THIS SPEC IS OBSOLETE

Spec No: 002-14934

Spec Title: AN214934 - BLUETOOTH LOW ENERGY CURRENT CONSUMPTION MEASUREMENTS

Replaced by: NONE
Bluetooth Low Energy Current Consumption Measurements

Associated Part Family: CYW4330

This application note provides an introduction to the Bluetooth Low Energy (BLE) technology, and describes the setup and procedures to measure the basic current consumption in two of the most common BLE modes (advertising and scan mode).

This application note is intended for hardware engineers and designers who are using the CYW4330 device in their design.

Contents

1 Introduction .. 1 5.2 Test Equipment Settings 4
1.1 Cypress Part Numbering Scheme 1 5.3 Daughterboard Settings 5
1.2 Acronyms and Abbreviations 2 5.4 BCM9UMB Bluetooth/WLAN Motherboard Settings ... 7
1.3 References .. 2 5.5 Loading the Configuration File 10
2 IoT Resources .. 2 6 Current Consumption Measurements 13
3 Overview ... 2 6.1 Advertising Mode ... 13
4 Comparing Bluetooth Low Energy to 6.2 Scan Mode .. 18
Bluetooth 2.x/3.x ... 3 Document History Page 22
5 Test Setup ... 3 Worldwide Sales and Design Support 23
5.1 System Requirements 3

1 Introduction

The CYW4330 implements the industry's most advanced radio coexistence algorithms and hardware mechanisms to allow an extremely collaborative WLAN and Bluetooth coexistence scheme, along with coexistence support for external radios (such as GPS and WiMAX). The result is an enhanced overall quality for simultaneous voice, video, and data transmission on a handheld system.

This application note provides an introduction to the Bluetooth Low Energy (BLE) technology, and describes the setup and procedures to measure the basic current consumption in two of the most common BLE modes (advertising and scan mode).

This application note is intended for hardware engineers and designers who are using the CYW4330 device in their design.

This document assumes that a user knows how to download firmware to the CYW4330 device. If the CYW4330 device has already been integrated onto a platform, the proper configuration files need to be loaded and the proper commands for BLE are generated by the host processor. If an evaluation board is being used, this can be accomplished by using Cypress's proprietary BlueTool™ software. Contact your local Cypress technical representative for BlueTool support.

1.1 Cypress Part Numbering Scheme

Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion, there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides Cypress ordering part number that matches an existing IoT part number.

<table>
<thead>
<tr>
<th>Broadcom Part Number</th>
<th>Cypress Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCM4330</td>
<td>CYW4330</td>
</tr>
</tbody>
</table>

Table 1. Mapping Table for Part Number between Broadcom and Cypress
1.2 Acronyms and Abbreviations
In most cases, acronyms and abbreviations are defined on first use.

For a comprehensive list of acronyms and other terms used in Cypress documents, go to:
http://www.cypress.com/glossary

1.3 References
The references in this section may be used in conjunction with this document.

Note: Cypress provides customer access to technical documentation and software through its Cypress Developer Community and Downloads & Support site (see Overview).

For Cypress documents, replace the “xx” in the document number with the largest number available in the repository to ensure that you have the most current version of the document.

<table>
<thead>
<tr>
<th>Document (or Item) Name</th>
<th>Broadcom Document Number</th>
<th>Cypress Document Number</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cypress Bluetooth/WLAN Motherboard For Cypress Bluetooth and Wireless LAN Applications Testing, BCM9UMB Hardware User Manual</td>
<td>9UMB-HWUM100-R</td>
<td>~</td>
<td>Cypress Developer Community</td>
</tr>
</tbody>
</table>

2 IoT Resources
Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device for your design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software updates. Customers can acquire technical documentation and software from the Cypress Support Community website (http://community.cypress.com/).

3 Overview
The Bluetooth Low Energy (BLE) technology is a global standard for very low-power wireless technology. The BLE devices can operate from coin cell batteries for applications that use low data rates. BLE devices can communicate wirelessly to dual mode Bluetooth-enabled devices. The connections are designed to be robust, short range, and low cost. The BLE-enabled devices are used in the area of fitness, advertising, medical, security, and home entertainment.

4 Comparing Bluetooth Low Energy to Bluetooth 2.x/3.x
The similarities between the Bluetooth and the BLE technology allow a Bluetooth transceiver to have dual-mode operation. Bluetooth and BLE technology can coexist in one device. For example, a BLE radio can use the following items from an existing Bluetooth radio:

- Radio architecture
- Host controller interface (HCI) logical and physical transports
- Logical link control and adaptation protocol (L2CAP)

The BLE technology differs from Bluetooth in the following areas:

- Discovery and connection procedures are handled differently when it comes to lowering total power consumption.
- BLE is limited to only one packet type.
- Connections are entered and always exited in sniff-like mode.
- Transmit and receive operations are governed by interframe spacing as opposed to being slot oriented.
- Profiles are thinner than standard Bluetooth and are structured around client/server architecture.
- BLE devices have lower duty cycles and only three advertising channels to lower connection time. The shorter enable and connection times result in lowering total power consumption.
The BLE devices can either be dual or single mode. The dual-mode devices are combined with a Bluetooth device for use in PCs, cell phones, and tablets. The single-mode devices are BLE only, and are designed to have very low power consumption. The single mode devices are typically small and can operate for a long period of time using a coin cell battery. The CYW4330 is a dual mode device with Bluetooth and BLE.

Table 2 lists specifications for the BLE and Bluetooth technology.

<table>
<thead>
<tr>
<th>Specification</th>
<th>BLE Technology</th>
<th>Bluetooth Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF section enable time</td>
<td>0.6 ms to 1.2 ms</td>
<td>22.5 ms</td>
</tr>
<tr>
<td>Device connection times</td>
<td>3 ms</td>
<td>100 ms</td>
</tr>
<tr>
<td>Peak transmit power</td>
<td>10 dBm</td>
<td>20 dBm</td>
</tr>
<tr>
<td>Frequency range</td>
<td>2402 to 2480 MHz</td>
<td>2402 to 2480 MHz</td>
</tr>
<tr>
<td>RF channel spacing</td>
<td>2 MHz</td>
<td>1 MHz</td>
</tr>
<tr>
<td>Channels used</td>
<td>40 channels</td>
<td>80 channels</td>
</tr>
</tbody>
</table>

5 Test Setup
This section describes the setup and procedures to measure the basic current consumption in BLE modes.

The current consumption is not measured in the typical method that is by using a multimeter, or adding a series resistor and an oscilloscope. The recommended method is to use a power analyzer. A power analyzer is power supply with the ability to make detailed current measurements. A power analyzer is used to measure peak current and average current consumption over a longer period of time. A power analyzer can measure both without having to use multiple pieces of equipment such as a scope and multimeter. BLE is mostly in sleep mode with a very short active period.

5.1 System Requirements
The system requirements are listed below.

- Host system requirements
 - A personal computer running Microsoft® Windows® operating system is required to use BlueTool. Cypress recommends running Windows XP; however, other versions of Windows are supported.

- Hardware requirements
 - Agilent N6705A with N6761A precision power supply
 - CYW4330 McLaren daughterboard
 - BCM9UMB Bluetooth/WLAN motherhood

- Software Requirements
 BlueTool is a proprietary Cypress software tool for exercising, testing, scripting, debugging, and programming devices that use Cypress Bluetooth chips. BlueTool runs on a standard PC running the Microsoft® Windows® operating system. BlueTool interfaces with the Cypress Bluetooth chips at the HCI protocol layer.

Note: For information on how to install BlueTool contact your Cypress representative.
5.2 Test Equipment Settings

Agilent N6705A with N6761A precision power module is used. Settings for the N6761A are:

- Range: 0.1A
- Current limit: 0.1A
- Sampling rate: 0.04 ms
- Mode: Data logger mode is used to capture current consumption

![Figure 1. Board Configuration for the BLE Current Consumption](image)
5.3 Daughterboard Settings

The McLaren daughterboard has to be configured prior to taking the measurements.

- Remove L10 and R30 on the topside of the board, refer to Figure 2.

Figure 2. CYW4330 McLaren Daughterboard
Remove R23 on the bottomside of the board, refer to Figure 3.

Figure 3. R23 on the Bottomside of the CYW4330 McLaren Daughterboard
5.4 BCM9UMB Bluetooth/WLAN Motherboard Settings

The BCM9UMB bluetooth/wlan motherboard has to be configured prior to taking the measurements.

On the BCM9UMB, remove three jumpers on the topside of the board — J9, J10, and J31. Refer to Figure 4.

The normal power from VBAT to the daughterboard is disconnected by removing the jumper from J31. The external power supply powers the rest of the BCM9UMB. Connect power analyzer to EXT2 and GND. Plug in power to the BCM9UMB as normal and enable the power to the daughterboard from the power analyzer. The voltage from the power analyzer should be 3.3V.

Refer to 5.2. Test Equipment Settings for the power analyzer settings. Use the analyzer Data Logger mode to measure the current consumption. Equivalent equipment can be used for measuring current consumption. Note that VBAT is the supply for the daughterboard. Refer to the BCM9UMB Hardware User Manual for a full description of the motherboard.

Figure 4. BCM9UMB Jumpers
To control BT_WAKE, refer to Table 3 and Figure 6 for the schematic and switch location of SW4 on the bottom side of the board.

Note that the position 1 and 2 needs to be opposite of each other. BT_WAKE has to be toggled to put the device into sleep mode and both switch positions need to be changed. See Figure 6 for schematic and switch logic. J28-1 can be used to measure the state of BT_WAKE.

Table 3. Bluetooth GPIO Debug Settings for the SW4 DIP Switch

<table>
<thead>
<tr>
<th>Signal/Configuration</th>
<th>IO Drive</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BT_GPIO_0</td>
<td>Pole 1</td>
<td>Pole 2</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>ON</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>OFF</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>Float (no connect)</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>BT_GPIO_1</td>
<td>Pole 3</td>
<td>Pole 4</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>ON</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>OFF</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>Float (no connect)</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>BT_GPIO_2</td>
<td>Pole 5</td>
<td>Pole 6</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>ON</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>OFF</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>Float (no connect)</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>BT_GPIO_3</td>
<td>Pole 7</td>
<td>Pole 8</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>ON</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>OFF</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>Float (no connect)</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>
Figure 6. Switch Location of SW4
5.5 Loading the Configuration File

This document assumes that the user is familiar with BlueTool and hardware setup needed for collecting current consumption measurements. This section provides steps for loading the configuration file.

Follow these steps to load the configuration file after the CYW4330 McLaren daughterboard is powered up:

1. Launch the Cypress BlueTool software.
2. Enter CNTL+0 to open the log window.
3. Enter CNTL+1 to open the HCI Control Window.

 ![HCI Control Window](image)

4. Select the port connected to the BCM9UMB, and click OK. Typically, it is COM1 or USB0.
5. Click **Reset** and the log window should display ‘success’.

6. Select the **0: Vendor-specific Commands (0 key)** from the list.
7. Select the **Download Minidriver** from the list and enter **CNTL+9**.
8. Locate the correct configuration file, and click **Execute**.

9. From the HCI control window, select the check box next to the HCI protocol active to enable the COM/USB port. Select **7.3 Host Controller & Baseband Commands (3 key)**, and click RESET to reset the device. In the log window the results should display ‘success’.

6 Current Consumption Measurements

This application note provides current consumption measurements in two of the most common modes: advertising and scan mode.

Note: Contact your local Cypress technical representative for BlueTool support and to download the configuration file (refer to 5.5. Loading the Configuration File) needed for the following sections.

6.1 Advertising Mode

The BLE technology broadcasts connection packets in the advertising mode. For example, a temperature sensor broadcasts at certain intervals when temperature data is available. The devices that are scanning for data would then connect with the advertising device and download the temperature data. This is an example of a non-connected mode.

1. Launch the Cypress BlueTool software.
2. In the HCI Control window, select **0: Vendor-specific Commands (0 key)** from the list.
3. Select **Set_Sleepmode_Param** from the menu.
4. In the **Set_Sleepmode_Param** window, select UART from the Sleep_Mode list. Ensure that the **BT_WAKE_Active_Mode** is set to **Active Low**, and click **OK**.

5. In the HCI Control window, select **7.8: LE Controller Commands (8 key)** from the list.

6. Select **LE_Set_Advertising_Data** from the menu. Set the **Advertising_Data** parameter with any 4 bytes.
7. Select LE_Set_Advertising_Parameters from the menu.

8. Set the LE_Set_Advertising_Parameters by selecting both the Advertising_Interval_Min and Advertising_Interval_Max to 4096, click OK.
9. Select the LE_Set_Advertise_Enable from the menu. In the Advertising_Enable window, select Advertising is enabled, and click OK.

10. Put the device in Sleep mode before measuring the current or the current consumption will be approximately 4 mA.
 To put the device in Sleep mode, toggle position 1 and 2 of the SW4 (refer to Figure 6 and Table 3 to set BT_WAKE to high).
 The results from the N6705A DC power analyzer are shown below. The average current consumption for the advertising mode is 162 μA with 4 bytes of data. It is measured over 2.56 seconds (advertising interval). The actual current consumption is approximately 142 μA. The front-end module (U2) needs to be removed. There is 20 μA of leakage, which is difficult to remove.
11. Switch the BT_WAKE to low by toggling position 1 and 2 of the SW4 (refer to Figure on page 8 and Table 3 for BT_WAKE control).

12. Select LE_Set_Advertise_Enable from the menu. In the Advertising_Enable window, select Advertising is disabled, and click OK.
6.2 Scan Mode

The devices in scan mode look for advertisers to setup a connection. This is an example of a non-connected mode.

1. Launch the Cypress BlueTool software.
2. From the Transport menu, select **HCI Control** or enter **CNTL+1**.
3. In the HCI Control window, select **0: Vendor-specific Commands (0 key)** from the list.
4. Select **Set_Sleepmode_Param** from the menu.
5. In the **Set_Sleepmode_Param** window, select **UART** from the Sleep_Mode list. Ensure that the **BT_WAKE_Active_Mode** is set to **Active Low**, and click **OK**.
6. In the HCI Control window, select **LE Controller Commands (8 key)** from the list.

7. Select **LE_Set_Scan_Parameters** from the menu. Set the scan parameters as below, and click **OK**:
 - **LE_Scan_type**: Passive Scanning
 - **LE_Scan_Interval**: 2048
 - **LE_Scan_Window**: 18

8. Select **LE_Set_Scan_Enable** from the menu. In the **LE_Scan_Enable** window, select **Scanning is enabled**, and click **OK**.
9. Put the device in Sleep mode before measuring the current consumption.

To put the device in Sleep mode, toggle position 1 and 2 of the SW4 (refer to Figure 6 and Table 3 to set BT_WAKE to high).

The results from the N6705A DC power analyzer are shown below. The average current consumption for the scan mode is 341 μA. It is measured over 1.28 seconds (scan interval).

Again, there is 20 μA of current leakage in the front-end module (U2). The corrected current consumption should be approximately 321 μA.
10. Switch the BT_WAKE to low by toggling position 1 and 2 of the SW4 (refer to Figure 6 and Table 3 for BT_WAKE control).

11. Select \textbf{LE_Set_Scan_Enable} from the menu. In the LE_Scan_Enable window, select \textbf{Scanning is disabled}, and click \textbf{OK}.
Document History Page

Document Title: AN214934 - Bluetooth Low Energy Current Consumption Measurements
Document Number: 002-14934

<table>
<thead>
<tr>
<th>Rev.</th>
<th>ECN No.</th>
<th>Orig. of Change</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
</table>
| ** | – | – | 05/12/2011 | 4330-AN400-R
Initial release. |
| ^A | 5480516 | UTSV | 11/22/2016 | Updated **Introduction on page 1:**
Added **Cypress Part Numbering Scheme on page 1.**
Updated to Cypress template. |
| ^B | 5881153 | AESATMP8 | 09/12/2017 | Updated Cypress Logo and Copyright. |
| ^C | 6550019 | JPCH | 05/23/2019 | Obsolete document.
Completing Sunset Review. |
Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

- ARM® Cortex® Microcontrollers: cypress.com/arm
- Automotive: cypress.com/automotive
- Clocks & Buffers: cypress.com/clocks
- Interface: cypress.com/interface
- Internet of Things: cypress.com/IoT
- Memory: cypress.com/memory
- Microcontrollers: cypress.com/mcu
- PSoC: cypress.com/psoc
- Power Management ICs: cypress.com/pmic
- Touch Sensing: cypress.com/touch
- USB Controllers: cypress.com/usb
- Wireless Connectivity: cypress.com/wireless

PSoC® Solutions

- PSoC 1
- PSoC 3
- PSoC 4
- PSoC 5LP
- PSoC 6

Cypress Developer Community

- Forums
- WICED IOT Forums
- Projects
- Video
- Blogs
- Training
- Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2011–2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1st) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2nd) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.