

EZ-Serial BLE Firmware Platform User Guide

Doc. No. 002-11259 Rev. *A

Cypress Semiconductor

198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810

Phone (Intl): +1 408.943.2600

www.cypress.com

http://www.cypress.com/

 Copyrights

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 2

© Cypress Semiconductor Corporation, 2016. This document is the property of Cypress Semiconductor Corporation and
its subsidiaries, including Spansion LLC (ñCypressò). This document, including any software or firmware included or
referenced in this document (ñSoftwareò), is owned by Cypress under the intellectual property laws and treaties of the
United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not,
except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a
written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright
rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only
internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either
directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also
grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of
Cypressôs patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and
import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright
license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the
Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT
OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without
further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly
design, program, and test the functionality and safety of any application made of this information and any resulting
product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed
or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other
medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or
property damage (ñUnintended Usesò). A critical component is any component of a device or system whose failure to
perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness.
Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage,
or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold
Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or
death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM,
and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more
complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their
respective owners.

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 3

Contents

1. Introduction .. 5

1.1 How to Use This Guide .. 5
1.2 Block Diagram ... 6
1.3 Functional Overview .. 7

2. Getting Started ... 8

2.1 Prerequisites.. 8
2.2 Factory Default Behavior ... 8
2.3 Connecting a Host Device ... 9
2.4 Communicating with a Host Device ... 12
2.5 Configuration Settings, Storage, and Protection .. 24
2.6 Where to Find Related Material ... 26

3. Operational Examples ... 27

3.1 System Setup Examples ... 27
3.2 Cable Replacement Examples with CYSPP .. 36
3.3 Remote Control Examples with CYCommand ... 38
3.4 GAP Peripheral Examples ... 40
3.5 GAP Central Examples .. 43
3.6 GATT Server Examples ... 46
3.7 GATT Client Examples .. 51
3.8 Security and Encryption Examples .. 53
3.9 Beacon Examples .. 57
3.10 Performance Testing Examples... 58
3.11 Device Firmware Update Examples .. 62

4. Application Design Examples .. 64

4.1 Smart MCU Host with 4-Wire UART and Full GPIO Connections ... 64
4.2 Dumb Terminal Host with CYSPP and Simple GPIO State Indication ... 65
4.3 Module-Only Application with Beacon Functionality .. 65

5. Host API Library .. 67

5.1 Host API Library Overview... 67
5.2 Implementing a Project Using the Host API Library ... 68
5.3 Porting the Host API Library to Different Platforms .. 70
5.4 Using the API Definition JSON File to Create a Custom Library .. 70

6. Troubleshooting .. 72

6.1 UART Communication Issues.. 72

 Contents

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 4

6.2 BLE Connection Issues ... 72

7. API Protocol Reference ... 74

7.1 Protocol Structure and Communication Flow... 74
7.2 API Commands and Responses .. 78
7.3 API Events ... 166
7.4 Error Codes ... 192
7.5 Macro Definitions ... 196

8. GPIO Reference ... 197

8.1 GPIO Pin Map for Supported Modules .. 197
8.2 GPIO Pin Functionality .. 198
8.3 Functional Capabilities .. 202

9. Cypress GATT Profile Reference ... 203

9.1 Bootloader Profile .. 203
9.2 CYSPP Profile ... 203
9.3 CYCommand Profile .. 204

10. Configuration Example Reference ... 205

10.1 Factory Default Settings .. 205
10.2 Adopted Bluetooth SIG GATT Profile Structure Snippets .. 206

Revision History ... 217

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 5

1. Introduction
<

This document provides a complete guide to the EZ-Serial platform on EZ-BLE modules. The guide covers the following:

¶ Cypress Serial Port Profile (CYSPP) UART-to-BLE bridge functionality

¶ GPIO status and control connections

¶ GAP central and peripheral operation

¶ GATT server and client data transfers

¶ L2CAP connections

¶ Customizable GATT structures

¶ Security features such as encryption, pairing, and bonding

¶ Remote configuration

¶ Beacon behavior with iBeacon and Eddystone

¶ API protocol allowing full control over all of these behaviors from an external host

1.1 How to Use This Guide

The high-level concepts covered in this document are organized into the following categories:

¶ System description and functional overview (Chapter 1, Introduction and Chapter 2, Getting Started)

¶ Firmware configuration examples (Chapter 3, Operational Examples)

¶ Complete design examples (Chapter 4, Application Design Examples)

¶ API protocol implementations for external MCU (Chapter 5, Host API Library)

¶ Troubleshooting guides (Chapter 6, Troubleshooting)

¶ Reference material (Chapter 7, API Protocol Reference through 10, Configuration Example Reference)

The following approach provides a good way to gain familiarity with EZ-Serial quickly:

Read through Chapter 1 (Introduction) and Chapter 2 (Getting Started) for a functional overview.

Find at least one example from Chapter 3 (Operational Examples) that is interesting or relevant to your intended design.
Follow along with the described configuration on a development kit for a true hands-on experience. These examples
provide excellent out-of-the-box feature demonstration:

¶ How to Get Started in CYSPP Mode with Zero Custom Configuration

¶ How to Define Custom Local GATT Services and Characteristics

¶ How to Detect and Process Written Data from a Remote Client

¶ How to Bond With or Without MITM Protection

¶ How to Configure iBeacon Transmissions

¶ How to Update Firmware Using the DFU Bootloader

 Introduction

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 6

Find at least one design example from Chapter 4 (Application Design Examples) that is similar to the type of system you
intend to use an EZ-Serial-based EZ-BLE module with, especially noting the functional capabilities provided by the
configuration and GPIO connections.

If you are combining EZ-Serial with an external host microcontroller, read through Chapter 5 (Host API Library) to
understand how the external MCU will need to communicate with the module.

Spend a few minutes reading through the guides in Chapter 6 (Troubleshooting) to avoid unnecessary frustration later on
in the event that something doesnôt behave in the way you expect.

Note the reference material available in this document to allow fast access to additional information and resources
available from Cypress. When in doubt, always consult the API reference for helpful information and related content
concerning any API command, response, or event.

Throughout the guide, you will find API methods referenced in the following format: gpio_set_drive (SIOD, ID=9/5).

These links contain three important parts:

¶ Proper descriptive name (e.g. ñgpio_set_directionò), unique among all other methods.

¶ Text-mode name (e.g. ñSIODò), applicable when using the API protocol in text mode (see Section 2.4.1, Using

the API Protocol in Text Mode).

¶ Group/method ID values (e.g. ñ8/4ò), present in the 4-byte header when using the API protocol in binary mode

(see Section 2.4.2, Using the API Protocol in Binary Mode).

Click on any linked API method for detailed reference material in Chapter 7 (API Protocol Reference).

1.2 Block Diagram

The EZ-Serial platform is built on top of EZ-BLE modules from Cypress. Depending on the specific application, this
platform may utilize an external host device such as a microcontroller (MCU) connected to the module via UART, GPIO
pins, or both. EZ-BLE modules communicate with a remote device using the Bluetooth Low Energy (BLE) protocol.

Figure 1-1. EZ-Serial System Block Diagram

EZ-BLE Module

EZ-Serial Firmware

UART
API Protocol

Parser/Generator

EZ-Serial Platform Manager

Host Remote
Peer

GPIO

BLE Stack
BLE

Radio

 Introduction

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 7

1.3 Functional Overview

EZ-Serial provides an easy way to access the most commonly needed hardware and communication features in BLE-
based applications. To accomplish this, the firmware implements an intuitive API protocol over the UART interface and
exposes a number of status and control signals through the moduleôs GPIO pins.

1.3.1 BLE Communication Features

The EZ-Serial platform has the following BLE-related features:

¶ Bluetooth 4.2 support on compatible modules

¶ Master and slave connection roles

¶ Central, peripheral, broadcaster, and observer GAP roles

¶ Client and server GATT roles

¶ Customizable GATT database definition

¶ Direct L2CAP connectivity for maximum throughput

¶ Encryption, bonding, and protection from man-in-the-middle (MITM) threats

¶ CYSPP mode for bidirectional serial data transmission

¶ UART and over-the-air (OTA) bootloader for firmware updates

¶ iBeacon and Eddystone beaconing

¶ Remote firmware configuration

¶ Efficient low-power operation

1.3.2 Hardware and Communication Features

The EZ-Serial platform also implements a number of features that rely on internal chipset features and local interfaces:

¶ Flexible text-mode and binary-mode API protocols

¶ GPIO reading, writing, and interrupt detection

¶ On-demand ADC conversion

¶ Configurable PWM output

¶ Access to internal AES encryption and decryption engine

¶ Access to internal pseudo-random number generator

¶ UART wake-on-RX support

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 8

2. Getting Started

EZ-Serial allows for rapid integration of BLE wireless communication into your designs. Its support for multiple API
protocol formats enables easy testing of functions by typing commands into a serial terminal from your computer. Once
the functionality is confirmed, the exact same behavior can be achieved with a compact binary protocol on a host
microcontroller. Because the firmware image comes pre-flashed from the factory on new EZ-BLE modules and evaluation
boards, you can jump right into development without updating firmware on the module.

2.1 Prerequisites

For a streamlined experience, we recommend that you have the following parts available:

¶ CY8CKIT-042-BLE-A Bluetooth® Low Energy 4.2 Compliant Pioneer Kit

¶ CYBLE-212019-00 EZ-BLE PRoC Module Evaluation Board

¶ Computer with serial terminal software such as Tera Term, Realterm, or PuTTY

¶ Optional: CYUSBS232 USB-UART LP Reference Design Kit for maximizing throughput with flow control

¶ Optional: BLE-capable mobile device such as an iPad, iPhone, or Android phone or tablet

The BLE Pioneer Kit contains an evaluation board with a USB-to-UART bridge built in, as well as the CySmart BLE
dongle that you can use with the matching CySmart software for various client-side functions such as connection
establishment, GATT exploration, and firmware updates.

NOTE: The BLE Pioneer Kitôs internal USB-to-UART bridge does not support flow control and may
exhibit some data loss at very high throughput. It also does not support baud rates above 115200. For
fast throughput tests, you should connect an external adapter that supports flow control and higher
baud rates, such as the CYUSBS232 kit.

You can control EZ-Serial over a UART interface without additional GPIOs; refer to Chapter 4 (Application Design
Examples) for detail. However, we recommend using the BLE Pioneer kit for the best experience learning and prototyping
due to its comprehensive design and peripheral support.

2.2 Factory Default Behavior

The default configuration of EZ-Serial firmware is shown below:

¶ UART interface configured for 115200 baud, 8 data bits, no parity, 1 stop bit

¶ UART flow control disabled (signals from the module are not generated, signals from the host are ignored)

¶ Protocol parser/generator operating in text mode with local echo enabled

¶ CYSPP serial data transfer profile enabled in auto-start mode

¶ CYCommand remote configuration profile enabled with no special security

¶ All optional GPIO status/control pin functions enabled in pull up/down mode (not strong drive)

When the module is powered on or reset, it will generate the system_boot (BOOT, ID=2/1) API event. This is only one
example of one API method used by the platform; refer to Chapter 7 (API Protocol Reference) for details on the structure
and behavior of the API protocol.

http://www.cypress.com/documentation/development-kitsboards/cy8ckit-042-ble-bluetooth-low-energy-42-compliant-pioneer-kit
http://www.cypress.com/documentation/datasheets/cyble-212019-00-ez-ble-proc-module
http://www.cypress.com/documentation/development-kitsboards/cyusbs232-usb-uart-lp-reference-design-kit
http://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 9

The boot event will appear similar to this, if the protocol generator is in the default text mode:

 @E,0032,B OOT,E=0100,S=030100C2,P=0100, C=01, A=00A050E3835F

This text-mode string of data indicates:

¶ @E ï an event has occurred

¶ 0032 ï there are 50 bytes (0x32) of content to follow

¶ BOOT ï the event which occurred is the BOOT event

¶ E=0100 ï the EZ-Serial application version is 1.0

¶ S=030100C2 ï the BLE stack component version is 3.1.0 build 194 (0xC2)

¶ P=0100 ï the protocol version is 1.0

¶ C=01 ï the cause for this boot/reset is standard power-cycle or XRES hardware signal

¶ A=00A050E3835F ï the public Bluetooth MAC address of this module is 00:A0:50:E3:83:5F

NOTE: The version data and MAC address shown here are examples only. Actual values may differ.

Once the system boots, EZ-Serial will automatically start the CYSPP connection process by advertising as peripheral
device, unless the CP_ROLE pin is asserted (LOW) in which case it will start the process by scanning as a central device.

In the peripheral role, the gap_adv_state_changed (ASC, ID=4/2) API event will follow the boot event:

 @E,000E,ASC,S=01,R=03

In the central role, the gap_scan_state_changed (SSC, ID=4/3) API event will occur after the boot event, potentially
followed by one or more scan result events:

 @E,000E,SSC,S=01,R=03

 @E,0062,S,R=00,A=00A050421C63,T=00 ,S=CE, B=00, D=020106110700A1...

A central-mode scan will continue until it finds a compatible peer, and then EZ-Serial will automatically initiate a
connection and set up the CYSPP data pipe and enter data mode upon completion. To change this behavior, you must
either reconfigure the module using the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command, or else keep the
module in the hibernate state by asserting (LOW) the ATEN_SHDN pin.

Refer to Section 2.4.5 (Using CYSPP) and Section 3.2 (Cable Replacement Examples with CYSPP) for details concerning
CYSPP configuration and behavior. A full GPIO reference is available in Chapter 8 (GPIO Reference).

2.3 Connecting a Host Device

EZ-Serial communicates with an external host device such as a microcontroller using serial data (UART) and simple
GPIO signals for status and control. Depending on your application, you may need to use one, both, or neither of these in
your final design. Chapter 4 (Application Design Examples) describes each of these use cases.

2.3.1 Connecting the CY8CKIT-042-BLE Pioneer Kit

When using the recommended evaluation kit for prototyping, simply connect the mini-USB cable between your PC and the
main board and ensure that the CYBLE-212019-EVAL board is securely plugged into the receptacle. This provides power
to the module and a communication interface (UART) via the kitôs onboard PSoC 5LP microcontroller. Once you have
connected the cable and allowed any necessary drivers to install, a new virtual COM port will become available, as shown
in Figure 2-1:

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 10

Figure 2-1. Virtual Serial Port from BLE Pioneer Kit

Note: COM11 is shown here, but your port number may be different.

You can then use this serial port in any compatible application on your PC, such as Tera Term, Realterm, or PuTTY.

NOTE: The PSoC 5LP microcontroller on the BLE Pioneer Kit board will only provide the expected

USB-to-UART bridge functionality if it is running the default KitProg firmware that Cypress ships on the
evaluation board. If you have changed this firmware using a debugger or bootloader, please refer to
KBA87474 - PSoC® 4 Pioneer Kit (CY8CKIT-042) Factory Restore Instructions for Programmer and
Debugger Functionality for instructions on restoring the default firmware.

2.3.2 Connecting the Serial Interface

You can also connect your own host or USB adapter for UART communication. The moduleôs UART interface uses
standard true-type logic (TTL) signals, with logic LOW at the GND (0V) level and logic HIGH at the VDD level (typically
3.3V or 5V depending on the chosen module power supply). This is necessary for high-throughput tests, which require
flow control.

WARNING: Do not connect the module directly to RS-232 signals. This will damage the device.

EZ-Serialôs UART interface has two required signals for data and two optional signals for flow control, if enabled:

¶ Required: RXD ï Receive data (input), connect to host TXD (output)

¶ Required: TXD ï Transmit data (output), connect to host RXD (input)

¶ Optional: RTS ï Module-side flow control (output), connect to host CTS (input)

¶ Optional: CTS ï Host-side flow control (input), connect to host RTS (output)

Refer to Section 8.1 (GPIO Pin Map for Supported Modules) for pin-to-function correlations.

NOTE: If you connect an external UART device or adapter to the CY8CKIT-042-BLE Pioneer Kit

headers for module UART access, the built-in USB-to-UART bridge interface provided by the kitôs
onboard PSoC 5LP will compete with it as both devices attempt to drive the moduleôs P1.4 UART_RX

pin. The CYUSBS232 kit is known to override the PSoC 5LP signal and successfully communicate, but
some other devices or adapters may not drive or pull with the same resistive strength and will be unable
to send UART data to the module. To work around this, you can either (1) erase/modify the firmware on
the kitôs PSoC 5LP module using PSoC Programmer, or (2) desolder R53 to disconnect the PSoC 5LPôs
TX pin.

The default port settings are 115200 baud, 8 data bits, no parity, and one stop bit. Flow control is supported, but must be
specifically enabled if desired.

You can change these settings using the system_set_uart_parameters (STU, ID=2/25) API command. UART transport
settings are protected, which means they cannot be written to flash until they have first been applied to RAM. This

http://www.cypress.com/knowledge-base-article/psoc-4-pioneer-kit-cy8ckit-042-factory-restore-instructions-programmer-and
http://www.cypress.com/knowledge-base-article/psoc-4-pioneer-kit-cy8ckit-042-factory-restore-instructions-programmer-and
http://www.cypress.com/documentation/development-kitsboards/cyusbs232-usb-uart-lp-reference-design-kit

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 11

prevents unintentional communication lockouts. Refer to Section 2.5.3 (Protected Configuration Settings) for details
concerning protected settings.

If you experience any problems communicating over the serial interface, refer to Chapter 6 (Troubleshooting) for solutions
to common issues.

2.3.3 Connecting GPIO Pins

EZ-Serial also supports GPIO connections for status signals (output) and control signals (input). These allow more flexible
hardware design choices and more efficient operation than what the serial interface alone provides.

The firmware provides eight single-function pins for status and control, aside from the two or four pins used for UART
communication. All of these pin functions are enabled by default, but most can be disabled with the gpio_set_function
(SIOF, ID=9/3) API command. Disabling the special functions on these pins allows you to use them for GPIO and manual
interrupt detection.

Table 2-1 below summarizes the functions provided by these pins. For additional information including operational side-
effects and default logic states, refer to Chapter 8 (GPIO Reference).

Table 2-1. GPIO Function Summary

Pin name Direction Optional* Functional Description

LP_MODE Input No Low-power mode control. Assert (LOW) to prevent sleep, de-assert (HIGH) to allow sleep.

ATEN_SHDN In/Out Yes Bidirectional signal. Host can assert (LOW) to stop all activity and force immediate
hibernation. Module will assert (LOW) to indicate internal serial buffer overflow.

CP_ROLE Input Yes CYSPP role control. Assert (LOW) for central mode, de-assert (HIGH) for peripheral mode.

CYSPP Input No CYSPP mode control. Assert (LOW) for CYSPP data mode, de-assert (HIGH) for command
mode.

NOTE: Asserting this pin will begin CYSPP operation in the configured
role even if the CYSPP profile is disabled in the platform configuration.
See Section 2.4.5 (Using CYSPP Mode) for detail.

DATA_READY Output Yes Data ready indicator. Asserted (LOW) when serial data is read to be sent to the host, de-
asserted (HIGH) after all data is fully transmitted.

CONNECTION Output Yes Connection indicator. Asserted (LOW) when a BLE connection is established, de-asserted
(HIGH) upon disconnection.

NOTE: When CYSPP data mode is active with the CYSPP pin in the
asserted (LOW) state, the CONNECTION pin is asserted only when a
remote device has connected and completed the CYSPP GATT data
characteristic subscription, indicating that the bidirectional data pipe is
ready. It is de-asserted when data can no longer flow, either due to
disconnection or because the data characteristic subscription is ended.

LP_STATUS Output Yes Low-power state indicator. Asserted (LOW) if the CPU is awake, de-asserted (HIGH) if
asleep.

FACTORY_TR Input Yes Factory test/reset control. Assert (LOW) at boot time to trigger factory test mode, indicated
by the system_factory_test_entered (TFAC, ID=2/4) API event. If asserted (LOW) at boot
time while the CYSPP pin is simultaneously asserted (LOW), this will trigger a factory reset
of all user-defined settings on the module, returning the firmware to a known state upon the
next boot.

NOTE: If entered, manufacturing test mode will remain active until you
de-assert the FACTORY_TR pin.

*Optional pin functions can be disabled to allow standard GPIO behavior

By default, the pins noted as output are not strongly driven, but instead are internally pulled to the indicated states with

approximately 5.6 kOhms. This prevents unintentional damage in cases where the initial power-on state of an externally
connected deviceôs pins could otherwise result in a direct short between opposite supply lines. Since this can result in
unexpected behavior with some external devices that have equal or stronger pulls in input mode, you can change the
drive mode of special-function output pins to use strong drive instead with the gpio_set_function (SIOF, ID=9/3) API

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 12

command. Only the UART_TX pin is strongly driven by default, because it cannot function properly under any other

configuration.

For more details on GPIO functionality, please refer to Chapter 8 (GPIO Reference).

2.4 Communicating with a Host Device

Once you have connected a host to the module via the serial interface, you can send and receive data. EZ-Serial supports
two different modes of communication: command mode (API protocol communication and control) and CYSPP mode

(transparent wireless cable replacement to remote device). The sections below describe these modes in detail.

The active communication mode depends on the state of the CYSPP pin, which can be one of three options:

¶ CYSPP pin externally de-asserted (HIGH): command mode (text or binary)

¶ CYSPP pin externally asserted (LOW): CYSPP mode

¶ CYSPP pin left floating: command mode until activating CYSPP data pipe, then CYSPP mode

Ensure that the CYSPP pin is in the intended state at boot time to achieve the desired behavior. If you assert this pin, the
API parser and generator become inactive, because all serial data is piped through the BLE connection (once
established). You will experience what appears to be a lack of communication if you attempt to send API commands to
the module while in CYSPP mode.

2.4.1 Using the API Protocol in Text Mode

EZ-Serial implements a text-mode API protocol which allows full control of the platform using human-readable commands,
responses, and events. This mode is the default setting from the factory in order to provide the fastest possible path to
rapid prototyping. Commands are typed using short codes, and responses and events come back with predictable timing
and formats.

2.4.1.1 Text Mode Protocol Characteristics

The text mode protocol has the following general behavior:

¶ Commands sent from the host must be terminated with a carriage return (0x0D) or line feed (0x0A) byte, or both.

¶ Commands begin with ó/ô (forward slash), óSô, óGô, or ó.ô to indicate ACTION, SET, GET, or PROFILE commands,

respectively.

¶ Commands are always immediately followed by a corresponding response, if they are parsed correctly.

¶ Commands with multiple arguments allow the arguments to be supplied in any order.

¶ Commands with multiple arguments do not require all arguments to be present in most cases; SET commands
with some arguments omitted will leave non-set values unchanged, and ACTION commands with some
arguments omitted will fall back to the default platform settings relevant for those arguments.

¶ Commands with syntax errors are followed by the system_error (ERR, ID=2/2) API event with an error code
indicating the nature of the problem, rather than a response packet (see Section 7.4, Error Codes).

¶ All numeric data must be entered in hexadecimal notation, without prefixes (ñ0xò) or signs (ñ+ò or ñ-ò); negative

numbers should be entered in twoôs complement form (e.g. -1 = FF, -16 = F0, -128 = 80).

¶ All multi-byte numeric data is entered and expressed in big-endian byte order (e.g. 0x12345678 is ñ12345678ò).

¶ Text command codes and hexadecimal data are not case sensitive.

¶ New command entry in text mode must start with a printable ASCII character (0x20 ï 0x7E), or the byte will be
ignored. This requirement allows a wider range of ñdummyò byte options when using wake-on-RX. See Section
3.1.5.5 (Avoiding UART Data Loss or Corruption due to Deep Sleep Transition) for detail.

¶ Responses always begin with ñ@R,ò followed by a 16-bit ñlengthò value describing the number of bytes that come

after the four length characters (including the comma), followed by the response text code.

¶ Responses always include a ñresultò value as the first parameter after the text code, indicating success or failure.

¶ Events always begin with ñ@E,ò followed by a 16-bit ñlengthò value similar to responses described above.

¶ Responses and events are terminated with carriage return (0x0D) and line feed (0x0A) bytes.

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 13

2.4.1.2 Text Mode API Command Categories

There are four main categories of commands in text mode: ACTION, SET, GET, and PROFILE. These all use the same
basic syntax, but execute different types of behavior.

Table 2-2. Text Mode Command Categories

Category Features

ACTION ACTION commands trigger operations that cannot persist across resets or power-cycles, with very few exceptions.
They accomplish things such as connection establishment, querying of GPIO logic states, entry into advertisement
mode, and remote GATT discovery and data transfer.

The exceptions to the ñcurrent session onlyò rule are these:

¶ system_store_config (/SCFG, ID=2/4), used to write all modified settings to flash immediately

¶ system_factory_reset (/RFAC, ID=2/5), used to clear all modified settings and reset the module

¶ system_write_user_data (/WUD, ID=2/11), used to write arbitrary user data to a dedicated section of flash

¶ gatts_store_db (/SGDB, ID=5/4), used to write a customized GATT structure to flash for reuse later

¶ smp_pair (/P, ID=7/3), used to initiate pairing, resulting in new bonding data stored in flash

¶ smp_delete_bond (/BD, ID=7/2), used to delete an existing bond, altering data stored in flash

SET SET commands affect configuration settings that control many types of behavior, but do not typically trigger immediate
changes to the operational state like ACTION commands do.

Every argument in a SET command may be stored in non-volatile (flash) memory so that it persists across power-
cycles. Modified settings are stored in RAM only by default, and you must use the /SCFG command to write them to

flash. In text mode, you can also invoke a SET command with a ó$ô after the text code (e.g. ñSDN$,N=... ò) to cause

that change to be written to both RAM and flash immediately.

A small number of SET commands also manage protected settings, which are those that can affect core chipset
operation and communication. For these settings, you cannot write changed values directly to flash without first
performing a separate write to RAM only. This prevents accidental changes that are difficult to undo. Section 2.5.3
(Protected Configuration Settings) has more detail on this behavior.

GET GET commands provide the ability to read all settings that can be changed with SET commands. There is a
corresponding GET command for every SET command found in the protocol with matching parameters returned in the
response.

Like SET commands, GET commands return data from the RAM-stored configuration structure by default. However,
using the ó$ô after the text code will cause the flash-stored data to be returned instead.

A few GET commands are similar in name to related ACTION commands, e.g. ñGIOLò (get GPIO logic settings) and
ñ/QIOLò (query GPIO logic state). Keep in mind that GET/SET commands concern user-defined settings, while
ACTION commands concern immediate behavior changes. Always refer to the API reference material when in doubt
about the intended use and behavior of any API method.

PROFILE PROFILE commands configure the behavior of special built-in behaviors, such as CYSPP data mode, CYCommand
remote configuration mode, and iBeacon and Eddystone beaconing. Depending on the profile, these commands may
perform actions or get or set configuration values as described for the previous three command types.

For more information on these command categories and behaviors, refer to the configuration hierarchy in Section 2.5.1
(Factory, Boot, Runtime, and Automatic Settings) and the material in Chapter 7 (API Protocol Reference).

2.4.1.3 Text Mode API Example

The easiest way to use text command mode is with a serial terminal application. You can use any application of this kind,
as long as it works with standard serial ports and can be configured to open the port with the proper baud rate, flow
control, and other settings. The figure below shows an example session using factory default firmware and the PuTTY
terminal application, starting with the system_boot (BOOT, ID=2/1) API event and demonstrating a few commands,
responses, and other events.

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 14

Figure 2-2. Text Command Mode Session with PuTTY

Table 2-3 describes the various protocol methods shown in the figure above.

Table 2-3. Text Mode Communication Example

Direction Content Detail

ŶRX @E,0032,BOOT,E=0100,S=030100C2,

P=0100, C=01, A=00A050E3835F
system_boot (BOOT, ID=2/1) API event received:

 app = 1.0
 stack = 3.1.0 build 194
 protocol = 1.0
 boot cause = power-on/XRES
 MAC address = 00:A0:50:E3:83:5F

ŶRX @E,000E,ASC,S=01,R=0 3 gap_adv_state_changed (ASC, ID=4/2) API event received:

 state = 1 (active)
 reason = 3 (CYSPP operation)

TXŸ /ping system_ping (/PING, ID=2/1) API command sent to ping the local module to
verify proper communication

ŶRX @R,000B,/PING,0000 system_ping (/PING, ID=2/1) API response received:

 result = 0 (success)

TXŸ gdn gap_get_device_name (GDN, ID=4/16) API command sent to get the
configured device name

ŶRX @R,001E,GDN,0000,N=EZ -

Serial E3:83:5F

gap_get_device_name (GDN, ID=4/16) API response received:

 result = 0 (success)
 name = ñEZ-Serial E3:83:5Fò

ŶRX @E,0035,C,C =04,A= 00A050421C63 ,

T=00,I=0006,L=0000,O=0064 ,B=00

gap_connected (C, ID=4/5) API event received:

 conn_handle = 4
 peer = 00:A0:50:42:1C:63
 addr_type = 0 (public)
 interval = 6 (7.5ms)
 slave_latency = 0
 supervision_timeout = 0x64 (100 = 1 second)
 bond = 0 (not bonded)

 @E,001E,W,C=04,H=001B ,T=00,

D=11223344

gatts_data_written (W, ID=5/2) API event received:

 conn_handle = 4
 attr_handle = 0x1B (27)
 type = 0 (simple write)

 data = 4 bytes [11 22 33 44]

TXŸ badcmd Invalid API command sent to demonstrate text mode error event

ŶRX @E,000B,ERR,0203 system_error (ERR, ID=2/2) API event received:

 reason = 0x0203 (Unrecognized Command)

Refer to the reference material in Chapter 7 (API Protocol Reference) for details on each of these API methods and text-
mode syntax rules.

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 15

2.4.2 Using the API Protocol in Binary Mode

EZ-Serial also implements a binary-format API protocol that allows the same control of the platform using compact binary
commands, responses, and events. This mode is typically preferable when controlling the EZ-Serial-based module from
an external microcontroller. The binary byte stream is much easier to parse and generate from MCU application code than
human-readable text strings.

The binary protocol uses a fixed packet structure for every transaction in either direction. This fixed structure comprises a
4-byte header followed by an optional payload, terminating with a checksum byte. The payload carries information related
to the command, response, or event. If present, this payload always comes immediately after the header and before the
checksum byte.

Table 2-4. Binary Packet Structure

Header Payload (optional) Checksum

[0] Type [1] Length [2] Group [3] ID [4... N- 1] Parameter(s) [N] Summation

The checksum byte is calculated by starting from 0x99 and adding the value of each header and payload byte, rolling

over back to 0 (instead of 256) to stay within the 8-bit boundary. The checksum byte itself is not included in the
summation process. For the example 4-byte binary packet for the system_ping (/PING, ID=2/1) API command:

 C0 00 02 01

Calculate the checksum as follows:

 0x99 + 0xC0 + 0x0 0 + 0x02 + 0x01 = 0x 15C

Retain only the final lower 8 bits (0x5C) for the 1-byte checksum value. The final 5-byte packet (including checksum) is:

 C0 00 02 01 5C

The structure above allows a packet parser implementation to know exactly how much data to expect in advance any time
a new packet begins to arrive, and to calculate the checksum as new bytes arrive.

The ñTypeò byte in the header contains information not only about the packet type (highest two bits), but also the memory
scope (where applicable), and the highest three bits of the 11-bit ñLengthò value. For details on the binary packet format
and flow, see the API structural definition in Section 7.1 (Protocol Structure and Communication Flow).

2.4.2.1 Binary Mode Protocol Characteristics

The binary mode protocol has the following general behavior:

¶ Commands sent from the host must begin with a properly formatted 4-byte header.

¶ Commands must contain the number of payload bytes specified in the Length field from the header.

¶ Commands must end with a valid checksum byte, but no additional termination such as NULL or carriage return.

¶ Commands are always immediately followed by a response, if they are parsed correctly.

¶ Commands require all arguments to be supplied in the binary payload according to the protocol structural
definition, in the right order (no arguments are optional).

¶ Commands with syntax errors are followed by a system_error (ERR, ID=2/2) API event with an error code
indicating the nature of the problem, rather than a response packet.

¶ Commands must be fully transmitted within one second of the first byte, or the parser will time out and return to
an idle state after triggering the system_error (ERR, ID=2/2) API event with a timeout error code.

¶ All multi-byte integer data is entered and expressed in little-endian byte order (e.g. 0x12345678 is [78 56 34 12]).
Note that this only applies to API method arguments and parameters with a fixed widthð1, 2, or 4-byte integers,

and 6-byte MAC addresses.

¶ All multi-byte data passed inside a variable-length byte array (uint8a or long uint8a) remains in the original

order provided by the source. This includes UUID data found during GATT discovery. If unsure, consult the API
reference manual to verify the argument data type.

¶ Response payloads always begin with a 16-bit ñresultò value as the first parameter, indicating success or failure
of the command triggering the response.

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 16

¶ The binary command header includes a single bit in the first byte which performs the same duty as the ó$ô
character in text mode, to cause changed settings to be written to flash immediately instead of just RAM.

2.4.2.2 Binary Mode API Example

The easiest way to use binary command mode is with a host MCU or other application that has a complete parser and
generator implementation available, such as the host API library provided by Cypress and discussed in Chapter 5 (Host
API Library).

However, it is also possible to test individual commands manually with a serial terminal application capable of entering
and displaying binary data. Figure 2-3 shows an example of this type of test using Realterm, including hexadecimal
representation of data. There is no local echo when binary mode is used, so the screenshot does not show the command
packets sent to the module. To assist in identifying the packet types and boundaries, responses are colored cyan ,
events are yellow , and the final checksum byte of each packet is red .

Figure 2-3. Binary Command Mode Session with Realterm

NOTE: This is helpful for testing, but not an efficient way to communicate in binary mode.

Each binary packet (including the checksum byte) is described in Table 2-5. For better comparison between text mode
and binary mode, the API transactions demonstrated here are the same as those used in the text mode example. Note
that multi-byte integer data such as the 6-byte MAC address and the 16-bit advertisement interval are transmitted in little-
endian byte order.

Table 2-5. Binary Mode Communication Example

Direction Content Detail

ŶRX 80 0F 02 01 00 01 C2 00

01 03 00 01 01 5F 83 E3

50 A0 00 A9

system_boot (BOOT, ID=2/1) API event received:

 app = 1.0
 stack = 3.1.0 build 194
 protocol = 1.0
 boot cause = power-on/XRES
 MAC address = 00:A0:50:E3:83:5F

ŶRX 80 02 04 02 01 03 25 gap_adv_state_changed (ASC, ID=4/2) API event received:

 state = 1 (active)
 reason = 3 (CYSPP operation)

TXŸ C0 00 02 01 5C (not visible) system_ping (/PING, ID=2/1) API command sent to ping the local module to verify
proper communication

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 17

Direction Content Detail

ŶRX C0 02 02 01 00 00 5E system_ping (/PING, ID=2/1) API response received:

 result = 0 (success)

TXŸ C0 00 04 10 6D (not visible) gap_get_device_name (GDN, ID=4/16) API command sent to get the configured device
name

ŶRX C0 15 04 10 00 00 12 45

5A 2D 53 65 72 69 61 6C

20 45 33 3A 38 33 3A 35

46 B2

gap_get_device_name (GDN, ID=4/16) API response received:

 result = 0 (success)
 name = ñEZ-Serial E3:83:5Fò

ŶRX 80 0F 04 05 04 63 1C 42

50 A0 00 00 06 00 00 00

64 00 00 50

gap_connected (C, ID=4/5) API event received:

 handle = 4
 peer = 00:A0:50:42:1C:63
 addr_type = 0 (public)
 interval = 6 (7.5ms)
 slave_latency = 0
 supervision_timeout = 0x64 (100 = 1 second)
 bond = 0 (not bonded)

ŶRX 80 09 05 02 04 1B 00 00

04 11 22 33 44 F6

gatts_data_written (W, ID=5/2) API event received:

 conn_handle = 4
 attr_handle = 0x1B (27)
 type = 0 (simple write)

 data = 4 bytes [11 22 33 44]

TXŸ C0 00 EE EE 35 (not visible) Invalid API command (group and ID bytes set to 0xEE) sent to demonstrate binary
mode error event

ŶRX 80 02 02 02 03 02 24 system_error (ERR, ID=2/2) API event received:

 reason = 0x0203 (Unrecognized Command)

Refer to the reference material in Chapter 7 (API Protocol Reference) for details concerning each of these API methods
and the binary packet format, including information on all header fields and supported data types.

2.4.3 Key Similarities and Differences Between Text and Binary Command Mode

The text-mode and binary-mode protocol formats provided by EZ-Serial each have their own advantages. As a general
guideline, text mode is better for initial development or one-time configuration, while binary mode is a better choice for
production-stage control from an external host device due to the significantly less complex parser/generator
implementation on an external host. The following lists contain important factors to consider when choosing which mode
to use.

Similarities:

¶ Both modes access the same internal API functionality. They are not different protocols, only different formats.

¶ Both follow the same command/response/event flow.

¶ EZ-Serial supports both simultaneously. There is no need to switch between firmware images.

¶ Your choice of protocol format only affects local communication with an external host over the wired serial
interface. It does not have any impact on data sent over a wireless BLE connection, or on the type of host
communication used on a remote device (e.g. another Cypress module running EZ-Serial firmware).

Differences:

¶ Binary multi-byte integer data is transmitted in little-endian byte order for more efficient direct memory structure
mapping on most common platforms, while text mode uses big-endian for easier left-to-right readability.

¶ Binary commands have a one-second timeout, while text mode commands have no timeout.

¶ Binary commands are semantically organized by functional group (system, protocol, GAP, GATT server, etc.)
rather than the four categories used in text mode (ACTION, SET, GET, and PROFILE).

¶ Binary commands require all arguments in every case, while text mode commands often have optional
arguments.

¶ Binary packets include basic checksum validation, while text mode packets do not.

¶ Binary is more efficient for MCU-based communication, while text mode is easier for manual entry in a terminal.

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 18

¶ Binary commands are never echoed back to the host, while text mode commands are (by default).

2.4.4 API Protocol Format Auto-Detection

EZ-Serial uses text mode for API protocol communication by default, but you can change this setting with the
protocol_set_parse_mode (SPPM, ID=1/1) API command. If ñbinaryò mode is specified and written to flash, the module
will use binary mode automatically on subsequent resets or power-cycles.

The parser also automatically detects whether the external host is using binary or text mode, and temporarily switches to
the detected mode for the active session. The detection logic behaves in the following way:

¶ If the parser is in text mode, a byte received at any time with the two most significant bits set (0xC0-0xFF) will

switch the parser to binary mode immediately. The ñtriggerò byte will not be discarded, but will be processed as
the first byte in the command packet. This mechanism is considered safe because no valid text-mode command
begins with a byte that has the highest two bits set.

¶ If the parser is in binary mode, a byte received when the parser is idle (not mid-command) that is one of the

initial category characters for any of the four types of commands (ó/ô, óSô, óGô, and ó.ô) will switch the parser to text
mode immediately. The ñtriggerò byte will not be discarded, but will be processed as the first byte in the text
command string. This mechanism is considered safe because no binary command begins with one of these
characters. Note that this requires the parser to be idle, not in the middle of a packet, because a binary
command packet could easily have one of these characters in its header or payload.

The automatically detected parse mode is not retained across power-cycles, nor is it stored in the same configuration
setting area as a value explicitly set by the protocol_set_parse_mode (SPPM, ID=1/1) API command. For more detail on
this type of temporary configuration, see Section 2.5.1 (Factory, Boot, Runtime, and Automatic Settings).

2.4.5 Using CYSPP Mode

EZ-Serial implements a special CYSPP profile that provides a simple method to send and receive serial data over a BLE
connection. This operational mode is separate from the normal command mode where the API protocol may be used.
When CYSPP data mode is active, any data received from an external host will be transmitted to the remote peer, and
any data received from the remote peer will be sent out through the hardware serial interface to the external host.

2.4.5.1 Starting CYSPP Operation

You can start CYSPP mode using any of these three methods:

1. Assert (LOW) the CYSPP pin externally, ensuring that you have also set the CP_ROLE pin to the correct logic

state for the desired GAP role. You may connect this pin to ground in hardware designs which only require
CYSPP operation and never need API communication. You can also use this pin to enter CYSPP mode even if
the CYSPP profile is disabled in the platform configuration.

2. Use the p_cyspp_start (.CYSPPSTART, ID=10/2) API command. You can use this command to enter CYSPP
mode even if the CYSPP profile is disabled in the platform configuration.

3. Have a remote GATT client connect and subscribe to the CYSPP acknowledged data characteristic (enabling
indications) or unacknowledged data characteristic (enabling notifications). This method will only enter CYSPP
mode if the CYSPP profile is enabled in the platform configuration.

When starting CYSPP mode locally using either the CYSPP pin or the p_cyspp_start (.CYSPPSTART, ID=10/2) API

command, the data pipe will not be immediately available because the remote device must still connect and set up the
proper GATT data subscriptions. If 100% data delivery is required in this context, the host should monitor the
CONNECTION pin to determine when it is safe to begin sending data from the host for BLE transmission. Once the
CONNECTION pin is asserted while the CYSPP pin is also asserted, the host may send and receive data over CYSPP.

NOTE: Externally asserting (LOW) the CYSPP pin will always begin CYSPP operation, even if the

profile has been disabled in the platform configuration via the p_cyspp_set_parameters (.CYSPPSP,
ID=10/3) API command. If you do not require CYSPP operation, you should ensure that this pin remains
electrically floating or externally de-asserted (HIGH).

2.4.5.2 Sending and Receiving Data in CYSPP Data Mode

Once you have started CYSPP mode, the EZ-Serial platform will take care of the rest of the connection process and data
pipe construction on the module side. If you are using modules running EZ-Serial firmware on both ends of the

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 19

connection, then simply start CYSPP mode with complementary roles (peripheral on one end, central on the other), and
the modules will automatically connect and prepare the data pipe using the processes described below.

A non-Cypress device such as a BLE-enabled smartphone will frequently be used for one end of the connection, and you
must configure it to follow the same procedure.

For configuration examples in each mode, refer to Section 3.2 (Cable Replacement Examples with CYSPP).

If you have configured CYSPP to operate in peripheral mode:

1. EZ-Serial will begin advertising with configured advertisement settings.

2. Upon connection, a remote peer must subscribe to one of the two ñDataò characteristics:

a. Acknowledged Data, enable indications (guaranteed reliability)

b. Unacknowledged Data, enable notifications (faster potential throughput)

3. Remote peer may optionally subscribe to the ñRX Flow Controlò characteristic, to allow the server communicate
whether it is safe to write new data or not.

4. EZ-Serial will assert the CONNECTION pin (if enabled), indicating that CYSPP is ready to send and receive

data.

5. Data pipe will remain open until the central device disconnects or unsubscribes from the data characteristic, or
the CYSPP pin is de-asserted locally.

If you have configured CSYPP to operate in central mode:

1. EZ-Serial will begin scanning with configured scan settings, searching for a connectable remote peer that
includes the CYSPP service UUID and matching connection key within its advertisement packet payload.

2. Upon identifying a suitable peer, it will initiate a connection to that peer with configured connection settings.

3. Upon connection, it will perform a remote GATT discovery to identify the relevant CYSPP service, characteristic,
and descriptor attribute handles, if you have not manually set them already with the p_cyspp_set_client_handles
(.CYSPPSH, ID=10/5) API command.

4. Upon successful completion of GATT discovery, it will subscribe to the configured data characteristic and the RX
Flow Control characteristic (if enabled). Use the client flags setting of the p_cyspp_set_parameters (.CYSPPSP,
ID=10/3) API command to control acknowledged vs. unacknowledged data and RX flow usage.

5. EZ-Serial will assert the CONNECTION pin (if enabled), indicating that CYSPP is ready to send and receive

data.

6. The data pipe will remain open until the peripheral device disconnects, or the CYSPP pin is de-asserted locally.

2.4.5.3 Exiting CYSPP Mode

Once in CYSPP mode, the API parser is logically disconnected from incoming serial data, so you will not be able to send
any commands to the module. However, you can still exit from CYSPP in two ways:

1. De-assert (HIGH) the CYSPP pin externally

2. Have the remote GATT client unsubscribe from the relevant CYSPP data characteristic (only applies when
CYSPP pin is not externally asserted)

When CYSPP operation has ended, EZ-Serial will return to command mode.

WARNING: It is not possible to use an API command to exit from CYSPP data mode, because the API

parser is not available while in this mode. If your design needs to switch between modes on demand,
include external access to the CYSPP pin so you can control the operational mode.

2.4.5.4 Customizing CYSPP Behavior for Specific Needs

While the default behavior is suitable in many cases, there are configuration settings that allow a great deal of control over
this behavior. The following list describes which options can be changed, and how to do so:

¶ CYSPP mode uses the systemôs configured UART host transport settings for sending and receiving serial data.
To change these settings, use the system_set_uart_parameters (STU, ID=2/25) API command.

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 20

¶ CYSPP mode uses the systemôs configured radio transmit power setting for all BLE communication. To change
this setting, use the system_set_tx_power (STXP, ID=2/21) API command.

¶ When operating in peripheral mode, CYSPP uses the systemôs configured advertisement parameters, including
the advertisement and scan response packet content (which may be based on the device name) and the
systemôs whitelist. To change these settings, use one or more of the following API commands:

o gap_set_adv_parameters (SAP, ID=4/23)

o gap_set_adv_data (SAD, ID=4/19)

o gap_set_sr_data (SSRD, ID=4/21)

o gap_set_device_name (SDN, ID=4/15)

¶ When operating in central mode, CYSPP uses the systemôs configured scanning and connection parameters,
including the systemôs whitelist. To change these settings, use one or more of the following API commands:

o gap_set_scan_parameters (SSP, ID=4/25)

o gap_set_conn_parameters (SCP, ID=4/27)

2.4.5.5 Understanding CYSPP Connection Keys

EZ-Serial also supports CYSPP connection keys, which improve usability in environments where multiple CYSPP-capable
devices are operating in an automated configuration. This feature allows an advertising peripheral device to broadcast an
arbitrary 4-byte value that a scanning device can filter against, searching either for a masked range of devices or a single
specific device.

CYSPP connection keys are not set in the factory default configuration; CYSPP peripheral advertisements contain a ñ0ò
key, and CYSPP central scans do not attempt to match any bits. To change this, use the p_cyspp_set_parameters
(.CYSPPSP, ID=10/3) API command, and specifically the ñlocal_keyò, ñremote_keyò, and ñremote_maskò arguments of

this command as described in the following sections.

2.4.5.6 Using the CYSPP Peripheral Connection Key

The CYSPP peripheral connection key affects only the content of the advertisement packet while the module is in an
advertising state. The CYSPP peripheral role does not include any filtering behavior; filtering is left to the scanning device
that is operating in the CYSPP central role.

When the CYSPP profile is enabled, the platform-managed advertising packet contains a special Manufacturer Data field
to hold the local connection key value. It is not stored elsewhere, such as in a GATT characteristic. This advertisement
packet field has the following structure:

Table 2-6. CYSPP Peripheral Connection Key Manufacturer Data Field Structure

Length Type Company ID Connection Key

07 FF b0 b1 b0 b1 b2 b3

The Company ID value is a 16-bit value that the Bluetooth SIG assigns to member companies that have requested them
(see resources on www.bluetooth.com for detail). The factory default value is the Cypress company identifier, 0x0131, but
you can change this with the same command used to change other CYSPP parameters. Note that both the Company ID
and the Connection Key values are broadcast in little-endian byte order.

Use the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command and enter the desired 32-bit value for the
ñlocal_keyò argument to apply a new peripheral connection key. Changes will take effect immediately, even if the module

is already advertising in the CYSPP peripheral role.

WARNING: EZ-Serial will only incorporate the CYSPP peripheral connection key into the advertising

packet if you have not enable user-defined advertisement content. If you have configured user-defined
advertisement content instead as described in Section 3.4.3 (How to Customize Advertisement and
Scan Response Data), then changing this value will have no effect. You must ensure that your user-
defined advertisement packet contains an equivalent field in order to allow scanning devices to filter
properly.

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 21

Example 1: Update CYSPP peripheral key to 0x11223344

Direction Content Effect

TXŸ .CYSPPSP,L=11223344 Apply new CYSPP configuration

ŶRX @R,000E,.CYSPPSP,0000 Response indicates success

2.4.5.7 Using the CYSPP Central Connection Key and Mask

The CYSPP central connection key affects the scanning operation that occurs when CYSPP is active in the central role
and has not yet connected to a remote peer. The central connection key has two parts:

1. remote_key ï the value used for comparison with the peripheral key from the advertisement packet

2. remote_mask ï the bitmask used to strip away any irrelevant bits from the peripheral key before comparison

In order for EZ-Serial to initiate a connection to a CYSPP peripheral device, the ñremote_keyò value must match with
advertised peripheral connection key after a logical AND operation with the ñremote_maskò value. A mask with all bits set

(ñFFFFFFFFò) will require an exact match between the two keys, while a mask with no bits set (ñ00000000 ò) will match

any device. The factory default configuration is the all-zero mask, so any CYSPP-capable peer will match. The mask
values between these two extremes provide the option to connect only to devices within specific segments of the
connection key space, much like an IP-based network. Table 2-7 below provides examples of each case.

Table 2-7. Connection Key and Mask Examples

Remote Key Remote Mask Key & Mask Result

11223344 FFFFFFFF 11223344 Connect to a device whose key is exactly ñ11223344 ò

55667788 FFFFFF00 556677 00 Connect to any device whose key begins with ñ556677ò

12345789 FFFF0000 1234 0000 Connect to any device whose key begins with ñ1234ò

18F7A9CC FFFF00FF 18F700CC Connect to any device whose key begins with ñ18F7ò and ends with ñCCò

Any 00000000 00000000 Connect to any device

Use the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command and enter the desired 32-bit values for the
ñremote_keyò and ñremote_maskò arguments to apply a new central connection key and mask. Changes to these values

will take effect immediately, even if the module is already scanning in the CYSPP central role.

NOTE: If an advertising peripheral device is broadcasting the CYSPP service UUID but does not also

have a Manufacturer Data field containing a connection key in the same advertisement packet, the
value ñ0ò will be substituted for an actual key for the purpose of filtering on the scanning device.

Example 1: Update CYSPP central key to 0x11223344 and require exact matching

Direction Content Effect

TXŸ .CYSPPSP,R=11223344,M=FFFFFFFF Apply new CYSPP configuration

ŶRX @R,000E,.CYSPPSP,0000 Response indicates success

2.4.5.8 CYSPP Configuration and Pin States

Table 2-8 below describes the relationship between the state of the CYSPP pin and the CYSPP firmware configuration
managed with the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command. Note these two key behaviors
concerning hardware control vs. software control:

¶ Asserting the CYSPP pin externally will always trigger automatic CYSPP operation in the configured role (or the
role dictated by externally driving the CP_ROLE pin). This will occur even if you have disabled the profile in

software.

¶ CYSPP data mode (where the API is suppressed and all serial data is channeled to the remote peer) ultimately
depends on the state of the CYSPP pin. EZ-Serial pulls this pin to the appropriate logic level based on internal

CYSPP state changes when CYSPP is enabled, but you can override the pulled state with an external host or
hardware design feature.

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 22

Table 2-8. CYSPP Configuration and Pin Relationship

CYSPP pin state CYSPP ñenableò
value in configuration

CYSPP Operation

Floating
(assumed default)

Disabled Inactive. All advertising, scanning, connections, GATT subscriptions, GATT
transfers, etc. occur via API commands and events. CYSPP GATT structure is still
visible to a remote client, but all data transfer on the server side must be handled by
an external host via API methods.

Enabled Idle until start. When started via the p_cyspp_start (.CYSPPSTART, ID=10/2)
API command, module will begin advertising or scanning depending on configured
role and CP_ROLE pin. API events (boot, stage changes, connections, etc.) will be
visible over UART until the CYSPP data connection is opened between the local
device and remote peer. The CYSPP pin will be pulled LOW when this occurs, at
which point the API will be suppressed and the serial interface may be used only for
CYSPP data pipe. This mode will continue until the remote host disconnects or
unsubscribes.

Autostart
(factory default)

Automatic. Same behavior as ñEnabledò case above, except CYSPP operation
begins automatically at boot time and restarts upon disconnection.

Externally driven
HIGH (de-asserted)

Disabled Inactive. All advertising, scanning, connections, GATT subscriptions, GATT
transfers, etc. occur via API commands and events. CYSPP GATT structure is still
visible to a remote client, but all data transfer on the server side must be handled by
an external host via API methods.

Enabled Idle until start, command mode retained. When started via the p_cyspp_start
(.CYSPPSTART, ID=10/2) API command, module will begin advertising or
scanning depending on configured role and CP_ROLE pin. API events (BOOT, stage
changes, connections, etc.) will be visible over UART. API communication will
continue throughout the process; CYSPP data from the remote host will never be
raw/transparent unless the host asserts the CYSPP pin.

Autostart Automatic. Same behavior as ñEnabledò case above, except CYSPP operation
begins automatically at boot time and restarts upon disconnection. API events will
continue to be visible while CYSPP pin is de-asserted (HIGH).

Externally driven
LOW (asserted)

Doesnôt matter Active regardless of firmware configuration. Automatic advertising or scanning
will begin at boot time depending on configured role and CP_ROLE pin state. API
events (boot, state changes, connections, etc.) will not be visible over UART,
because API communication is always suppressed when CYSPP pin is asserted.

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 23

2.4.5.9 CYSPP State Machine

Figure 2-4 describes the way EZ-Serial manages CYSPP operation, depending on firmware configuration and the logic
states of the CYSPP and CP_ROLE pins.

Figure 2-4. CYSPP State Machine

Peripheral Process

CYSPP pin
asserted (LOW)

CYSPP ñstartò
command sent

CYSPP autostart
enabled

CYSPP ready in
peripheral mode

Pull CP_ROLE pin to
state configured by

CYSPP ñroleò setting

CP_ROLE
pin LOW?

NO YES

Central Process

Scan for CYSPP
peripherals

Advertise

Connect to peer

Preset CYSPP
handles?

Peer connected

Client subscribed to
CYSPP data

NO

Discover services

Client subscribed to
RX flow (optional)

Discover descriptors
within CYSPP service

Disconnect

YES

Subscribe to RX flow
(if supported)

Subscribe to data
characteristic

Remote peer may start
process here if CYSPP is

enabled and module is
generally connectable

Autostart
enabled?

CYSPP ready in
central mode

YESNOCYSPP idle

Note that EZ-Serial pulls the CP_ROLE pin to the state configured by the p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

API command, but if the host or hardware design drives it to a different state, CYSPP will operate in the pin-defined state
and not the firmware-defined state.

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 24

2.5 Configuration Settings, Storage, and Protection

The EZ-Serial platform provides methods to customize its many built-in functions. Itôs important to understand how these
settings are stored and changed in different contexts to avoid unexpected behavior.

2.5.1 Factory, Boot, Runtime, and Automatic Settings

EZ-Serial implements four different ñlayersò of configuration data, each of which serves a unique purpose. Table 2-9 below
describes each type of configuration storage in detail.

Table 2-9. Configuration Setting Storage Layers

Layer Details

Factory
(FLASH)

Description:

Factory-level settings are hard-coded into the firmware image and stored in flash, and cannot be changed independently
by the user. They are used for runtime-level settings until/unless customized boot-level values exist. Using the
system_factory_reset (/RFAC, ID=2/5) API command will revert to these values.

Content:

These values contain only platform configuration settings, but no custom GATT structure definitions or value data.

Data retention during chipset reset: YES

These values are retained upon power cycles and chipset reset conditions.

Data retention during DFU: VERSION-SPECIFIC

These values may change during the DFU process if a new EZ-Serial image is loaded with updated factory default values.

Boot

(FLASH)

Description:

Boot-level settings are set by the user and stored in flash, and applied to the runtime-level area for active use when the
module boots. (If no customized boot-level settings have been set by the user, the factory-level settings are applied
instead upon first boot.) These values can be modified using API commands, and they are erased when performing a
factory reset.

Content:

These values contain both platform configuration settings and any custom GATT structure definitions. Actual GATT
characteristic values such as those written by a remote client are not included in this data.

Data retention during chipset reset: YES

These values are retained during power cycles and chipset reset conditions.

Data retention during DFU: YES

These values are retained during the DFU process. Boot-level configuration data is kept in a special ñuser dataò area of
flash, which is excluded during updates to new EZ-Serial firmware images.

Runtime
(RAM)

Description:

Runtime-level settings are used as the active configuration set that controls EZ-Serialôs behavior at all times, with a few
exceptions as noted in the ñAutomaticò section below. API commands that set or get configuration values access this layer
of configuration data unless explicitly noted otherwise.

Content:

These values contain platform configuration settings, custom GATT structure definitions, and GATT characteristic values
written from a remote client.

Data retention during chipset reset: NO

These values are not retained during power cycles and chipset reset conditions. Any runtime settings or GATT database
structure definitions should be written to flash with the relevant API command(s) before performing a reset.

Data retention during DFU: NO

These values are not retained during the DFU process, which involves a chipset reset prior to image transfer.

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 25

Layer Details

Automatic
(RAM)

Description:

Automatic settings are set by the firmware based on detected external behavior, and EZ-Serial uses these values to
augment the settings in the runtime configuration block. Currently, only one setting falls into this category:

¶ API parse mode (binary or text mode depending on initial packet byte)

Content:

These values contain a very limited subset of auto-detected configuration settings, and do not include most configuration
data or any GATT structure or value data.

Data retention during chipset reset: NO

These values are not retained during power cycles and chipset reset conditions.

Data retention during DFU: NO

These values are not retained during the DFU process, which involves a chipset reset prior to image transfer.

2.5.2 Saving Runtime Settings in Flash

Storing settings in flash memory is critical to allow predictable, long-term customized behavior without needing to
reconfigure each time. EZ-Serial provides two ways to accomplish this:

1. Use the system_store_config (/SCFG, ID=2/4) API command to write all current runtime-level settings to the
boot-level configuration. This applies a snapshot of the current configuration to flash in one step. It is simpler
than the alternative if you are unsure which settings have changed between boot-level and runtime-level values,
or if you want to test out a new set of options before making them permanent.

2. Set the ñflashò memory scope bit in the binary command packet header when writing new configuration values
with relevant commands, or append the ó$ô character to command names in text mode. This is simpler than the
alternative if you know exactly which settings need to be changed, since it does not require the final use of the
system_store_config (/SCFG, ID=2/4) API command afterward.

Note that while the flash memory scope bit (in binary mode) or ó$ô character (in text mode) may be used with any
command, doing so is only relevant for commands which either read or write configuration values directly. For other
commands, these flags will be silently ignored. See the API reference material in Chapter 7 (API Protocol Reference) for
details.

To ensure the longest flash memory life, writes to flash should be as infrequent as possible in production-ready designs.
Settings that must be changed frequently should be modified in RAM and only written to flash if required. Note, the
internal chipsets used in the EZ-BLE modules that run EZ-Serial have a minimum flash endurance rating of 100,000
cycles.

2.5.3 Protected Configuration Settings

A small number of configuration values have the potential to put the module into a state where it is no longer possible to
communicate over the serial interface as intended. While it is always possible to completely revert to factory default
values using the FACTORY_TR and CYSPP pins while booting the module, logical access to these pins for this purpose

is not always readily available, and a complete factory reset may be too disruptive for your application.

To help avoid this potential problem, a few settings are classified as protected. This means that they must be changed at

the runtime level only (RAM) before they may be applied to the boot-level (flash) area. Currently, only one commands
affects protected settings:

¶ system_set_uart_parameters (STU, ID=2/25)

The changes that are most likely to cause an unintended communication lockout come from serial transport
reconfiguration, such as selecting a baud rate that is not supported by the host. To store new values in flash for protected
configuration settings, you must either send the same command twice with the flash memory scope bit/character used
only the second time, or else use the system_store_config (/SCFG, ID=2/4) API command to write all runtime-level
settings to the boot level after first setting the new value in RAM only. This forces the flash write to occur using the new
configuration, which can only occur if communication is still possible.

 Getting Started

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 26

2.6 Where to Find Related Material

This guide refers to firmware images and example source code files that must be accessed separately from this
document.

2.6.1 Latest EZ-Serial Firmware Image

You can find the latest available EZ-Serial firmware image files on Cypressôs website:

http://www.cypress.com/documentation/software-and-drivers/ez-serial-ez-ble-module-firmware-platform

These images are suitable for both SWD interface re-flashing through PSoC Programmer and for bootloader updates over
UART or BLE. Please refer to Section 3.11 (Device Firmware Update Examples) for details about how to flash these
firmware images onto target modules.

2.6.2 Latest Host API Protocol Library

You can find the latest host API protocol library source code on Cypressôs website:

http://www.cypress.com/documentation/software-and-drivers/ez-serial-ez-ble-module-firmware-platform

2.6.3 Comprehensive API Reference

While this guide contains many specific functional examples, these are not intended to provide a full reference to all
possible functionality provided by the API. Refer to Chapter 7 (API Protocol Reference) of this document for detailed
material concerning the API structure and protocol.

http://www.cypress.com/documentation/software-and-drivers/ez-serial-ez-ble-module-firmware-platform

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 27

3. Operational Examples

EZ-Serial provides a great platform on which to build a wide variety of BLE applications. The sections below describe
many common operations that you can experiment with or combine together to create the behavior needed for your
application.

3.1 System Setup Examples

These examples demonstrate basic platform behavior and configuration of the system.

NOTE: The first example shown below provides low-level detail and explanation of some API protocol

formatting features, while all other examples assume a basic understanding of the mechanics of the
protocol and will only show example snippets in text format. For detail on the API methods used in each
case and the binary equivalents of each command, response, and event, refer to the material in
Chapter 7 (API Protocol Reference).

3.1.1 How to Identify the Running Firmware and BLE Stack Version

The EZ-Serial firmware, BLE stack, and protocol version details can be obtained from the API event generated at boot
time, or on demand using an API command.

3.1.1.1 Getting Version Details from Boot Event

Capture and process the system_boot (BOOT, ID=2/1) API event that occurs when the module is powered on or reset.
This event includes the application version, stack version, protocol version, boot cause, and unique Bluetooth MAC
address.

If the protocol parser/generator is in text mode (factory default), the system_boot (BOOT, ID=2/1) API event looks like

this:

 @E,0032,BOOT,E=0100,S=030100C2,P=0100, C=01, A=00A050E3835F

If the protocol parser is in binary mode, this event will be similar to that shown below, expressed in hexadecimal notation:

Header Payload Checksum

80 0F 02 01 00 01 C2 00 01 03 00 01 01 5F 83 E3 50 A0 00 A9

To simplify manual interpretation in this guide, individual parameters within the payload are separately underlined.

NOTE: In text mode, multi-byte integer data is expressed in big-endian notation, while in binary mode,

multi-byte integer data is transmitted in little-endian order.

The payload data in the event text/binary examples shown above is described in Table 3-1.

Table 3-1. Payload Detail for Boot Event

Text Code Text Data Binary Data Details Interpretation

E ñ0100ò 00 01 EZ-Serial application version Version 1.0

S ñ030100C2ò C2 00 01 03 BLE stack version Version 3.1.0 build 194 (0xC2)

P ñ0100ò 00 01 API protocol version Version 1.0

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 28

Text Code Text Data Binary Data Details Interpretation

C ñ01ò 01 Cause for boot event Power-cycle/XRES

A ñ00A050E3835Fò 5F 83 E3 50 A0 00 MAC address 00:A0:50:E3:83:5F

3.1.1.2 Getting Version Details On Demand

Use the system_query_firmware_version (/QFV, ID=2/6) API command to request version details at any time. The
response to this command contains the same initial information in the system_boot (BOOT, ID=2/1) API event, but it does
not include the boot cause or the moduleôs Bluetooth MAC address.

The text-mode response to this API command is as shown below:

 @R,0023,/QFV, 0000, E=0100,S=030100C2,P=0100

The binary-mode response packet is as shown below:

Header Payload Checksum

C0 0A 02 06 00 00 00 01 C2 00 01 03 00 01 33

To simplify manual interpretation in this guide, individual parameters within the payload are separately underlined.

3.1.2 How to Change the Serial Communication Parameters

Use the system_set_uart_parameters (STU, ID=2/25) API command to reconfigure the serial interface used for host
communication. This command affects protected settings, and therefore it must be applied in RAM first before it can be

written to flash.

All data entered via text mode must be expressed in hexadecimal notation. Table 3-2 lists common baud rates and their

hexadecimal equivalents:

Table 3-2. Common UART Baud Rates and Hex Equivalents

Baud Rate Hex Equivalent

1,200 4B0

2,400 960

4,800 12C0

9,600 2580

14,400 3840

19,200 4B00

28,800 7080

38,400 9600

57,600 E100

115,200 (default) 1C200

230,400 38400

460,800 70800

921,600 E1000

NOTE: EZ-Serial supports non-standard baud rates not listed in the table above, and should remain

below 3% clock error due to the use of an internal fractional clock divider. While this is within the
tolerance level required by many UART interfaces, you should measure the actual bit timing with a
scope or logic analyzer to verify that the baud rate is operating within required tolerance for your host
device.

WARNING: The USB-to-UART bridge provided by the BLE Pioneer Kitôs PSoC 5LP microcontroller

supports configurable baud rates and parity/stop bits, but does not support flow control. It is also limited
to 115200 baud to remain within typical clock tolerances. You must connect an external UART device or

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 29

MCU to the moduleôs UART data and flow control pins if you wish to use flow control or faster baud
rates. Refer to Section 2.3.2 (Connecting the Serial Interface) for detailed instructions and specific
requirements for proper functionality when connecting an external UART device to the BLE Pioneer Kit.

WARNING: Selecting a baud rate below 9600 and using API protocol communication can result in a

situation where EZ-Serial generates API response and event packets faster than the UART interface
can transmit them to the host. If this occurs, data will flow continuously out of the module, but it will not
respond to incoming commands. The most likely trigger for this situation is a scan started with
gap_start_scan (/S, ID=4/10), or auto-starting CYSPP client mode operation (which also begins a scan).
Performing a scan in a busy environment will generate scan result events rapidly and continuously.

Possible workarounds include:

 - If using CYSPP, keep the CYSPP pin externally asserted to suppress API output

 - If possible, select a faster baud rate

 - If possible, reduce the quantity of devices in the environment to decrease scan result
frequency

Example 1: Set UART to 38400 baud, even parity, flow control enabled, and store in flash

Direction Content Effect

TXŸ STU,B=9600 ,F=1,P= 2 Set new UART parameters (RAM only) ï ñ38400ò decimal is ñ9600ò hex

ŶRX @R,0009,STU,0000 Response indicates success

Change host UART parameters to match new settings here before sending additional data

TXŸ STU$ Write UART settings to flash

ŶRX @R,000A, STU$,0000 Response indicates success

Note the use of the command ñSTU$ò with no additional arguments. In text mode, most SET commands have no required

arguments, allowing you to change only the desired settings. Optional arguments that are omitted will not be modified,
because the EZ-Serial platform substitutes the current runtime values as if you had supplied all of them.

In the example above, the ñbaud,ò ñflow,ò and ñparityò settings are stored in RAM with the first command, and then the
second command writes to flash whichever runtime values are affected by the system_set_uart_parameters (STU,
ID=2/25) API command.

Example 2: Set UART to 115200 baud, no parity, flow control disabled, and store in RAM only

Direction Content Effect

TXŸ STU,B=1C200,F=0,P=0 Apply new UART parameters

ŶRX @R,0009,STU,0000 Response indicates success

3.1.3 How to Change the Device Name and Appearance

Use the gap_set_device_name (SDN, ID=4/15) API command to set a new friendly device name at any time, and the
gap_set_device_appearance (SDA, ID=4/17) API command to set a new appearance value.

EZ-Serial uses the device name and appearance to populate the GAP serviceôs name and appearance characteristic
values in the GATT database. If EZ-Serial is allowed to automatically manage the advertisement and scan response data
content (default behavior), then it will also include up to 29 bytes of the device name in the scan response packet. (The
limit of 29 bytes is due to a BLE specification limit on the maximum scan response payload, which is 31 bytes; the other
two bytes are needed for the field length and field type values that are part of the device name field.)

NOTE: EZ-Serial limits the device name length to 64 bytes to minimize internal SRAM requirements.

Using EZ-Serialôs special macro codes, described in Section 7.5 (Macro Definitions), you can enter a single text string

which is expanded internally to include module-specific valuesðin this case, the Bluetooth MAC address. This is shown in
the first example below.

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 30

The device appearance value is a 16-bit field made up of a 10-bit and 6-bit subfield. Allowed values are defined by the
Bluetooth SIG and can be found at developer.bluetooth.org.

Changes made to the device name and appearance values take effect immediately. They are written to the local GATT
characteristics for these two values (always present), and the device name is updated in the scan response packet if user-
defined advertisement content has not been enabled with the gap_set_adv_parameters (SAP, ID=4/23) API command.

Example 1: Set device name with partial MAC address incorporation

Direction Content Effect

TXŸ SDN$,N=EZ- Serial %M4:%M5:%M6 Set new device name in flash using 4th, 5th, and 6th MAC bytes (module-specific)

ŶRX @R,000A, SDN$,0000 Response indicates success

This configured name will result in an actual name of ñEZ-Serial E3:83:5Fò assuming the module in use has a MAC

address of 00:A0:50:E3:83:5F (as is used in other examples throughout this document).

Example 2: Set device appearance to ñGeneric Computerò (0x0080)

Direction Content Effect

TXŸ SDA$,A=0080 Set new appearance value in flash

ŶRX @R,000A,SDA$,0000 Response indicates success

3.1.4 How to Change the Output Power

Use the system_set_tx_power (STXP, ID=2/21) API command to set a new radio transmit power level. The argument to
this command is not the dBm value directly, but rather a set of predefined values representing a fixed range from -18 dBm
to +3 dBm. Table 3-3 lists each allowed value.

Table 3-3. Supported TX Power Output Options

Argument Power Level

1 -18 dBm

2 -12 dBm

3 -6 dBm

4 -3 dBm

5 -2 dBm

6 -1 dBm

7 (default) +0 dBm

8 +3 dBm

Changes to the configured output power will take effect immediately.

Example 1: Set output power to -6 dBm

Direction Content Effect

TXŸ STXP, P=3 Set new TX power (RAM only)

ŶRX @R,000A,STXP,0000 Response indicates success

3.1.5 How to Manage Sleep States

EZ-Serial manages transitions between active CPU and sleep states automatically. It chooses the mode requiring the
lowest safe power consumption according to the current operational state and configuration, including transitioning into
sleep mode between BLE radio events (advertising, scanning, or while connected). Table 3-4 provides a high-level
summary of the four power states used by the platform.

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 31

Table 3-4. EZ-Serial Power States

Power Mode Current Range (typical),
Vdd = 3.3 V to 5.0 V

Wakeup
Time

Description

Active 1.3 mA to 14 mA n/a CPU and all peripherals are active. All functionality possible with no delay.

Sleep 1.0 mA to 3 mA 0 CPU is asleep, BLE subsystem is asleep, all peripherals are active. This state is
only used when you have limited sleep with the system_set_sleep_parameters
(SSLP, ID=2/19) API command or enabled high-resolution PWM output using the
gpio_set_pwm_mode (SPWM, ID=9/11) API command. In these cases, standard
sleep is used at any time when deep sleep would have been used.

Deep sleep 1.3 µA to 15 µA 25 µs CPU, BLE subsystem, and UART are asleep. High-speed clocks are off. Wake-up
is possible via UART RX, GPIO interrupts, BLE stack events, or scheduled tasks.
Refer to Section 3.1.5.5 (Avoiding UART Data Loss or Corruption due to Deep
Sleep Transition) for safe wake-on-RX procedures.

Hibernate 150 nA to 1 µA 2 ms CPU, BLE subsystem, all peripherals, and all clocks are disabled. Wake-up is
possible only by de-asserting the ATEN_SHDN pin.

The ñStopò state supported by the chipset is not currently used by the EZ-Serial platform. For a detailed discussion of low-
power states in general, refer to the Cypress application note AN86233 - PSoC® 4 Low-Power Modes and Power
Reduction Techniques.

EZ-Serial uses the maximum allowed sleep level based on combined data from the system-wide sleep setting, CYSPP
data mode sleep setting (if CYSPP data mode is active), PWM output state, and LP_MODE pin state. Figure 3-1 below

describes the sleep level determination logic.

Figure 3-1. EZ-Serial Sleep State Behavior

LP_MODE
asserted?

ATEN_SHDN
asserted?

NO

YES

Hibernate

YES

Sleep disabled

Firmware Configuration

Max = DEEP SLEEP

If System < Max,
then Max = System

If CYSPP < Max and
CYSPP data pipe open,

then Max = CYSPP

NO

If Max = DEEP SLEEP and
high-res PWM active,

then Max = NORMAL SLEEP

Use final Max sleep level

Begin sleep process

Configure with

system_set_sleep_parameters

Configure with

p_cyspp_set_parameters

Control with

gpio_set_pwm_mode

In outline form, the sleep state logic follows this process:

1. If the ATEN_SHDN pin is asserted, use hibernate mode. Otherwise:

2. If the LP_MODE pin is asserted, remain in active mode. Otherwise:

3. Select the lowest value (0 = no sleep, 1 = normal sleep, 2 = deep sleep) among the following:

a. The system sleep level configured with system_set_sleep_parameters (SSLP, ID=2/19) API command.

b. The CYSPP-specific sleep level configured with the p_cyspp_set_parameters (.CYSPPSP, ID=10/3)
API command, if the CYSPP data pipe is open (connected and in CYSPP data mode).

c. Normal sleep if high-resolution PWM output is enabled with the gpio_set_pwm_mode (SPWM, ID=9/11)

API command.

http://www.cypress.com/documentation/application-notes/an86233-psoc-4-low-power-modes-and-power-reduction-techniques
http://www.cypress.com/documentation/application-notes/an86233-psoc-4-low-power-modes-and-power-reduction-techniques

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 32

NOTE: EZ-Serial does not allow changes to the sleep level calculation hierarchy order. For example, if

CYSPP sleep level is ñ2ò (deep sleep) but system-wide sleep is level ñ1ò, then the system-wide setting
will override the CYSPP setting because it is a lower value. EZ-Serial will always select the lowest
applicable value for the current operational state.

This fine-grained level of control over sleep mode selection in various operational states allows you to achieve the most
efficient power consumption supported by your application design. For example, you may allow deep sleep at all times
except when the CYSPP data pipe is open, in order to easily avoid potential initial-byte data corruption at high baud rates.
For more detail, see Section 3.1.5.5 (Avoiding UART Data Loss or Corruption due to Deep Sleep Transition).

3.1.5.1 Configuring the System-Wide Sleep Level

Configure the system-wide sleep level using the system_set_sleep_parameters (SSLP, ID=2/19) API command. When
sleep is not prevented by asserting the LP_MODE pin, this value is the first ñdefaultò sleep level limit applied when

calculating which sleep mode to use.

Active PWM output will limit the effective maximum sleep level in any state to normal sleep (value = 1) if another setting

is net even lower than this. If the CYSPP data pipe is open (connected and in CYSPP data mode), then the CYSPP-
specific sleep level may further limit the effective maximum sleep level. Refer to Figure 3-1 for a diagram showing how
EZ-Serial determines which sleep level to use.

EZ-Serial allows only normal sleep (value = 1) as the factory default system-wide sleep level, for a simpler out-of-the-box
experience concerning UART communication. However, you can change this to allow deep sleep to significantly improve

average current consumption. Ensure that your application can properly work within this mode before applying it; refer to
Section 3.1.5.5 (Avoiding UART Data Loss or Corruption due to Deep Sleep Transition) for details.

Example 1: Change system-wide sleep level to deep sleep

Direction Content Effect

TXŸ SSLP,L= 2 Set new system sleep level to ñdeep sleepò

ŶRX @R,000A,SSLP,0000 Response indicates success

Transmissions to the module now require a preceding dummy byte for wake-on-RX, or proper use of the LP_MODE pin as described in
Section 3.1.5.3 (Preventing Sleep with the LP_MODE Pin)

3.1.5.2 Configuring the CYSPP Data Mode Sleep Level

Configure the CYSPP data mode sleep level using the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command.
When sleep is not disabled using the LP_MODE pin, this value is the second limit applied when calculating which sleep

mode to use. The system-wide sleep level takes precedence over the CYSPP sleep level. Further, PWM output will limit
the effective maximum sleep level in any state to normal sleep (value = 1), regardless of other settings. Refer to Figure

3-1 for a diagram showing how EZ-Serial determines the sleep level to use.

Setting the CYSPP data mode sleep level to normal sleep (value = 1) or no sleep (value = 0) ensures that EZ-Serial

does not use a sleep level beyond that setting whenever a CYSPP data pipe is open (connected and in CYSPP data
mode). The factory default setting for this option is to allow deep sleep (value = 2), but keep in mind that factory defaults
also set the system-wide sleep level limit to normal sleep (value = 1), which prevents deep sleep at all times unless you

reconfigure it.

For using CYSPP mode in the peripheral role with legacy systems which cannot use either the LP_MODE pin or

preceding dummy bytes, one possible compromise for improved power consumption is to set the system-wide sleep level
to deep sleep and the CYSPP data mode sleep level to normal sleep. The CPU will sleep aggressively until a remote
peer opens the CYSPP data pipe, at which point the CPU will use only normal sleep so that the wired external host does

not need any special sleep/wake transition control.

Example 1: Limit CYSPP-specific sleep level to normal sleep

Direction Content Effect

TXŸ .CYSPPSP,S=1 Set new CYSPP sleep level to ñnormal sleepò

ŶRX @R,000E,.CYSPPSP,0000 Response indicates success

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 33

3.1.5.3 Preventing Sleep with the LP_MODE Pin

Assert (LOW) the LP_MODE control pin to prevent the module from sleeping under any circumstances other than a
forced shutdown via the ATEN_SHDN pin. Properly asserting and de-asserting this pin surrounding host-to-module UART

transmissions provides the most efficient power consumption while still allowing deep sleep at all other times. Refer to
Section 3.1.5.5 (Avoiding UART Data Loss or Corruption due to Deep Sleep Transition) for more detail.

NOTE: The LP_STATUS output pin provides an externally accessible signal to determine whether the

CPU is currently awake (LOW) or asleep (HIGH).

3.1.5.4 Preventing Activity with the ATEN_SHDN Pin

Assert (LOW) the ATEN_SHDN pin to force EZ-Serial into hibernation regardless of other activity, including the state of
the LP_MODE pin. In this state, the BLE subsystem, CPU, and peripheral interfaces are completely disabled. You must
de-assert the ATEN_SHDN pin in order to wake up again.

NOTE: Using the ATEN_SHDN pin to put the module into a hibernation state retains values in RAM, but

otherwise behaves like a chipset reset. De-asserting (HIGH) this pin after hibernation will result in the
generation of the system_boot (BOOT, ID=2/1) API event. Monitor the ñcauseò parameter of this event

to detect whether it occurs due to waking from hibernation or not.

WARNING: Asserting the ATEN_SHDN pin will immediately terminate any BLE communication without

cleanly disconnecting first. If you require a clean disconnection, you should use the gap_disconnect
(/DIS, ID=4/5) API command to close an active connection from an external host prior to asserting the
ATEN_SHDN pin.

For more detail concerning the LP_MODE, LP_STATUS, and ATEN_SHDN pins, refer to GPIO reference material in

Chapter 8 (GPIO Reference).

3.1.5.5 Avoiding UART Data Loss or Corruption due to Deep Sleep Transition

Allowing deep sleep provides the best average power consumption. However, because the UART peripheral cannot

operate in deep sleep mode, supporting UART communication while also allowing deep sleep requires special
consideration. It takes approximately 25 µs for the CPU to transition from deep sleep to fully awake, and any UART data
sent during this time will be lost. The UART peripheral will begin processing data on the first falling edge detected after
waking, which can result in persistent bit misalignment and incorrect data reported to the API parser, illustrated in the
figure below. The time between the A1 and A2 markers represents the CPU wake-up delay.

Figure 3-2. Deep Sleep Wake-on-RX Without Dummy Byte at 115200 Baud, 8/N/1

In the example shown in Figure 3-2, the forward slash character (ó/ô, 0x2F) contains three falling edges. The first one is the
actual start bit, but the module only begins processing UART data after the second falling edge occurs, resulting in the
following scenario:

Table 3-5. Wake-on-RX Bit Misalignment from Deep Sleep at 115200 Baud

Host transmits 0x2F (0b00101111 in LSB order) Host idle (HIGH)

Start 1 1 1 1 0 1 0 0 Stop 5-bit misalignment

5-bit misalignment Start 1 0 0 1 1 1 1 1 Stop

CPU wakes Wait for start Module receives 0xF9 (0b11111001 in LSB order)

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 34

While the above case describes one possible outcome, the exact nature of received data corruption depends on the
transmitted bytes, baud rate, and other UART parameters. Therefore, to avoid potential data loss or corruption during the
25 µs transition between Deep Sleep mode and Active mode, you must implement one of the methods described in Table
3-6 below.

Table 3-6. Deep Sleep UART Corruption Avoidance Methods

Method Advantages Disadvantages

Disable deep sleep in software by changing system sleep
parameters using the system_set_sleep_parameters
(SSLP, ID=2/19) API command, or (if using CSYPP) by
changing the CYSPP-specific sleep parameters using the
p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API
command.

Simple and effective, requires no
special consideration or behavior
on the external host.

Higher power consumption caused by
only using normal sleep mode instead
of deep sleep mode in certain
operational states.

Disable all sleep in hardware by externally asserting
(LOW) the LP_MODE pin.

Simple and effective, requires no
special consideration or behavior
on the external host or
configuration within EZ-Serial.

High power consumption caused by
constantly active CPU.

Externally assert (LOW) the LP_MODE pin at least 25 µs
prior to sending data, and only de-assert after the last
transmitted byte is fully clocked into the module.

Allows most efficient sleep state
usage with minimal overhead,
works in CYSPP data mode as
well as command mode.

Requires additional GPIO connection
between host and module, and
special application logic on the host.

Begin each transmission with one or more dummy bytes
to allow at least 25 µs for power state transition after the
first UART start bit.

Allows efficient sleep state usage
with minimal overhead, requires
no additional GPIO connection.

Requires special logic on the host,
only works reliably in command mode
where known start-of-packet bytes
allow mutually exclusive ñdummyò
byte selection. Usage in CYSPP
mode requires application tolerance of
dummy bytes randomly placed within
raw data stream if the host transmits
them while the CPU is already awake.

For the ñdummy byteò method, the UART RX wake signal begins at the start bitôs falling edge, and any data sent before
the 25 µs sleep state transition time interval will not be processed. Skipping over the calculations involved, this means you
must send:

¶ At least 1 dummy byte if the data rate is above below 416 kbaud

¶ At least 2 dummy bytes if the data rate is above 416 kbaud but below 833 kbaud

¶ At least 3 dummy bytes if the data rate is above 833 kbaud through the maximum supported 921 kbaud

Use the NULL byte (0x00) as the dummy byte, since the API parser will ignore it as a start-of-packet byte whether you are
using text mode or binary mode. Also, 0x00 always contains exactly one falling edge (the start bit) regardless of UART
parity settings.

Figure 3-3. Deep Sleep Wake-on-RX With Dummy Byte at 115200 Baud, 8/N/1

In the example shown in Figure 3-3, the CPU has fully transitioned to active mode before the host begins sending the
forward slash (ó/ô) character, allowing correct data reception into the module.

WARNING: Although the API parser will safely ignore as many 0x00 dummy bytes as the host transmits

even if the CPU is already awake, CYSPP data mode does not have this same guarantee. Since the

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 35

module may have woken already for BLE connection management purposes, a dummy byte sent in
CYSPP mode could be fully received and transmitted to the remote peer. For this reason, you should
either (1) choose a different workaround for CYSPP mode, or (2) design your application protocol to
tolerate spurious dummy bytes appearing in the data stream in case this occurs.

For reference, the follow diagram shows the wake timing at 921600 baud with three consecutive dummy bytes. The time
between the A1 and A2 markers represents the CPU wake-up delay, which extends into the middle of the third dummy
byte.

Figure 3-4. Deep Sleep Wake-on-RX With Dummy Byte at 921600 Baud, 8/N/1

3.1.6 How to Perform a Factory Reset

You can perform a factory reset using either GPIO signals or an API command.

EZ-Serial will generate the system_factory_reset_complete (RFAC, ID=2/3) API event immediately after erasing all
settings, and before performing the final module reset to boot to the factory default state. The platform generates this
event using the previously configured parser and transport mode. While this event is typically not processed by an
external host during a hardware-triggered factory reset, it helps to verify the intended flow when controlling the module via
software.

After the reset completes, the system_boot (BOOT, ID=2/1) API event will occur with the ñcauseò parameter indicating a

factory reset.

3.1.6.1 Factory Reset via Hardware GPIO Signal

To trigger a factory reset with hardware, perform the following steps:

1. Assert (LOW) the FACTORY_TR pin

2. Assert (LOW) the CYSPP pin

3. Power-cycle or reset the module

4. De-assert (HIGH) the FACTORY_TR and CYSPP pins

NOTE: The last step is necessary because the firmware will not perform the final chipset reset to apply

new settings until at least one of the two triggering pins changes to a different state. This requirement
prevents an endless loop of factory resets.

3.1.6.2 Factory Reset via API Command

To trigger a factory reset over the serial interface, use the system_factory_reset (/RFAC, ID=2/5) API command.

Example 1: Perform a factory reset

Direction Content Effect

TXŸ /RFAC Trigger factory reset

ŶRX @R,000B,/RFAC,0000 Response indicates success

ŶRX @E,0005,RFAC Event indicates factory reset completed

Short delay while chipset reset and boot process occurs, ~180 ms

ŶRX @E,0032,BOOT,E=0100,S=030100C2,P=0100, C=05, A=00A050E3835F Event indicates system has rebooted,
cause is set to 0x05 (factory reset)

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 36

3.2 Cable Replacement Examples with CYSPP

EZ-Serialôs CYSPP implementation provides a simple way to use a BLE connection to manage a bidirectional stream of
serial data. Both ends of the connection must support CYSPP, including the ability to either provide or make use of the
CYSPP GATT structure for data flow. The EZ-Serial firmware can operate as either a GAP peripheral and CYSPP server
device (typical when communicating with a smartphone) or as a GAP central and CYSPP client device (typical when
communicating with a second module running EZ-Serial firmware).

See Section 2.4.5 (Using CYSPP Mode) for a description of how CYSPP mode behaves generally and how it affects API
communication.

3.2.1 How to Get Started in CYSPP Mode with Zero Custom Configuration

The factory default configuration enables the CYSPP profile in ñauto-startò mode. With this configuration, the module
begins advertising or scanning as soon as it has power, depending on the state of the CP_ROLE pin.

If you are using the BLE Pioneer Kit for evaluation, perform the following steps:

1. Open the kit-provided COM port in your terminal software of choice, being sure to use the correct port settings. If
you have not changed any settings previously using API commands, the defaults are 115200 baud, 8 data bits,
no parity, 1 stop bit, and no flow control.

2. To use CYSPP in central/client mode, hold down the SW2 button and press and release SW1 to reboot in central
mode. You can release SW2 after the module boots; CYSPP will continue to operate as a central/client device
until it has established and subsequently close a connection.

3. Connect to the EZ-Serial module from a compatible remote peer as described in Section 2.4.5 (Using CYSPP
Mode), or activate another CYSPP-capable peripheral if running the local test module in central mode as
described in the previous step.

4. Wait for the p_cyspp_status (.CYSPP, ID=10/1) API event to appear with the LSB set indicating the data channel
is ready. The final status event should appear as one of the following:

@E,000C,.CYSPP,S=0D (running in peripheral role)

@E,000C,.CYSPP,S=2D (running in central role)

5. Send and receive data as desired.

If you are using a custom design:

1. Connect the CP_ROLE pin to either logic LOW (central) or logic HIGH (peripheral) to define the role used. If left

floating, EZ-Serial will use the role configured in firmware using the p_cyspp_set_parameters (.CYSPPSP,
ID=10/3) API command. EZ-Serial uses the peripheral role with factory default settings.

2. Connect the moduleôs UART_RX pin to the external hostôs UART_TX pin.

3. Connect the moduleôs UART_TX pin to the external hostôs UART_RX pin.

4. OPTIONAL: Assert (LOW) the CYSPP pin to force CYSPP data mode in hardware, preventing API usage or

output.

5. Apply power to the module, or reset it with the hardware reset pin.

6. If you have asserted (LOW) the CYSPP pin externally:

a. Monitor the CONNECTION pin to detect when the remote peer has connected and GATT data

subscription is complete.

b. Once the CONNECTION pin goes low, you can send and receive data from the host to the remote peer

over the moduleôs serial connection.

7. If the CYSPP pin is left floating:

a. Wait for the p_cyspp_status (.CYSPP, ID=10/1) API event to appear with the LSB set indicating the
data channel is ready. The final status event should appear as one of the following:

@E,000C,.CYSPP,S=0D (running in peripheral role)

@E,000C,.CYSPP,S=2D (running in central role)

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 37

b. Send and receive data as desired.

NOTE: If you externally de-assert (HIGH) the CYSPP pin, then EZ-Serial will never enter CYSPP data

mode even if a remote peer has connected and all CYSPP mode data pipe preparations have
completed. The remote peer may use CYSPP on its end normally, but all data transfers and status
updates will appear on the local EZ-Serial end as API events to be processed normally.

3.2.1.1 How to Start CYSPP Out of the Box in Peripheral Mode

EZ-Serialôs factory default configuration automatically starts CYSPP operation in the peripheral role after booting. To
establish a CYSPP data pipe, simply scan and connect from a remote device, then subscribe to RX flow control (optional)
and the desired acknowledged or unacknowledged data characteristic as described in Section 2.4.5.2 (Sending and
Receiving Data in CYSPP Data Mode).

A second EZ-Serial module running in CYSPP central/client mode will perform all required client-side steps automatically.

Example 1: Complete boot and CYSPP connection process in peripheral mode

Direction Content Effect

ŶRX @E,0032,BOOT,E=0100,S=030100C2,P=0100,

C=05,A= 00A050E3835F

Boot event

ŶRX @E,000E,ASC,S=01,R=03 CYSPP-triggered advertisement started

ŶRX @E,0035,C,C=04,A= 00A050421C63 ,T=00,

I=0006,L=0000,O=0064,B=00

Connection established with remote device

ŶRX @E,000C,.CYSPP,S=08 CYSPP status update (0x08):

¶ 0x08: Subscribed to RX flow control

ŶRX @E,000C,.CYSPP,S=0D CYSPP status update (0x0D):

¶ 0x08: Subscribed to RX flow control

¶ 0x04: Subscribed to unacknowledged data

¶ 0x01: Data pipe is open

Host may now send data to the module for delivery to the remote peer, received data comes from peer

3.2.1.2 How to Start CYSPP Out of the Box in Central Mode

Starting CYSPP client mode with factory default settings also requires no reconfiguration, since CYSPP mode will start
automatically. However, you must assert (LOW) the CP_ROLE pin at boot time. If you are using the BLE Pioneer Kit,
simply hold down the SW2 button while momentarily pressing the SW1 button to reset the module.

Example 1: Complete boot and CYSPP connection process in central mode

Direction Content Effect

ŶRX @E,0032,BOOT,E=0100,S=030100C2,

P=0100,C=01,A=00A050E3835F

Boot event

ŶRX @E,000E,SSC,S=01,R=03 CYSPP-triggered scan started

ŶRX @E,0062,S,R=00,A=00A050421C63,T=00,S=D1,B=00,D=

020106

110700A10C2000089A9EE21115A13333336507

FF310100000000

Scan result (advertisement fields separated for easier
interpretation)

ŶRX @E,000E,SSC,S=00,R=03 CYSPP-triggered scan stopped

ŶRX @E,0035,C,C=04,A=00A050421C63,T=00,

I=0006,L=0000,O=0064,B=00

Connection established with remote device

ŶRX @E,0029,DR,C=04,H=0001,R=0007,T=2800,P=00,U=0018 GATT discovery result (0x1800)

ŶRX @E,0029,DR,C=04,H=0008,R=000B,T=2800,P=00,U=0118 GATT discovery result (0x1801)

ŶRX @E,0045,DR,C=04,H=000C,R=0015,T=2800,P=00,

U=00A10C2000089A9EE21115A133333365

GATT discovery result (CYSPP service)

ŶRX @E,0045,DR,C=04,H=0016,R=001C,T=2800,P=00,

U=00A20C2000089A9EE21115A133333365

GATT discovery result (CYCommand service)

ŶRX @E,0010,RPC,C=04,R=060A Remote procedure complete

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 38

Direction Content Effect

ŶRX @E,0029,DR,C=04,H=000C,R=0000,T=2800,P=00,U=0028 GATT discovery result (service declaration)

ŶRX @E,0029,DR,C=04,H=000D,R=0000,T=2803,P=00,U=0328 GATT discovery result (characteristic declaration)

ŶRX @E,0045,DR,C=04,H=000E,R=0000,T=0000,P=00,

U=01A10C2000089A9EE21115A133333365

GATT discovery result (CYSPP ackôd data)

ŶRX @E,0029,DR,C=04,H=000F,R=0000,T=2902,P=00,U=0229 GATT discovery result (configuration descriptor)

ŶRX @E,0029,DR,C=04,H=0010,R=0000,T=2803,P=00,U=0328 GATT discovery result (characteristic declaration)

ŶRX @E,0045,DR,C=04,H=0011,R=0000,T=0000,P=00,

U=02A10C2000089A9EE21115A133333365

GATT discovery result (CYSPP unackôd data)

ŶRX @E,0029,DR,C=04,H=0012,R=0000,T=2902,P=00,U=0229 GATT discovery result (configuration descriptor)

ŶRX @E,0029,DR,C=04,H=0013,R=0000,T=2803,P=00,U=0328 GATT discovery result (characteristic declaration)

ŶRX @E,0045,DR,C=04,H=0014,R=0000,T=0000,P=00,

U=03A10C2000089A9EE21115A133333365

GATT discovery result (CYSPP RX flow control)

ŶRX @E,0029,DR,C=04,H=0015,R=0000,T=2902,P=00,U=0229 GATT discovery result (configuration descriptor)

ŶRX @E,0010,RPC,C=04,R=0000 Remote descriptor discovery complete

ŶRX @E,000C,.CYSPP,S=28 CYSPP status update (0x08):

¶ 0x08: Subscribed to RX flow control

ŶRX @E,000C,.CYSPP,S=2D CYSPP status update (0x0D):

¶ 0x08: Subscribed to RX flow control

¶ 0x04: Subscribed to unacknowledged data

¶ 0x01: Data pipe is open

Host may now send data to the module for delivery to the remote peer, received data comes from peer

3.3 Remote Control Examples with CYCommand

CYCommand provides a way to control EZ-Serial from a remote GATT client, using the same API protocol exposed over
the wired serial interface. This allows use cases like remote provisioning during manufacturing, and GPIO control. You
can optionally require a password and/or a specific level of encryption and bonding before a remote peer can control the
module.

The CYCommand profile also provides an optional ñsafe modeò setting, which prohibits modifications to CYCommand
settings over the remote control interface. If enabled, this prevents locking yourself out by accidentally (or intentionally)
disabling remote access. In this configuration, any reconfiguration using the p_cycommand_set_parameters (.CYCOMSP,
ID=11/1) API command must occur over the wired serial interface.

NOTE: CYCommand is enabled in factory default settings to allow remote configuration simply by
supplying power the module and connecting from any remote peer. However, safe mode is disabled,

so you can use the configuration API command remotely to disable CYCommand if desired either
immediately or after performing initial provisioning steps.

EZ-Serial implements the GATT server side of CYCommand behavior using the GATT structure detailed in Section 9.3
(CYCommand Profile).

NOTE: CYCommand access requires the module to be connectable in order for remote peers to use it.

If you enable the CYCommand profile but do not also enable connectable advertising via some other
means, then remote configuration may still be or become inaccessible.

Methods to put the module into a connectable advertising state include:

1. Use gap_start_adv (/A, ID=4/8) sent from a host to advertise on demand

2. Use gap_set_adv_parameters (SAP, ID=4/23) to auto-start advertising on boot

3. Use p_cyspp_set_parameters (.CYSPPSP, ID=10/3) to auto-start peripheral role CYSPP operation

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 39

3.3.1 How to Secure the CYCommand Profile

If you do not need to use CYCommand in your application, disable it with the p_cycommand_set_parameters
(.CYCOMSP, ID=11/1) API command. This will hide the relevant GATT attributes from remote discovery and prevent any
internal EZ-Serial application behavior that bridges CYCommand GATT operations to the API.

To retain CYCommand functionality but require one or more levels of authentication before a client can send any API
commands, use the security , challenge , and secret arguments of the p_cycommand_set_parameters

(.CYCOMSP, ID=11/1) API command. You can select any combination of challenge type and security requirements; the
API reference material for this command describes the options and behavior available with each configuration.

Example 1: Disable the CYCommand profile, store in flash

Direction Content Effect

TXŸ .CYCOMSP$,E=0 Disable CYCommand, write to flash immediately

ŶRX @R,000F,.CYCOMSP$,0000 Response indicates success

Example 2: Require CYCommand password ñcypressò, store in flash

Direction Content Effect

TXŸ .CYCOMSP$,C=1,R=63797072657373 Enable password challenge, set secret to ñcypressò (hex)

ŶRX @R,000F,.CYCOMSP$,0000 Response indicates success

3.3.2 How to Send and Receive API Commands over GATT

EZ-Serial implements the GATT server side of CYCommand behavior using the GATT structure detailed in Section 9.3
(CYCommand Profile). Figure 3-5 shows the CYCommand service structure as discovered and organized in the CySmart
application, with the three most relevant attributes highlighted.

Figure 3-5. CYCommand GATT Structure shown in CySmart Application

To use CYCommand from a client, perform the steps outlined below. These instructions assume that you have already
enabled CYCommand and placed the module into a connectable advertising state. This is the factory default state after
applying power to the module.

NOTE: While CYCommand data mode is active, you cannot send any API commands over the wired

serial interface. EZ-Serial will buffer incoming API data (up to 136 bytes) and release it for parsing only
after closing the CYCommand session. However, you can allow real-time transmission of outgoing
response and event data that occurs during a CYCommand session, using the hostout argument of

the p_cycommand_set_parameters (.CYCOMSP, ID=11/1) API command. This allows you to monitor
remote activity from a local wired host device. The factory default configuration enables both response
and event local host output during an active CYCommand session.

On the client side (smartphone, CySmart application, or another module):

1. Scan and connect to the EZ-Serial module from a client device.

2. Discover all GATT attributes, or discovery services and then all attributes within the CYCommand service.

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 40

3. Write value [02 00] (0x0002) to handle 0x001C (Client Characteristic Configuration for CYCommand Data).

This subscribes to indications on CYCommand Data, allowing the module to send response and event data
when it occurs.

4. If you have enabled a password challenge, write the password to handle 0x0018 (CYCommand Challenge).

5. Write API protocol commands as desired to handle 0x001B (CYCommand Data), and process response and

event data indicated back via the same attribute. You can use either text mode or binary mode in the same way
as you would over the wired serial interface.

Example commands to try:

a. 2F50494E470A ï system_ping (/PING, ID=2/1) in text mode

b. C00002015C ï system_ping (/PING, ID=2/1) in binary mode

c. 47444E0A ï gap_get_device_name (GDN, ID=4/16) in text mode (response comes in two packets)

d. C006090502FF000000006E ï gpio_set_drive (SIOD, ID=9/5) in binary mode, set all Port 2 pin drive

modes to high-Z digital input

e. C00109010266 ï gpio_query_logic (/QIOL, ID=9/1) in binary mode, query Port 2 logic state

On the server side (local EZ-Serial module):

The p_cycommand_status (.CYCOM, ID=11/1) API event will occur one or more times as the client performs the steps
listed above. Once the CYCommand status value has the LSB set (0x01), then the client can control the module remotely,
and EZ-Serial will disconnect the local serial interface from the API parser.

This same API event will occur one final time when the client disconnects or unsubscribes from the CYCommand Data
characteristic, indicating to the server that it can resume local control. At that moment, EZ-Serial will process any buffered
API data previously sent from the host during the active CYCommand session.

3.4 GAP Peripheral Examples

GAP peripheral operation is one of the most common use cases for BLE designs, since it is usually the simplest way to
communicate with a smartphone operating as a central device.

The Bluetooth specification defines different types of roles for the devices on each end of a BLE link:

¶ Link layer

o Master ï device which initiates a connection (always GAP central)
o Slave ï device which accepts a connection (always GAP peripheral)

¶ GAP layer

o Central ï device which initiated a connection (always LL master)
o Peripheral ï device which accepted a connection (always LL slave)
o Broadcaster ï device which is advertising in a non-connectable state
o Observer ï device which is scanning without initiating a connection

¶ GATT layer

o Client ï device which accesses data from a remote GATT server
o Server ï device which provides attribute data to be accessed remotely

Link layer roles are defined at the moment a connection is initiated based on which side initiates the connection.

The GAP layer provides four different roles, two of which involve connections (central and peripheral) and two of which
are connectionless (broadcaster and observer). The link layer and GAP layer roles are closely related, particularly when a
connection is involved.

The GATT layer role is independent of other behavior. A single device may even perform GATT duties in both the client
and server roles. A common example of this is an iOS device providing the Apple Notification Center Service as a GATT
server, even though it is connected to a peripheral device and acting as a GATT client to that device.

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 41

3.4.1 How to Advertise as Peripheral Device

Advertising is the BLE activity which allows scanning devices to observe and connect to peripherals. It is required in order
for a connection to be initiated, but it may also be done in a non-connectable way (called ñbroadcastingò). EZ-Serial
supports non-connectable broadcasting even while connected.

EZ-Serial gives you full control over when and how to advertise by using the gap_start_adv (/A, ID=4/8) API command
and the gap_set_adv_parameters (SAP, ID=4/23) API command.

When the advertising state changes, the gap_adv_state_changed (ASC, ID=4/2) API event occurs. This event includes
the new state as well as a code showing the reason why the state changed.

NOTE: If you do not have any automatic advertisement timeout set, then advertisements will continue

until you explicitly stop them or a remote device initiates a connection.

In text mode, all arguments to the gap_start_adv (/A, ID=4/8) API command are optional. Any supplied arguments will be
used only for the immediate advertisement that begins as a result of the command, while any omitted arguments will fall
back to the values configured by the gap_set_adv_parameters (SAP, ID=4/23) API command. You can see these values
at any time by using the gap_get_adv_parameters (GAP, ID=4/24) API command.

Example 1: Start advertising with preconfigured default parameters

Direction Content Effect

TXŸ /A Begin advertising with preconfigured defaults

ŶRX @R,0008,/A,0000 Response indicates success

ŶRX @E,000E,ASC,S=01,R=00 Event indicates advertising state changed to ñactiveò

Example 2: Start advertising with custom parameters

Direction Content Effect

TXŸ /A,M=2, T=2, I=64,C=7,F=0, O=1E Begin advertising with all custom arguments

ŶRX @R,0008, /A ,0000 Response indicates success

ŶRX @E,000E,ASC,S=01,R=00 Event indicates advertising state changed to ñactiveò

3.4.2 How to Stop Advertising as Peripheral Device

To explicitly stop advertising, use the gap_stop_adv (/AX, ID=4/9) API command, or open a connection to the module
from a remote BLE central device.

Example 1: Stop advertising

Direction Content Effect

TXŸ /AX Stop advertising

ŶRX @R,0009,/AX,0000 Response indicates success

ŶRX @E,000E,ASC,S=00,R=00 Event indicates advertising state changed to ñinactiveò due to user request

3.4.3 How to Customize Advertisement and Scan Response Data

You can customize the content of the main advertisement payload and scan response payload with the gap_set_adv_data
(SAD, ID=4/19) and gap_set_sr_data (SSRD, ID=4/21) API commands, respectively.

NOTE: If you intend to use user-defined advertisement content, you must explicitly enable this in the

advertisement parameters. Normally, the EZ-Serial platform manages the content in the advertisement
and scan response packets automatically based on the platform configuration, including the device
name and which profiles are enabled. If you set custom content but do not configure EZ-Serial to use
that content, advertisement and scan response payloads will remain automatically managed.

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 42

Key features and requirements for customizing data:

¶ Each of the advertisement and scan response packet payloads may have a maximum of 31 bytes. This is a BLE
specification limit.

¶ Advertisement data in both packets should follow the correct [Length, Type, Value...] format required by the

Bluetooth specification. Malformed data within advertisements can prevent proper scanning by remote devices.
The Length value does not include itself, but does include the Type byte and all bytes in the remaining Value

data.

¶ Each packet may contain as many fields as will fit in 31 bytes. Place multiple fields one right after the other with
no special separator. Since each field begins with a ñlengthò value, a scanning device is always able to properly
identify the end of each field.

¶ Advertisement packets include the Bluetooth connection address (public or random) outside of the payload data.
This does not count towards the 31-byte limit.

¶ The main advertisement packet is always transmitted while advertising. It typically includes things like
connectable flags, important supported service UUIDs, and a custom manufacturer data field. Place any data
that is critical for the remote device to see inside the main advertisement packet.

¶ The scan response packet is only transmitted when a remote device is performing an active scan. During an
active scan, the scanning device send a scan request to any discovered advertising device immediately after

receiving the main advertisement packet. The scan response packet typically includes the friendly name of the
advertising device, and occasionally also includes transmit power, more manufacturer data, or other useful but
less critical data that a remote scanning device may not need to see.

Detailed information on approved field types and their intended contents can be found the Bluetooth specification. Table
3-7 lists fields that are most commonly used:

Table 3-7. Common Advertisement Field Types

Type Description Value

0x01 Flags field ï 1 byte of data 1 byte (bitfield)

0x02 Partial list of 16-bit UUIDs for supported GATT services 2*N bytes (UUIDs)

0x03 Complete list of 16-bit UUIDs for supported GATT services 2*N bytes (UUIDs)

0x04 Partial list of 32-bit UUIDs for supported GATT services 4*N bytes (UUIDs)

0x05 Complete list of 32-bit UUIDs for supported GATT services 4*N bytes (UUIDs)

0x06 Partial list of 128-bit UUIDs for supported GATT services 16*N bytes (UUIDs)

0x07 Complete list of 128-bit UUIDs for supported GATT services 16*N bytes (UUIDs)

0x08 Shortened local name 0-29 bytes (UUIDs)

0x09 Complete local name 0-29 bytes (UUIDs)

0x0A TX power level 1 byte (dBm as signed integer)

0xFF Manufacturer data 3-29 bytes (company ID + data)

EZ-Serial does not validate advertisement or scan response payload content, nor does the underlying BLE stack. You
must ensure that any custom data within either of these packets is correctly formatted. While the module will transmit
whatever payload data is configured, scanning devices may not correctly identify your device if the data is malformed or
missing (especially the Flags field). Table 3-8 provides examples for reference:

Table 3-8. Examples of Well-Formed Advertisement Fields

Byte content Field Description

02 01 06 Length: 2 bytes

Type: Flags (0x01)

Value: LE General Discoverable Mode, BR/EDR Not Supported

05 02 09 18 0D 18 Length: 3 bytes

Type: Complete list of 16-bit UUIDs for supported GATT services (0x02)

Value: 0x1809 (Health Thermometer), 0x180D (Heart Rate)

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 43

Byte content Field Description

07 08 57 69 64 67 65 74 Length: 7 bytes

Type: Shortened local name (0x08)

Value: ñWidgetò

09 FF 31 01 AA BB CC DD EE FF Length: 9 bytes

Type: Manufacturer data (0xFF)

Value: Company ID = 0x0131 (Cypress Semiconductor)

 Data = [AA BB CC DD EE FF]

These four example fields require 25 bytes when combined, including each of the four Length values. They can be placed

in a single advertisement packet if desired:

 02 01 06 05 02 09 18 0D 18 07 08 57 69 64 67 65 74 09 FF 31 01 AA BB CC DD EE FF

Here, the shortened name is included in the same packet as the more critical information. This is uncommon, but not
prohibited. The name typically goes in the scan response packet because there it cannot fit into the advertisement packet,
but any field may be in any location as long as the scanning device knows what to expect.

Example 1: Set custom advertisement and scan response data

Direction Content Effect

TXŸ SAP,U=1 Enable user-defined advertisement and scan response content

ŶRX @R,0009,SAP,0000 Response indicates success

TXŸ SAD,D=020106 060209180D18 Set new advertisement content (RAM only), Flags and 16-bit UUID fields

ŶRX @R,0009,SAD,0000 Response indicates success

TXŸ SSRD, D=0708576964676574 Set new scan response content (RAM only), Complete local name field

ŶRX @R,000A, SSRD,0000 Response indicates success

Example 2: Set advertisement and scan response data to value similar to factory defaults

Direction Content Effect

TXŸ SAP,U=1 Enable user-defined advertisement and scan response
content

ŶRX @R,0009,SAP,0000 Response indicates success

TXŸ SAD,D=020106110700a10c2000089a9ee21115a133333365 Set new advertisement content (RAM only)

ŶRX @R,0009,SAD,0000 Response indicates success

TXŸ SSRD,D=1309455a2d53657269616c2045333a38333a3546 Set new scan response content (RAM only)

ŶRX @R,000A,SS RD,0000 Response indicates success

3.5 GAP Central Examples

Running as a GAP central allows you to scan for and connect to remote peripheral devices. You can also operate as a
GAP observer by scanning without any subsequent connection attempts. For further discussion of various link-layer, GAP,
and GATT roles, refer to the material at the beginning of Section 3.4 (GAP Peripheral Examples).

3.5.1 How to Scan for Peripheral Devices

Use the gap_start_scan (/S, ID=4/10) API command to begin scanning for devices. Scanning is not required before
initiating a connection, but doing so helps to identify potential connection targets or ensure that known or compatible
peripherals are nearby and connectable.

NOTE: If you do not have any automatic scan timeout set, then scanning will continue until you explicitly
stop it. Scanning will not automatically resume when a connection is terminated unless CYSPP is

enabled in the central role. Otherwise, you must implement this behavior in your application logic as
needed.

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 44

NOTE: You must stop scanning before you can initiate an outgoing connection to a remote peer.

Requesting a connection with gap_connect (/C, ID=4/1) while scanning will result in an error.

In text mode, all arguments to the gap_start_scan (/S, ID=4/10) API command are optional. Any supplied arguments will
be used only for the immediate scan started as a result of the command, while any omitted arguments will fall back to the
values configured by the gap_set_scan_parameters (SSP, ID=4/25) API command. You can see these values at any time
by using the gap_get_scan_parameters (GSP, ID=4/26) API command.

After you start scanning, EZ-Serial will begin generating gap_scan_result (S, ID=4/4) API events each time a new
advertisement packet is seen from a remote device. The same advertising device will generate multiple scan results until
duplicate filtering is enabled in the scan parameters.

Passive vs. Active Scanning:

¶ During a passive scan, EZ-Serial will not send scan requests to devices to ask for the ñfollow-upò scan response

packet. In this mode, each device generates only one event for each detected advertisement packet. Passive
scans use less power on average, since the transmitter remains inactive and the receiver is not intentionally re-
activated for a second time for the same device.

¶ During an active scan, EZ-Serial sends a scan request to obtain additional information from the remote

peripheral. In this mode, the BLE stack may generate two events for each device detected during a scan.
However, the remote device may not send the scan response packet, or the local device may not receive it due
to adverse RF conditions, so a second scan result event is not guaranteed. Active scans use more power that
passive scans, and result in brief transmission bursts in between receive operations.

WARNING: Due to the precise timing required by the BLE protocol and the way active scans behave, a

large number of actively scanning devices in the same vicinity can result in none of the scanning
devices successfully obtaining a scan response from an advertising device. If two or more scanning
devices transmit a scan request on the same channel within the same ~150 µs window immediately
after the main advertisement packet, the advertising device will not be able to parse the request and will
not send a response to either device. This unlikely but possible issue does not occur while performing a
passive scan.

Example 1: Start passive scanning with preconfigured default parameters

Direction Content Effect

TXŸ / S Begin scanning with preconfigured defaults

ŶRX @R,0008,/S ,0000 Response indicates success

ŶRX @E,000E,S SC,S=01,R=00 Event indicates scanning state has changed to ñactiveò due
to user request

ŶRX @E,004D,S,R=00,A=00A 050E3835E,T=00,S=D 1,

D=0201061107CA366D7D5BCC0288B14DE541D9FF652F

Event indicates scan result from 00:A0:50:E3:83:5E, normal
ad packet, RSSI -47 dBm (0xB1), Flags field and 128-bit
UUID

Example 2: Start 5-second active scan with duplicate filtering enabled

Direction Content Effect

TXŸ /S,M=2,A =1, D=1,O=5 Begin ñobservationò scanning, active mode, 5-second
timeout, duplicate filter enabled

ŶRX @R,0008,/ S,0000 Response indicates success

ŶRX @E,000E,S SC,S=01,R=00 Event indicates scanning state has changed to ñactiveò due
to user request

ŶRX @E,004D,S,R=00,A=00A 050E3835E,T=00,S=D 1,

D=0201061107CA366D7D5BCC0288B14DE541D9FF652F

Event indicates scan result from 00:A0:50:E3:83:5E, ad
packet, RSSI -47 dBm (0xB1), Flags field and 128-bit UUID

ŶRX @E,0049,S,R=04,A= 00A050E3835E,T=00,S=D 1,

D=1209426C7565666C6F772037383A46353A4236

Event indicates scan result from 00:A0:50:E3:83:5E, scan
response packet, RSSI -47 dBm, Local name field

ŶRX @E,000E,SSC,S=00,R=02 Event indicates scanning state has changed to ñstoppedò
due to configured timeout (5 seconds)

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 45

3.5.2 How to Stop Scanning for Peripheral Devices

To explicitly stop scanning, use the gap_stop_scan (/SX, ID=4/11) API command, or initiate a connection request to a
remote device using the gap_connect (/C, ID=4/1) API command.

WARNING: It is possible for additional gap_scan_result (S, ID=4/4) API events to occur between a
successful response to the ñgap_stop_scanò command and the ñgap_scan_state_changedò event
(ñSSCò in text mode), due to the brief amount of time that it takes the stack to process the request and

change states. Please ensure that your application logic will not fail in this case.

Example 1: Stop scanning

Direction Content Effect

TXŸ /SX Stop scanning

ŶRX @R,0009,/SX,0000 Response indicates success

ŶRX @E,000E,SSC,S=00,R=00 Event indicates scanning state has changed to ñinactiveò due to user request

3.5.3 How to Connect to a Peripheral Device

Use the gap_connect (/C, ID=4/1) API command to initiate a connection to a remote device based on its Bluetooth
connection address. The Bluetooth connection address (also commonly referred to as a MAC address) is a made up of
the 6-byte device address and a 1-byte value indicating the address type. To initiate a connection, the module must be in
a disconnected state (not advertising, scanning, connecting, or connected).

NOTE: At this time, the Bluetooth stack supports one active connection at a time. In order to transfer

data to and from multiple devices quickly, you must establish and tear down connections in rapid
succession. With a fast advertisement interval on peripheral devices and a fast connection interval while
connected, it is possible to perform many connect-transfer-disconnect cycles per second.

Addresses may be either public or random. Public addresses do not change, while random addresses change on some

period determined by the device employing privacy measures (typically at least every few minutes). The use of random
addresses, also called private addresses, reduces the possibility of passive profiling by a remote device. For example,
iOS devices always use random addressing for BLE operations. EZ-Serial supports both types, and uses public
addressing by default. For more information on this topic and how to configure EZ-Serial to use random addressing, see
Section 3.8.1 (How to Use Peripheral and Central Privacy).

When a BLE device initiates a connection request, it does not immediately transmit anything. Rather, it must first scan
until it receives a connectable advertisement packet from the target device. This is why a peripheral device must be in an
advertising state in order to accept a connection. The full connection process includes the following steps:

1. Target peripheral device is advertising in a connectable state

2. Central device begins scanning for advertisements from target peripheral device

3. Central device detects advertisement and responds with connection request

4. Peripheral device receives connection request and responds with connection response

5. Connection is fully established

The API command used to initiate a connection includes arguments for scan parameters, because scanning is the first
operation that the stack must perform on the GAP central device during a connection process.

Example 1: Connect to a remote device using default connection parameters

Direction Content Effect

TXŸ /C,A=00A 050E3835E Initiate connection

ŶRX @R,000D,/C ,0000 ,H=00 Response indicates success

ŶRX @E,0030,C,H=04,A= 00A050E3835E,T=00,I=0010,L=0000,O=0064 Event indicates connection opened

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 46

3.5.4 How to Cancel a Pending Connection to a Peripheral Device

Use the gap_cancel_connection (/CX, ID=4/2) API command to cancel a pending outgoing connection request. This only
applies when the connection is not yet open and you have not received the gap_connected (C, ID=4/5) API event. If you
need to close an open connection, use the gap_disconnect (/DIS, ID=4/5) API command.

Example 1: Cancel a pending connection to a remote device

Direction Content Effect

TXŸ /C X,A=00A 050E3835E Cancel pending connection

ŶRX @R,0009,/C X,0000 Response indicates success

ŶRX @E,000E,DIS ,H= 31, R=1F Event indicates connection canceled

3.5.5 How to Disconnect from a Peripheral Device

Use the gap_disconnect (/DIS, ID=4/5) API command to close an active connection to a remote device. This only applies
when the connection is already fully established, and should not be used to cancel a pending outgoing connection. In that
case, use the gap_cancel_connection (/CX, ID=4/2) API command.

Example 1: Disconnect from a remote device

Direction Content Effect

TXŸ /DIS Disconnect from peer

ŶRX @R,000A, /DIS ,0000 Response indicates success

ŶRX @E,000E, DIS ,H=04, R=16 Event indicates connection closed, reason=0x16 (intentional local closure)

3.6 GATT Server Examples

BLE data transfer operations between two connected devices most often occur through the GATT layer, with a server on
one side and a client on the other side. The GATT server makes use of a pre-defined attribute structure, which the client
may remotely discover and use as needed. The GATT server defines what data is available and how it may be accessed,
and has limited ability to push data to the client if the client has subscribed to receive these types of updates.

3.6.1 How to Define Custom Local GATT Services and Characteristics

EZ-Serial implements a dynamic GATT structure that can be modified at runtime and stored in flash. Note that the
structure itself is the part that is stored in flash; values stored within data characteristics are stored in RAM only, and do
not persist across power-cycles or resets.

The EZ-Serial platform contains a few pre-defined GATT elements in the factory default configuration. EZ-Serial requires
these for correct operation, and they cannot be removed or modified. However, additional structural elements are entirely
customizable.

A GATT structure is fundamentally made up of individual attributes, each of which has a unique numeric handle, a UUID
that is 16 bits, 32 bits, or 128 bits wide, and a value container. Attribute handles start at 1 and may go up to 0xFFFF
(65535). No two attributes may have the same handle. The gatts_create_attr (/CAC, ID=5/1) API command will
automatically choose the next available attribute handle and report the value in the response after a successful command.

UUIDs indicate the purpose of each attribute, but may be (and often are) repeated through the complete database. For
example, a database containing three services will contain three separate attributes which all have the UUID 0x2800,
which is the official ñPrimary Service Declarationò UUID defined by the Bluetooth SIG. Table 3-9 lists notable pre-defined
structural definition UUIDs from the Bluetooth SIG.

Table 3-9. Bluetooth SIG Structural UUIDs

UUID Description

0x2800 Primary Service Declaration

0x2801 Secondary Service Declaration

0x2802 Include Declaration

0x2803 Characteristic Declaration

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 47

UUID Description

0x2900 Characteristic Extended Properties

0x2901 Characteristic User Description

0x2902 Client Characteristic Configuration

0x2903 Server Characteristic Configuration

0x2904 Characteristic Format

0x2905 Characteristic Aggregate Format

Further detail on these and other official identifiers can be found on the Bluetooth SIG website.

The GATT database is made up of one or more primary services. Each primary service has a service declaration (UUID
0x2800) with a start and end range, and is made up of one or more characteristics. Each characteristic has a
characteristic declaration (UUID 0x2803), a value attribute (UUID not in the above list), and often has additional
characteristic-related descriptors in the 0x2900 range.

When defining GATT elements at runtime, you must enter each attribute in order, and you must supply exactly the right
number of attributes based on the structural declarations. In other words, if you begin with a service declaration that
indicates a start and end range of 0x20 to 0x27 (eight attributes), the structure will be invalid unless you supply all eight
attributes. You can use the gatts_verify_db (/VGDB, ID=5/3) API command at any time to perform an integrity check on
the current GATT structure. this command will identify the problem if there are any malformed, missing, or extra attributes.

WARNING: Modifications to the custom GATT structure require flash write operations, which can

potentially disrupt BLE connectivity. Therefore, you should only make changes to the GATT database
while there is no active BLE connection to avoid the possibility of a connection loss.

The dynamic GATT implementation in EZ-Serial supports the following database structure, including the fixed elements
that cannot be removed:

¶ 128 flash-stored attribute definitions (26 used in fixed structure, 102 remaining)

¶ 64 RAM-stored writable characteristic or descriptor values (2 used in fixed structure, 62 remaining)

¶ 512 bytes of flash-stored 32-bit or 128-bit UUID entries (84 bytes used in fixed structure, 428 bytes remaining)

¶ 1024 bytes of RAM-stored value data (12 used in fixed structure, 1012 bytes remaining)

Attempting to create a new custom attribute which exceeds any of these bounds will generate an error result indicating the
nature of the limitation.

For details on how to use custom GATT creation API commands to add support for Bluetooth SIG official services such as
Device Information, Health Thermometer, and others, refer to Section 10.2 (Adopted Bluetooth SIG GATT Profile
Structure Snippets) and the API reference material for gatts_create_attr (/CAC, ID=5/1).

3.6.2 How to List Local GATT Services, Characteristic, and Descriptors

Listing the local GATT structure can be helpful in certain cases, even though it is typically the remote GATT structure that
requires discovery (see Section 3.7.1, How to Discover a Remote Serverôs GATT Structure). This is especially true since
you can dynamically change the local GATT structure at runtime. EZ-Serial provides three commands for local discovery,
each of which provides output equivalent to its ñremote discoveryò counterpart.

Local discovery differs from remote discovery in two key ways:

1. Local discovery is instant and deterministic, while remote discovery is not. Remote discovery generates an
unknowable number of result events over a relatively slow BLE connection, with completion indicated via the
gattc_remote_procedure_complete (RPC, ID=6/2) API event. In contrast, local discovery returns the known result
count as part of the response to the discover request, and then generates exactly that many discovery result
events without a final ñcompleteò event (which would be redundant).

2. When discovering local descriptors, the output includes some extra information in results which is not provided
during an equivalent remote descriptor discovery process. Specifically:

a. All descriptors include the ñpropertiesò value. In remote results, this will always be 0.

https://www.bluetooth.com/specifications/assigned-numbers/generic-attribute-profile

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 48

b. Service declarations include the end handle. In remote results, this will always be 0.

c. Characteristic declarations include the value attribute handle. In remote results, this will always be 0.

3.6.2.1 Discovering Local GATT Services

Use the gatts_discover_services (/DLS, ID=5/6) API command to obtain a list of services in the local GATT database.

Example 1: Local GATT service discovery with factory default structure (no custom attributes)

Direction Content Effect

TXŸ /DLS Request to discover all local services

ŶRX @R,0011,/DLS,0000,C=000 4 Response indicates success, 4 records to follow

ŶRX @E,0024,DL,H=0001,R=0007,T=2800,P=00,U=0018 Service 0x1800, start=1, end=7

ŶRX @E,0024,DL,H=0008,R=000B,T=2800,P=00,U=0118 Service 0x1801, start=8, end=11 (0x0B)

ŶRX @E,0040,DL,H=000C,R=0015 ,T=2800,P=00,

U=00A10C2000089A9EE21115A133333365

Service 0x6533éA100, start=12 (0x0C), end=21 (0x15)

ŶRX @E,0040,DL,H=0016,R=001C ,T=2800,P=00,

U=00A20C2000089A9EE21115A133333365

Service 0x6533éA200, start=23 (0x16), end=28 (0x1C)

3.6.2.2 Discovering Local GATT Characteristics

Use the gatts_discover_characteristics (/DLC, ID=5/7) API command to obtain a list of characteristics in the local GATT
database.

Example 1: Local GATT characteristic discovery with factory default structure (no custom attributes)

Direction Content Effect

TXŸ /DL C Request to discover all local characteristics

ŶRX @R,0011,/DLC ,0000,C=000 9 Response indicates success, 9 records to follow

ŶRX @E,0024,DL,H=0002,R=0003,T=2803,P=02,U=002A Char 0x2A00, decl handle=2, value handle=3, perm=0x02

ŶRX @E,0024,DL,H=0004,R=0005,T=2803,P=02,U=012A Char 0x2A01, decl handle=4, value handle=5, perm=0x02

ŶRX @E,0024,DL,H=0006,R=0007,T=2803,P=02,U=042A Char 0x2A04, decl handle=6, value handle=7, perm=0x02

ŶRX @E,0024,DL,H=0009,R=000A,T=2803,P=22,U=052A Char 0x2A05, decl handle=9, value handle=10, perm=0x22

ŶRX @E,0040,DL,H=000D,R=000E,T=2803,P=28,

U=01A10C2000089A9EE21115A133333365

Char 0x6533éA101, decl handle=13, value handle=14,
perm=0x28

ŶRX @E,0040,DL,H=0010,R=0011,T=2803,P=14,

U=02A10C2000089A9EE21115A133333365

Char 0x6533éA102, decl handle=16, value handle=17,
perm=0x14

ŶRX @E,0040,DL,H=0013,R=0014,T=2803,P=20,

U=03A10C2000089A9EE21115A13333336 5

Char 0x6533éA103, decl handle=19, value handle=20,
perm=0x20

ŶRX @E,0040,DL,H=0017,R=0018,T=2803,P=28,

U=01A20C2000089A9EE21115A133333365

Char 0x6533éA201, decl handle=23, value handle=24,
perm=0x0A

ŶRX @E,0040,DL,H=001A,R=001B,T=2803,P=28,

U=02A20C2000089A9EE21115A133333365

Char 0x6533éA202, decl handle=26, value handle=27,
perm=0x28

3.6.2.3 Discovering Local GATT Descriptors

Use the gatts_discover_descriptors (/DLD, ID=5/8) API command to obtain a list of descriptors in the local GATT
database.

Example 1: Local GATT descriptor discovery with factory default structure (no custom attributes)

Direction Content Effect

TXŸ /DL D Request to discover all local descriptors

ŶRX @R,0011,/DLD ,0000,C=001 C Response indicates success, 28 records to follow

ŶRX @E,0024,DL,H=0001,R=0007,T=2800,P=00,U=0028 UUID 0x2800 (Primary Service), start=1, end=7

ŶRX @E,0024,DL,H=0002,R=0003,T=2803,P=02,U=0328 UUID 0x2803 (Characteristic), decl=2, value handle=3

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 49

Direction Content Effect

ŶRX @E,0024,DL,H=0003,R=0000,T=0000,P=02,U=002A UUID 0x2A00 (Device Name), handle=3, perm=0x02

Additional records omitted for brevity

ŶRX @E,0024,DL,H=0016,R=001C,T=2800,P=00,U=0028 UUID 0x2800 (Primary Service), start=26, end=31

ŶRX @E,0024,DL,H=0017,R=0018,T=2803,P=28,U=0328 UUID 0x2803 (Characteristic), decl=23, value handle=24,
perm=0x28

ŶRX @E,0040,DL,H=0018,R=0000,T=0000,P=28,

U=01A20C2000089A9EE21115A133333365

UUID 0x6533éA201 (CYCommand Challenge), handle=24,
perm=0x28

ŶRX @E,0024,DL,H=0019,R=0000,T=2902,P=0A,U=0229

UUID 0x2902 (CCCD), handle=25, perm=0x0A

ŶRX @E,0024,DL,H=001A,R=001B,T=2803,P=28,U=0328 UUID 0x2803 (Characteristic), decl=26, value handle=27,
perm=0x28

ŶRX @E,0040,DL,H=001B,R=0000,T=0000,P=28,

U=02A20C2000089A9EE21115A133333365

UUID 0x6533éA202 (CYCommand Data), handle=27,
perm=0x28

ŶRX @E,0024,DL,H=001C,R=0000,T=2902,P=0A,U=0229 UUID 0x2902 (CCCD), handle=28, perm=0x0A

3.6.3 How to Read and Write Local GATT Attribute Values

Read and write local GATT values using the gatts_read_handle (/RLH, ID=5/9) and gatts_write_handle (/WLH, ID=5/10)
API commands, respectively.

These commands work like their remote client-side counterparts, except that client-level permissions and access
restrictions do not apply. It is always possible to locally read any attribute, and always possible to local write any attribute
that supports the write operation. Some attributes, such as service and characteristic declarations, contain only constant
data (stored in flash) that is not meant to be modified with a typical GATT write command. If you intend to change the
structure of the GATT database itself, use the gatts_create_attr (/CAC, ID=5/1) and gatts_delete_attr (/CAD, ID=5/2) API
commands.

3.6.3.1 Reading Local GATT Data

You can read the value of a local attribute using the gatts_read_handle (/RLH, ID=5/9) API command. EZ-Serial will return
the current value in the response.

NOTE: User-managed attributes have no RAM-backed data storage, so there is never any data to read.

Attempting to read this type of characteristic will result in an error result in the response.

Example 1: Read local Device Name characteristic

Direction Content Effect

TXŸ /RLH,H=3 Read attribute with handle = 3

ŶRX @R,0031,/RLH,0000,

D=455A2D53657269616C2045333A38333A3546

Response indicates success, hex data is ñEZ-Serial E3:83:5Fò

3.6.3.2 Writing Local GATT Data

You can write the value of a local RAM-backed attribute using the gatts_write_handle (/WLH, ID=5/10) API command.
This command performs an in-place write over any existing data in the attribute, based on the specified offset and limited
by the maximum length of the attribute in the GATT structure.

NOTE: User-managed attributes have no RAM-backed data storage, so there is no destination for

storing written data. Attempting to read this type of characteristic will result in an error result in the
response. Also, service and characteristic declarations (0x2800 range) are stored in flash, and cannot
be changed with this command.

Writing data does not automatically push a notification or indication packet to a remote client, even if the client has
subscribed to either of these types of pushed updates. See Section 3.6.4 (How to Notify and Indicate Data to a Remote
Client) for details on how to push data.

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 50

Example 1: Write ñABCDò at beginning of local Device Name characteristic

Direction Content Effect

TXŸ / WLH,H=3,D =41424344 Write ñABCDò (hex) into attribute with handle = 3

ŶRX @R,000A,/ WLH,0000 Response indicates success

TXŸ /RLH,H=3 Read attribute with handle = 3 to verify

ŶRX @R,0031,/RLH,0000,

D=41424344 657269616C2045333A38333A3546

Response indicates success, data shows expected

modification beginning with 41424344

3.6.4 How to Notify and Indicate Data to a Remote Client

Notifying and indicating both allow a server to push updates to a client without the client specifically requesting the latest
values. These transfer mechanisms provide an efficient way to send real-time updates without constant polling from the
client side, saving power for use cases such as remote sensors or any interrupt-driven activities.

Notifications and indications both transmit data from the server to the client, but notifications are unacknowledged, while
indications are acknowledged. You can transmit multiple notifications during a single connection interval, but you can

only transmit one indication every two connection intervals (one interval for the transmission and one for the
acknowledgement).

Although the server decides when to push data to the client using these methods, the client retains ultimate control over
whether the server may transmit at all, via the use of ñsubscriptionò bits for each type of transfer. All GATT characteristics
which support either the ñnotifyò or ñindicateò operation must have a ñClient Characteristic Configuration Descriptorò
(CCCD) within the set of attributes making up the complete characteristic structure. For example, the ñService Changedò
characteristic (UUID 0x2A05) within the ñGeneric Attributeò service (UUID 0x1801) is made up of three separate attributes:

Table 3-10. Service Changed GATT Characteristic Structure

Handle UUID Description

0x0009 0x2803 Characteristic Declaration

0x000A 0x2A05 Service Change Value Attribute

0x000B 0x2902 Client Characteristic Configuration Descriptor (CCCD)

This characteristic supports the ñindicateò operation. In order for a client to subscribe to indications, it must set Bit 1 (0x02)
of the value in the CCCD. This descriptor holds a 16-bit value, so the correct operation on the client side is to write
[02 00] to handle 0x000B.

For characteristics that support the ñnotifyò operation, the correct subscription flag is Bit 0 (0x01).

Notification and indication subscriptions do not persist across multiple connections.

3.6.4.1 Notifying Data to a Remote Client

Use the gatts_notify_handle (/NH, ID=5/11) API command to notify data to a remote client. You must use a handle
corresponding to a value attribute for a characteristic for which the remote client has already subscribed to notifications by
writing 0x0001 to the relevant CCCD.

NOTE: Notifying data to a client requires an active connection.

Example 1: Notify a four-byte value to a client manually using the CYSPP Unacknowledged Data characteristic

Direction Content Effect

TXŸ / NH,H= 11,D=41424344 Notify ñABCDò (hex) via attribute with handle = 17 (0x11)

ŶRX @R,0009,/NH,0000 Response indicates success

3.6.4.2 Indicating Data to a Remote Client

Use the gatts_indicate_handle (/IH, ID=5/12) API command to indicate data to a remote client. You must use a handle
corresponding to a value attribute for a characteristic for which the remote client has already subscribed to indications by
writing 0x0002 to the relevant CCCD.

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 51

NOTE: Indicating data to a client requires an active connection.

Example 1: Indicate a start/end handle range to a client through the Service Changed characteristic

Direction Content Effect

TXŸ /IH,H=A,D=1D002500 Write 1D002500 via attribute with handle = 10 (0x0A)

ŶRX @R,0009, /IH ,0000 Response indicates success

ŶRX @E,000F,IC,C=04,H=0009 Event indicates client has confirmed receipt of data

3.6.5 How to Detect and Process Written Data from a Remote Client

Write operations from a remote GATT client will generate the gatts_data_written (W, ID=5/2) API event, containing the
handle and value data as well as the remote connection handle from the device that initiated the request. This event will
only occur if the write succeeds and was not blocked due to incorrect permissions, insufficient encryption or authentication
levels, or invalid length or offset.

If the type parameter of this event has the high bit (0x80) set, this means that you must manually respond to the write

operation with the gatts_send_writereq_response (/WRR, ID=5/13) API command. This occurs for user-managed
characteristics, or if you have globally disabled automatic write responses using the gatts_get_parameters (GGSP,
ID=5/15) API command.

NOTE: EZ-Serial does not currently implement an API event for read requests.

3.7 GATT Client Examples

EZ-Serial provides GATT client operational support through a variety of API methods. All methods described in the
sections below require an active connection to a remote peer device, and will generate an error result if attempted without
one.

3.7.1 How to Discover a Remote Serverôs GATT Structure

EZ-Serialôs remote GATT discovery methods function the same as the local discovery methods, with the addition of a
connection handle in the discovery result output. For an overview of some of the behavioral differences between local and
remote GATT discovery, refer to Section 3.6.2 (How to List Local GATT Services, Characteristic, and Descriptors).

NOTE: Remote discovery procedures often complete with a final result code of 0x060A rather than

0x0000 . This does not indicate a problem, but only means that the final internal request to find more

data in the specified start/end range yielded no further results. This is a logical indicator to the client that
it should terminate the discovery process. You can avoid this result code by specifying start and end
range values in the discovery request command, which do not result in a final search in an empty range
on the server. However, these start and end values are typically not available before performing the
discovery in the first place.

3.7.1.1 Discovering Remote GATT Services

Use the gattc_discover_services (/DRS, ID=6/1) API command to obtain a list of services in the remote GATT database
on a connected peer device.

Example 1: Remote GATT service discovery on an EZ-Serial peer device with factory default configuration

Direction Content Effect

TXŸ /DRS Request to discover all remote services

ŶRX @R,000A,/DR S,0000 Response indicates success

ŶRX @E,0029,DR,C=04,H=0001,R=0007,T=2800,P=00,

U=0018

Service 0x1800, start=1, end=7

ŶRX @E,0029,DR,C=04,H=0008,R=000B,T=2800,P=00,

U=0118

Service 0x1801, start=8, end=11 (0x0B)

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 52

Direction Content Effect

ŶRX @E,0045,DR,C=04,H=000C,R=0015,T=2800,P=00,

U=00A10C2000089A9EE21115A133333365

Service 0x6533éA100, start=12 (0x0C), end=21 (0x15)

ŶRX @E,0045,DR,C=04,H=0016,R=001C,T=2800,P=00,

U=00A20C2000089A9EE21115A133333365

Service 0x6533éA200, start=22 (0x16), end=28 (0x1C)

ŶRX @E,0010,RPC,C=04,R=060A Remote procedure complete

3.7.1.2 Discovering Remote GATT Characteristics

Use the gattc_discover_characteristics (/DRC, ID=6/2) API command to obtain a list of characteristics in the remote GATT
database on a connected peer device.

Example 1: Remote GATT characteristic discovery on an EZ-Serial peer device with factory default configuration

Direction Content Effect

TXŸ /DRC Request to discover all remote characteristics

ŶRX @R,000A,/DRC,0000 Response indicates success

ŶRX @E,0029,DR,C=04,H=0002,R=0003,T=2803,P=02,

U=002A
Char 0x2A00, decl handle=2, value handle=3, perm=0x02

ŶRX @E,0029,DR,C=04,H=0004,R=0005,T=2803,P=02,

U=012A
Char 0x2A01, decl handle=4, value handle=5, perm=0x02

ŶRX @E,0029,DR,C=04,H=0006,R=0007,T=2803,P=02,

U=042A
Char 0x2A04, decl handle=6, value handle=7, perm=0x02

ŶRX @E,0029,DR,C=04,H=0009,R=000A,T=2803,P=22,

U=052A
Char 0x2A05, decl handle=9, value handle=10, perm=0x22

ŶRX @E,0045,DR,C=04,H=000D,R=000E,T=2803,P=28,

U=01A10C2000089A9EE21115A133333365
Char 0x6533éA101, decl handle=13, value handle=14,
perm=0x28

ŶRX @E,0045,DR,C=04,H=0010,R=0011,T=2803,P=14,

U=02A10C2000089A9EE21115A133333365
Char 0x6533éA102, decl handle=16, value handle=17,
perm=0x14

ŶRX @E,0045,DR,C=04,H=0013,R=0014,T=2803,P=20,

U=03A10C2000089A9EE21115A133333365
Char 0x6533éA103, decl handle=19, value handle=20,
perm=0x20

ŶRX @E,0045,DR,C=04,H=0017,R=0018,T=2803,P=28,

U=01A20C2000089A9EE21115A133333365
Char 0x6533éA201, decl handle=23, value handle=24,
perm=0x28

ŶRX @E,0045,DR,C=04,H=001A,R=001B,T=2803,P=28,

U=02A20C2000089A9EE21115A133333365
Char 0x6533éA202, decl handle=26, value handle=27,
perm=0x28

ŶRX @E,0010,RPC,C=04,R=060A Remote procedure complete, 0x060A = no attributes found in
last search request

3.7.1.3 Discovering Remote GATT Descriptors

Use the gattc_discover_descriptors (/DRD, ID=6/3) API command to obtain a list of descriptors in the remote GATT
database on a connected peer device.

Example 1: Remote GATT descriptor discovery on an EZ-Serial peer device with factory default configuration

Direction Content Effect

TXŸ /DRD Request to discover all remote descriptors

ŶRX @R,000A,/DRD,0000 Response indicates success

ŶRX @E,0024,DR,H=0001,R=0000 ,T=2800,P=00,

U=0028

UUID 0x2800 (Primary Service), start=1

ŶRX @E,0024,DR,H=0002,R=0000,T=2803,P=00 ,

U=0328

UUID 0x2803 (Characteristic), decl=2

ŶRX @E,0024,DR,H=0003,R=0000,T=0000,P=00 ,

U=002A

UUID 0x2A00 (Device Name), handle=3

Additional records omitted for brevity

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 53

Direction Content Effect

ŶRX @E,0029,DR,C=04,H=0016,R=0000,T=2800,P=00,

U=0028
UUID 0x2800 (Primary Service), start=22

ŶRX @E,0029,DR,C=04,H=0017,R=0000,T=2803,P=00,

U=0328
UUID 0x2803 (Characteristic), decl=23

ŶRX @E,0045,DR,C=04,H=0018,R=0000,T=0000,P=00,

U=01A20C2000089A9EE21115A133333365
UUID 0x6533éA201 (CYCommand Challenge), handle=24

ŶRX @E,0029,DR,C=04,H=0019,R=0000, T=2902,P=00,

U=0229
UUID 0x2902 (CCCD), handle=25

ŶRX @E,0029,DR,C=04,H=001A,R=0000,T=2803,P=00,

U=0328
UUID 0x2803 (Characteristic), decl=26

ŶRX @E,0045,DR,C=04,H=001B,R=0000,T=0000,P=00,

U=02A20C2000089A9EE21115A133333365
UUID 0x6533éA202 (CYCommand Data), handle=27

ŶRX @E,0029,DR,C=04,H=001C,R=0000,T=2902,P=00,

U=0229
UUID 0x2902 (CCCD), handle=28

ŶRX @E,0010,RPC,C=04,R=060A Long remote procedure complete, 0x060A = no attributes
found in last search request

3.7.2 How to Read and Write Remote GATT Attribute Values

Reading and writing local GATT values may be accomplished with the gattc_read_handle (/RRH, ID=6/4) and
gattc_write_handle (/WRH, ID=6/5) API commands, respectively.

3.7.3 How to Detect Notified or Indicated Values from a Remote GATT Server

A remote GATT server may push data updates to a client at unpredictable times, if the client has subscribed to
notifications or indication on a supported remote GATT server characteristic. When this occurs, EZ-Serial generates the
gattc_data_received (D, ID=6/3) API event with the connection handle, attribute handle, and value data.

3.8 Security and Encryption Examples

EZ-Serial supports built-in Bluetooth security technologies for safeguarding sensitive data transmitted wirelessly, including
privacy and encryption.

3.8.1 How to Use Peripheral and Central Privacy

GAP privacy randomizes the Bluetooth connection address visible to remote devices in while in certain operating modes.
Use the smp_set_privacy_mode (SPRV, ID=7/9) API command to enable or disable peripheral or central privacy.
Enabling privacy in each mode causes the Bluetooth connection address used in related states to be random (private)
instead of fixed (public). This can make passive profiling by a remote observer more difficult.

Peripheral privacy affects the Bluetooth connection address broadcast during advertisements, which the remote central
device may log or use for a scan request or connection request. Central privacy affects the Bluetooth connection address
used for scan requests or connection requests when scanning for or communicating with a remote device.

Example 1: Enable peripheral and central privacy

Direction Content Effect

TXŸ SPRV$,M=3 Enable central and peripheral privacy, store in flash

ŶRX @R,000B,SPRV$,0000 Response indicates success

3.8.2 How to Bond With or Without MITM Protection

Bonding between two devices requires first generating and exchanging encryption keys and then permanently storing
encryption data along with information required to identify the bonded device and re-use the same keys again in the
future. The mechanics of pairing depend on which side (master or slave) initiates the pairing request, and the I/O
capabilities of each side.

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 54

NOTE: While the Bluetooth specification allows pairing (generation and exchange of encryption keys)

without bonding (permanent storage of encryption data), most common smartphones, tablets, and
computer operating systems require performing both at the same time if you need encryption. The
encryption-only arrangement (no bonding) is supported only between modules that support pairing
without bonding.

The Bluetooth specification provides a random passkey generation/display/comparison mechanism for preventing man-
in-the-middle (MITM) attacks during the pairing process. EZ-Serial supports pairing with or without MITM protection

enabled. The factory default settings apply the so-called ñjust worksò method, with no passkey entry and no MITM
protection. You can set local I/O capabilities with the io argument of the smp_set_security_parameters (SSBP, ID=7/11)

API command.

3.8.2.1 Understanding I/O Capabilities

The I/O capabilities of each peer involved in a pairing process affects the resulting security type (authenticated vs.
unauthenticated) and the exact nature of which events and commands must be used on each side. Table 3-11 below
describes all possible I/O arrangements and the resulting behavior and authentication level.

Table 3-11. I/O Capabilities and Pairing Behavior

 INITIATOR

RESPONDER DisplayOnly Display+YesNo KeyboardOnly NoInput+NoOutput Keyboard+Display

DisplayOnly

Just Works

(Unauthenticated)

Just Works

(Unauthenticated)

Passkey Entry:

Responder displays

Initiator inputs

(Authenticated)

Just Works

(Unauthenticated)

Passkey Entry:

Responder displays

Initiator inputs

(Authenticated)

Display+YesNo

Just Works

(Unauthenticated)

Just Works

(Unauthenticated)

Passkey Entry:

Responder displays

Initiator inputs

(Authenticated)

Just Works

(Unauthenticated)

Passkey Entry:

Responder displays

Initiator inputs

(Authenticated)

KeyboardOnly

Passkey Entry:

Initiator displays

Responder inputs

(Authenticated)

Passkey Entry:

Initiator displays

Responder inputs

(Authenticated)

Passkey Entry:

Initiator inputs

Responder inputs

(Authenticated)

Just Works

(Unauthenticated)

Passkey Entry:

Initiator displays

Responder inputs

(Authenticated)

NoInput+NoOutput

Just Works

(Unauthenticated)

Just Works

(Unauthenticated)

Just Works

(Unauthenticated)

Just Works

(Unauthenticated)

Just Works

(Unauthenticated)

Keyboard+Display

Passkey Entry:

Initiator displays

Responder inputs

(Authenticated)

Passkey Entry:

Initiator displays

Responder inputs

(Authenticated)

Passkey Entry:

Responder displays

Initiator inputs

(Authenticated)

Just Works

(Unauthenticated)

Passkey Entry:

Initiator displays

Responder inputs

(Authenticated)

The information in the above table comes from the Bluetooth Core Specification. Combinations reporting
ñunauthenticatedò do not support MITM protection mechanisms.

NOTE: Smartphones, tablets, and computers all support full Keyboard+Display I/O capabilities.

3.8.2.2 Controlling Automatic Pairing Request Acceptance

EZ-Serialôs default behavior is to accept all compatible pairing requests that come in from other devices. However, your
application may benefit from having more control over the pairing process. To change this, clear Bit 1 (0x02) of the flags

value in the smp_set_security_parameters (SSBP, ID=7/11) API command. Subsequent pairing requests will generate the

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 55

smp_pairing_requested (P, ID=7/2) API event, and you must respond with the smp_send_pairreq_response (/PR, ID=7/5)
API command to accept or reject the request.

The example below assumes that you have already connected to a remote peer device. An active connection is required
for any type of pairing operation.

Example 1: Disable automatic acceptance of incoming pairing requests, store in flash, then pair from remote peer

Direction Content Effect

TXŸ SSBP$,F=1 Clear Bit 1 (auto-accept), set Bit 0 (bonding support)

ŶRX @R,000B,SSPB$,0000 Response indicates success, stored in flash

ŶRX @E,0016,P,C=04,B=01,S=01,K=10 Event indicates incoming pairing request

TXŸ / PR,R=0 Send pairing request response with ñ0ò result (accept)

ŶRX @R,0009,/PR,0000 Response indicates success

ŶRX @E,000E,ENC,C=04,S=01 Event indicates encryption status changed

ŶRX @E,001B,B,B=04,A=00A050E3835F,T=00 Event indicates new bond entry created

ŶRX @E,000D,PR,C=04,R=00 Event indicates pairing process completed successfully

3.8.2.3 Pairing and Bonding in ñJust Worksò Mode Without MITM Protection

The simplest way to bond requires no special passkey entry or display. If your device has no input or output capabilities,
you must use this mode for pairing since MITM protection requires numeric display or entry (or both) to function correctly.

The example below assumes that you have already connected to a remote peer device. An active connection is required
for any type of pairing operation.

Example 1: Configure simple pairing without MITM protection, then initiate pairing

Direction Content Effect

TXŸ SSBP,I=3,P=0 Set ñNo Input / No Outputò I/O, no MITM protection

ŶRX @R,000A,SSPB,0000 Response indicates success

TXŸ /P , B=1,S=1,K =10 Initiate pairing request to remote peer

TXŸ @R,0008,/P,0000 Response indicates success

ŶRX @E,000E,ENC,C=04,S=01 Event indicates encryption status changed (peer accepted)

ŶRX @E,001B,B,B=04,A=00A050421C63,T=00 Event indicates new bond entry created

ŶRX @E,000D,PR,C=04,R=00 Event indicates pairing process completed successfully

3.8.2.4 Pairing and Bonding With Full I/O Capabilities and MITM Protection

If your design includes a numeric display or keypad (or both), you can enable MITM protection for improved security
during pairing. In this configuration, you must either display a passkey to the user or allow the user to enter a passkey,
depending on the exact I/O capabilities and which side initiates pairing and which side responds. See Section 3.8.2.1
(Understanding I/O Capabilities) for details.

NOTE: All API events relating to passkey entry or display use hexadecimal formatting. However, user

entry and display must use decimal format, including any necessary leading zeros for a full 6-digit value.
Ensure that your application uses decimal format for any user interactions involving the passkey.

The example below assumes that you have already connected to a remote peer device. An active connection is required
for any type of pairing operation.

Example 1: Configure keyboard+display I/O capabilities and MITM protection, then initiate pairing

Direction Content Effect

TXŸ SSBP,I= 4,P= 1 Set ñKeyboard+Displayò I/O, enable MITM protection

ŶRX @R,000A,SSPB,0000 Response indicates success

TXŸ /P , B=1,S =2,K =10 Initiate pairing request to remote peer

TXŸ @R,0008,/P,0000 Response indicates success

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 56

Direction Content Effect

ŶRX @E,0014,PKD,C=04,P=00017266 Event indicates passkey display (17266 hex = 094822 dec)

ŶRX @E,000E,ENC,C=04,S=01 Event indicates encryption status changed (peer entered key)

ŶRX @E,001B,B,B=04,A=00A050421C63,T=00 Event indicates new bond entry created

ŶRX @E,000D,PR,C=04,R=00 Event indicates pairing process completed successfully

3.8.3 How to Use Out-of-Band Pairing

EZ-Serial supports the use of out-of-band (OOB) encryption key sharing for added security during pairing with compatible
devices. Use the smp_generate_oob_data (/GOOB, ID=7/7) API command to generate OOB data based on a 16-byte
input key. You must use the same key on the remote device to generate matching OOB data in order to successfully pair
using out-of-band key exchange.

Ensure that you generate OOB data on both sides of the connection before initiating the pairing process on either side.

NOTE: EZ-Serial will always attempt to use OOB encryption data for pairing if you have set it using the

smp_generate_oob_data (/GOOB, ID=7/7) API command. If you set OOB data and then attempt to pair
with a device that does not support OOB pairing, or that does not have the correct matching key set,
pairing will always fail. To clear OOB data and revert to the standard pairing and key
generation/exchange process, either reset the module via hardware or software or use the
smp_clear_oob_data (/COOB, ID=7/8) API command.

NOTE: Most smartphones and tablets available at the time of this publication do not support out-of-

band pairing for BLE connections. The example shown here works between two Cypress BLE modules
running EZ-Serial firmware.

The example below assumes that you have already connected to a remote peer device. An active connection is required
for any type of pairing operation.

Example 1: Apply OOB key on two devices and initiate pairing

Device Direction Content Effect

#1 TXŸ /GOOB,K=00112233445566778899AABBCCDDEEFF Generate new OOB data with a 128-bit key

#1 ŶRX @R,000B,/GOOB,0000 Response indicates success

#2 TXŸ /GOOB,K=00112233445566778899AABBCCDDEEFF Generate new OOB data with a 128-bit key

#2 ŶRX @R,000B,/GOOB,0000 Response indicates success

#1 TXŸ /P,B=0,S=1,K=10 Pair without bonding, security type=1, key size=16

#1 ŶRX @R,0008,/P,0000 Response indicates success

#1 ŶRX @E,000E,ENC,C=04,S=01 Event indicates connection is encrypted

#2 ŶRX @E,000E,ENC,C=04,S=01 Event indicates connection is encrypted

#1 ŶRX @E,000D,PR,C=04,R=00 Event indicates pairing completed successfully

#2 ŶRX @E,000D,PR,C=04,R=00 Event indicates pairing completed successfully

3.8.4 How to Encrypt and Decrypt Arbitrary Data
The EZ-Serial platform exposes the internal AES encryption engine via two simple API commands to allow encryption and
decryption of arbitrary data. Use the system_aes_encrypt (/AESE, ID=2/9) API command to encrypt data, and the
system_aes_decrypt (/AESD, ID=2/10) API command to decrypt data.

The encryption and decryption processes require a 16-byte key and 13-byte nonce to initialize the engine, followed by
between 1 and 27 bytes of data to process. You must supply the key and nonce for every new operation. The combination
of all three parts of input data are transmitted in a single argument to the relevant encryption or decryption command:

¶ Bytes 0-15 = 16-byte Key

¶ Bytes 16-28 = 13-byte Nonce

¶ Bytes 29+ = Data to encrypt or decrypt

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 57

In the examples below, the text-mode input data blob is broken apart for clarity. However, the actual command requires all
data in a single non-broken command.

Example 1: Encrypting 8 bytes of cleartext data

Direction Content Effect

TXŸ / AESE,I=

00112233445566778899AABBCCDDEEFF

00000000000000000000000000

6162636465666768

Request encryption of ñABCDEFGHò data with simple key and
zero nonce value

ŶRX @R,001E,/AESE,0000,O=579827E708442D24 Response indicates success, cyphertext returned

Example 2: Decrypting 8 bytes of cyphertext data

Direction Content Effect

TXŸ /AESD,I=

00112233445566778899AABBCCDDEEFF

00000000000000000000000000

579827E708442D24

Request decryption of cyphertext data with input key/nonce
matching encryption command

ŶRX @R,001E,/AESD ,0000,O= 6162636465666768 Response indicates success, cleartext returned

3.9 Beacon Examples

EZ-Serial provides simple configuration commands for beacon broadcast management. Most BLE-based beaconing
technologies require only a specially formed advertisement packet, but implementing this manually requires additional
tracking and modification of advertising behavior and does not allow scheduled interleaving with other types of behavior
simultaneously.

3.9.1 How to Configure iBeacon Transmissions

Use the p_ibeacon_set_parameters (.IBSP, ID=12/1) API command to configure automated iBeacon broadcast packets
based on a supplied UUID and major/minor ID set.

NOTE: that the UUID supplied in the configuration command will be added to the advertisement packet

exactly as entered, with the same byte order. In contrast, the major and minor values are interpreted as
fixed-length 16-bit integers and subject to the typical rules for text and binary mode byte ordering.

Official iBeacon specifications are available from the iBeacon page on Appleôs developer website.

Example 1: Enable auto-start iBeacon broadcasting with sample IDs at 100 ms interval, store in flash

Direction Content Effect

TXŸ .IBSP $, E=02, I= 0050 , U=00112233445566778899AABBCCDDEEFF,A=1111,N=2222 Set iBeacon configuration

ŶRX @R,000C,. IBSP$,0000 Response indicates success

3.9.2 How to Configure Eddystone Transmissions

Use the p_eddystone_set_parameters (.EDDYSP, ID=13/1) API command to configure automated Eddystone broadcast
packets based on a supplied configuration set. EZ-Serial currently supports Eddystone-UID and Eddystone-URL frames,
but does not support Eddystone-TLM frames (beacon telemetry data).

Official Eddystone beacon specifications are available from Googleôs ñEddystoneò repository on Github.

Example 1: Enable auto-start Eddystone broadcasting of ñhttp://www.cypress.com/ò URL at 100 ms interval

Direction Content Effect

TXŸ .EDDYSP, I=0050 , T=1, D=0063797072647373 07 Set Eddystone configuration with scheme and encoding

ŶRX @R,000D, .EDDYSP,0000 Response indicates success

https://developer.apple.com/ibeacon/
https://github.com/google/eddystone

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 58

3.10 Performance Testing Examples

This section covers techniques to achieve optimal performance in specific contexts.

3.10.1 How to Maximize Throughput to a Remote Peer

Throughput concerns how much data you can move across a link within a specific period of time, usually expressed in
bytes per second or bits per second (8 bits per byte). In the case of BLE, the following guidelines will help improve
average throughput:

¶ Minimize the connection interval. The BLE specification allow 7.5 ms minimum connection interval. Data transfers

are specifically timed during BLE connections, and more frequent transfers mean higher potential throughput.

o When operating in the GAP central role, you can determine the connection interval when initiating the

connection with the gap_connect (/C, ID=4/1) API command, or afterwards with a connection update request
using the gap_update_conn_parameters (/UCP, ID=4/3) API command.

o When operating in the GAP peripheral role, the remote central determines the initial interval, and you must

request an update with the gap_update_conn_parameters (/UCP, ID=4/3) API command after connecting. The
remote peer (master/central device) may either accept or reject this request. Note that if the remote peer rejects
the request, it will not notify the requesting device; the only evidence of the reject will be the lack of a subsequent
gap_connection_updated (CU, ID=4/8) API event.

¶ Maximize the payload size for GATT transfers. It takes much longer to send 20 one-byte packets than one 20-byte

packet, due to the low transmission duty cycle required by the BLE protocol. If your application has five 16-bit sensor
measurement values that are used to the remote peer on the same interval, use a single characteristic to provide all
10 bytes at once rather than using five separate characteristics.

¶ Use unacknowledged transfers. You can push more unacknowledged data through in a single connection interval

than you can with acknowledged transfers. A typical acknowledged data transfer requires two full connection intervals
to complete (one for the transfer and one for the acknowledgement), but multiple unacknowledged transfers can be
used in sequence within the same intervalðup to one packet every 1.25 ms, if supported by the remote client.
Typically, standalone full-stack modules cannot buffer and process data quite this fast, but it is often possible to
achieve something near this level of throughput. Note that making this change may require additional application logic
to provide a packet delivery/retry request mechanism.

o For client-to-server transfers, use the ñwrite-no-responseò operation instead of ñwrite.ò

o For server-to-client transfers, use the ñnotifyò operation instead of ñindicate.ò

These actions will help increase the observed throughput, but will simultaneously increase power consumption. Keep this
trade-off in mind to choose the right balance between power consumption and throughput.

Example 1: Request a connection parameter update to 7.5 ms interval, no latency, 1 sec timeout

Direction Content Effect

TXŸ / UCP,I=6,L=0,O= 64 Request connection update to 7.5 ms (6 * 1.25 ms), no slave latency, 1-
second supervision timeout

ŶRX @R,000A, /UCP,0000 Response indicates success, request sent to remote peer

ŶRX @E,001D,CU,H=04,I=0006,L=0000,O=0064 Event indicates new connection parameters accepted

3.10.1.1 How to Maximize Throughput to an iOS Device

Apple devices began supporting BLE technology with the iPhone 4S and iOS 5. iOS devices have additional limitations on
top of those mandated in the Bluetooth specification.

The following additional guidelines apply for maximizing iOS throughput:

¶ When operating in the GAP central role, the latest iOS devices limit the minimum connection interval of 30 ms (or
11.25 ms when connecting to HID devices). If the peripheral requests a shorter connection interval than this, the
iOS device will reject the request.

¶ iOS devices limit unacknowledged GATT data transfers (write-no-response or notify) to a maximum of four per
connection interval, according to widespread observations.

 Operational Examples

EZ-Serial BLE Firmware Platform User Guide, Doc. No. 002-11259 Rev. *A 59

¶ iOS 5 added support for GAP peripheral role operation, which includes support for 7.5 ms intervals as required
by the Bluetooth specification. However, switching GAP roles may not be suitable depending on other application
requirements, and requires a notably different mobile app development approach with its own side effects.

Refer to the Core Bluetooth Programming Guide on the Apple Developer website for official guidelines.

Example 1: Request a connection parameter update to 30 ms interval, no latency, 1 sec timeout

Direction Content Effect

TXŸ /UCP,I=18 ,L=0,O=64 Request connection update to 30 ms (24 * 1.25 ms), no slave latency, 1-
second supervision timeout

ŶRX @R,000A,/UCP,0000 Response indicates success, request sent to remote peer

ŶRX @E,001D,CU,H=04,I=0010,L=0000,O=0064 Event indicates new connection parameters accepted

3.10.1.2 How to Maximize Throughput to an Android Device

Android devices officially began supporting BLE technology with the 4.3 release, though 4.4 and onward greatly improved
stability and supported functionality.

The following additional guidelines apply for maximizing Android throughput:

¶ Through 4.4.2, Android supported only a single connection interval of 48.75 ms.

¶ Version 4.4.3 and later support intervals down to 7.5ms when requested by the remote device, though the default
interval is still 48.75 ms when first establishing the connection.

¶ Newer android handsets allow up to six unacknowledged GATT transfers in a single connection interval.

3.10.2 How to Minimize Power Consumption

You can reduce power consumption by making the BLE radio active as infrequently as your application allows. The
specific actions described in this section will help decrease average consumption, but will also decrease potential
throughput. Keep this trade-off in mind to choose the right balance between power consumption and throughput.

3.10.2.1 How to Minimize Power Consumption While Broadcasting

To reduce power consumption in an advertising state:

¶ Maximize the advertisement interval while broadcasting. The BLE specification allows advertising at any interval

between 20 ms and 10240 ms. Increasing the interval means fewer transmissions within a given time period. For
example, a device advertising at 500 ms will use roughly 20% of the power required by that same device advertising
at 100 ms. Use the gap_set_adv_parameters (SAP, ID=4/23) API command to change the default advertisement
interval, or the gap_start_adv (/A, ID=4/8) API command to use a non-default interval at the moment you enter an
advertising state.

Side effects:

o Scanning devices are less likely to detect each advertisement packet, due to the reduced probability of the
scanning device actively receiving on the same channel at the same time as the advertisement transmission
occurs.

o Connections may take longer to establish, since this process begins with the same scanning process and
requires detection of a connectable advertisement packet from the target device.

¶ Donôt use all three advertisement channels. The BLE spectrum dedicates three channels to advertisement

packets, spread across the 2.4 GHz Bluetooth RF spectrum to help ensure reception in busy RF environments. Most
BLE devices advertise on all three channels, but you can selectively advertise on only one or two of these channels
using the gap_set_adv_parameters (SAP, ID=4/23) or gap_start_adv (/A, ID=4/8) API commands. Advertising on only
one channel requires roughly 33% of the power needed when using all three.

Side effects:

o Scanning devices are less likely to detect advertisement packets for the same reason as aboveðthere are
fewer advertisement packets being transmitted, which reduces the probability of actively receiving on the
correct channel at the correct time.

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html

