbody>
</table>
Parameter Settings

BLE Component

The BLE Component is configured as IPS Server in the GAP Peripheral role with the settings shown in the figures below. Because there is no Indoor Positioning Profile specification defined, a Custom profile is used.

Figure 4. GATT Settings
Figure 5. GAP Settings

Figure 6. GAP Settings: Advertisement Settings
Figure 7. GAP Settings: Advertisement Packet

![Advertisement Packet Screenshot]

- **Name**: CYBLE
- **Advertisement Packet**:
 - **Name**: Value
 - Flags: General discoverable mode, BR/EDR not supported
 - Local Name: Shortened
 - Service UUID:
 - Indoor Positioning
 - Service Solicitation
 - Service Data
 - Service Manager TK Value
 - Appearance
 - Public Target Address
 - Random Target Address
 - Advertising Interval
 - LE Bluetooth Device Address
 - LE Role
 - URI
 - Manufacturer Specific Data
 - Indoor Positioning Service:
 - Flags: 0x3D
 - Global Coordinates (Latitude): 11.56464,261
 - Global Coordinates (Longitude): 28.65862,67
 - Tx Power: -18 dBm
 - Floor Number: 21
 - Altitude: 5800
 - Uncertainty

- **Advertisement Packet**:
 - Length: 0x02
 - Flags:
 - General discoverable mode
 - BR/EDR not supported
 - Service: Indoor Positioning
 - Flags: 0x0D
 - Global Coordinates (Latitude): 0x5A
 - Global Coordinates (Longitude): 0x04
 - Global Coordinates (Latitude): 0x06
 - Global Coordinates (Longitude): 0x1B
 - Global Coordinates (Longitude): 0x0F
 - Global Coordinates (Longitude): 0x11
 - Tx Power: 0xEE
 - Floor Number: 0x15
 - Altitude: 0x08
 - Altitude: 0xE
 - Uncertainty: 0x00
Design-Wide Resources

Watch Dog Timer (WDT)

WDT works over the low-power Deep Sleep mode; therefore it is used as a general timer. WDT Timer2 is configured in the Low Frequency Clocks tab of the Clocks configuration in the Design Wide Resources (DWR).
Operation

1. Build and program BLE Indoor Positioning Service Server project into CY8CKIT-042 PSoC® 4 Pioneer Kits with PSoC 4 BLE devices.
2. Run HyperTerminal (such as Putty).
3. To use the CySmart Windows application as Indoor Positioning Service Client, connect the CySmart BLE dongle to a USB port on the PC (Figure 3).
4. Launch the CySmart application and select the connected dongle in the dialog window.
5. Set the Duplicate Filter Policy = Disable duplicate filtering in Master Configuration > Scan parameters window. See Figure 10.

![Figure 10. Master Configuration -> Scan parameters]

6. Reset the development kit to start advertising by pressing the SW1 button.
7. Click the Start Scan button to discover available devices.
8. Select IPS in the list of available devices.
9. Observe simulated Latitude and Longitude values in the HyperTerminal program.

10. Observe the advertisement data in the Raw Data and Log windows (Figure 11). Advertisement data contains values of all Indoor Positioning Service characteristics, defined in Indoor Positioning Service Specification. The values of Latitude and Longitude are saved in a specific format described in Indoor Positioning Service Specification. The accordance between these formats is shown in Table 2.

Table 2. Accordance Between Different Formats of Latitude and Longitude

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.808800</td>
<td>0x46D6D4A5</td>
<td>24.041500</td>
</tr>
<tr>
<td>49.808804</td>
<td>0x46D6D509</td>
<td>24.041508</td>
</tr>
<tr>
<td>49.808808</td>
<td>0x46D6D56D</td>
<td>24.041517</td>
</tr>
<tr>
<td>49.808813</td>
<td>0x46D6D5D1</td>
<td>24.041525</td>
</tr>
<tr>
<td>49.808817</td>
<td>0x46D6D635</td>
<td>24.041533</td>
</tr>
<tr>
<td>49.808821</td>
<td>0x46D6D699</td>
<td>24.041542</td>
</tr>
<tr>
<td>49.808825</td>
<td>0x46D6D6FD</td>
<td>24.041550</td>
</tr>
<tr>
<td>49.808829</td>
<td>0x46D6D761</td>
<td>24.041559</td>
</tr>
<tr>
<td>49.808834</td>
<td>0x46D6D7C5</td>
<td>24.041567</td>
</tr>
<tr>
<td>49.808838</td>
<td>0x46D6D829</td>
<td>24.041575</td>
</tr>
<tr>
<td>49.808842</td>
<td>0x46D6D88D</td>
<td>24.041584</td>
</tr>
<tr>
<td>49.808846</td>
<td>0x46D6D8F1</td>
<td>24.041592</td>
</tr>
<tr>
<td>49.808850</td>
<td>0x46D6D955</td>
<td>24.041601</td>
</tr>
<tr>
<td>49.808854</td>
<td>0x46D6D9B9</td>
<td>24.041609</td>
</tr>
<tr>
<td>49.808859</td>
<td>0x46D6DA1D</td>
<td>24.041617</td>
</tr>
<tr>
<td>49.808863</td>
<td>0x46D6DA81</td>
<td>24.041626</td>
</tr>
<tr>
<td>49.808867</td>
<td>0x46D6DAE5</td>
<td>24.041634</td>
</tr>
<tr>
<td>49.808871</td>
<td>0x46D6DB49</td>
<td>24.041642</td>
</tr>
<tr>
<td>49.808875</td>
<td>0x46D6DBAD</td>
<td>24.041651</td>
</tr>
<tr>
<td>49.808880</td>
<td>0x46D6DC11</td>
<td>24.041659</td>
</tr>
<tr>
<td>49.808884</td>
<td>0x46D6DC75</td>
<td>24.041668</td>
</tr>
</tbody>
</table>
11. Press the SW2 button on the BLE Pioneer kit to set the connectable advertisement mode for Indoor Positioning Service. This mode is indicated by the green LED on the BLE Pioneer kit.

12. Click Stop Scan and Start Scan in CySmart. Select the IPS device.

13. Click Pair. Response Yes to a pairing request received from the peer device.

14. Compare the displayed passkeys on both devices. Click Yes on CySmart and 'y' on the terminal (or SW2 button) to confirm the Numeric comparison pairing procedure.

15. Click Discover All Attributes, then click Read All Characteristics in the CySmart application. Observe the received characteristic values.

16. Change the Floor Number characteristic value to 22 (for example) and click Write value, then click Read Value. Observe the changes in CySmart and HyperTerminal. See Figure 12.

17. Change the Indoor Positioning Configuration characteristic value to 51 and click Write Value, then click Read Value. Observe the result in CySmart and HyperTerminal (Figure 12). Value 51 sets only Latitude, Longitude, and Floor Number in the advertisement packet. For details, see Indoor Positioning Service Specification.

18. Click the Disconnect button, then click the Start Scan button to discover available devices.

19. Select IPS in the list of available devices.

20. Observe charged advertisement packet and data in the Raw Data and Log windows. The packet contains only values of Latitude, Longitude, and Floor Number, as was set above.

If you have problems with using the CySmart Central Emulation Tool, refer to CySmart User Guide.
Figure 12. Value writing.
Figure 13. Advertisement Packet
Related Documents

Table 3 lists all relevant application notes, code examples, knowledge base articles, device datasheets, and Component datasheets.

Table 3. Related Documents

<table>
<thead>
<tr>
<th>Application Notes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN94020 Getting Started with PRoC™ BLE</td>
<td>Introduces to PRoC™ BLE, an ARM® Cortex®-M0 based programmable radio-on-chip with Bluetooth Low Energy.</td>
</tr>
<tr>
<td>AN91184 PSoC 4 BLE - Designing BLE Applications</td>
<td>Shows how to design the Bluetooth® Low Energy (BLE) application based on PSoC 4 BLE, using standard profiles defined by the Bluetooth SIG included in the BLE Component in PSoC Creator. Demonstrates how to build an application with the BLE Health Thermometer Profile on the CY8CKIT-042-BLE kit.</td>
</tr>
</tbody>
</table>

Videos

- **PSoC 4 BLE 101: Intro to Bluetooth Low Energy**
 This is the first installment of a series of getting-started videos on Cypress Bluetooth Low Energy solutions.

- **PSoC 4 BLE 101: 2 Configuring a Find Me Profile with BLE**
 Using Cypress Pioneer kit with a PSoC 4 Radio module. Alan Hawse walks you through a simple example for a find-me tag application.

- **PSoC 4 BLE 101: 3 Finishing the Find Me Application with Firmware**
 In this lesson, we take the Find Me profile you configured in the previous video and add the firmware required to make it work on the PSoC 4 BLE device.

- **PSoC 4 BLE 101: 4 Adding Battery Level Service and Testing with CySmart**
 This lesson takes the Find Me profile built in the first two lessons and adds a Battery Level service.

- **PSoC 4 BLE 101: 5 Using CapSense with Bluetooth Low Energy**
 In this BLE lesson, we show how to use PSoC Creator’s Custom Service to quickly and easily add a CapSense® slider to a BLE (Bluetooth Low Energy) design.

- **PSoC 4 BLE 101: 6 Extending Battery Life with PSoC Low Energy Modes**
 Adds power savings into your BLE designs easily using PSoC and PSoC Creator. In the last lesson, we created Find Me peripheral with the Battery Level service.

Software and Drivers

- **CySmart – Bluetooth® LE Test and Debug Tool**
 CySmart is a Bluetooth® LE host emulation tool for Windows PCs. The tool provides an easy-to-use Graphical User Interface (GUI) to enable customers to test their Bluetooth LE peripheral applications.

PSoC Creator Component Datasheets

- **Bluetooth Low Energy (BLE) Component**
 The Bluetooth Low Energy (BLE) Component provides a comprehensive GUI-based configuration window to facilitate designing applications requiring BLE connectivity.

- **PSoC 4 Serial Communication Block (SCB) Component**
 Supports a PSoC 4 multifunction hardware block that implements I²C, SPI, UART, and EZI2C communications

Device Documentation

- **PSoC® 4: PSoC 4XX7_BLE Family Datasheet Programmable System-on-Chip (PSoC®)**
- **PSoC® 4: PSoC 4XX8_BLE Family Datasheet - Programmable System-on-Chip (PSoC®)**
- **PSoC® 4: PSoC 4XX8_BLE 4.2 Family Datasheet Programmable System-on-Chip (PSoC®)**

Development Kit (DVK) Documentation

- **Bluetooth® Low Energy Pioneer Kit (CY8CKIT-042-BLE)**
Document History

Document Title: CE211245 - Bluetooth Low Energy (BLE) Indoor Positioning

Document Number: 002-11245

<table>
<thead>
<tr>
<th>Revision</th>
<th>ECN</th>
<th>Date</th>
<th>Orig. of Change</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>5141104</td>
<td>08/23/2016</td>
<td>AZOV</td>
<td>New code example.</td>
</tr>
</tbody>
</table>
Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

- ARM® Cortex® Microcontrollers cypress.com/arm
- Automotive cypress.com/automotive
- Clocks & Buffers cypress.com/clocks
- Interface cypress.com/interface
- Lighting & Power Control cypress.com/powerpsoc
- Memory cypress.com/memory
- PSoC cypress.com/psoc
- Touch Sensing cypress.com/touch
- USB Controllers cypress.com/usb
- Wireless/RF cypress.com/wireless

PSoC is a registered trademark and PSoC Creator is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Technical Support

Community | Forums | Blogs | Video | Training

cypress.com/support

Cypress Developer Community

Cypress.com

Products

- ARM Cortex
- Automotive
- Clocks & Buffers
- Interface
- Lighting & Power Control
- Memory
- PSoC
- Touch Sensing
- USB Controllers
- Wireless/RF

PSoC® Solutions

cypress.com/psoc

Cypress Locations

San Jose, CA 95134-1709

Phone: 408-943-2600
Fax: 408-943-4730
Website: www.cypress.com

© Cypress Semiconductor Corporation, 2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spanssion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-transferable, license (without the right to sublicense) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, non-transferable, license (without the right to sublicense) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spanssion, the Spanssion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.