Table of Contents

1. Introduction ... 4
 1.1 Purpose ... 4
 1.2 Definitions, Acronyms and Abbreviations ... 4
 1.3 Document Overview .. 4

2. Control Theory .. 5
 2.1 Structure of a 3-Phase PMSM ... 5
 2.2 FOC Principle ... 6
 2.3 FOC Control Structure .. 7
 2.4 Hall Sensor Introduction .. 8
 2.5 Sensor-less Introduction .. 10

3. System Scope .. 11

4. Hardware Design .. 12

5. Software Design .. 13
 5.1 Firmware File Structure ... 13
 5.2 Control Implementation .. 14
 5.2.1 Peripherals in Firmware .. 14
 5.2.2 Interrupts in Firmware .. 15
 5.2.3 Control Process Flow .. 17

6. Results ... 18
 6.1 Current Waveform with Sensor-less Control 18
 6.2 Current Waveform with 3 Hall Sensor Control 19
 6.3 Lock Rotor .. 20

Figures

Figure 2-1: Structure of a 3-Phase PMSM ... 5
Figure 2-2: Brush DC Motor De-coupled Control .. 6
Figure 2-3: The Coupled Magnetic Flux of a PMSM 6
Figure 2-4: FOC Control Diagram with Hall Sensor 7
Figure 2-5: FOC Control Diagram without Sensor ... 8
Figure 2-6: Hall Sensor Electrical Status Change Process 8
Figure 2-7: Three Hall Sensor’s Electrical Logical Combination 9
Figure 2-8: Rotor Angle Calculated by Hall Edge Trigger Interrupt 9
Figure 2-9: Back-EMF Voltage Wave Vary with Rotor Phase Angle 10
Figure 3-1: System Whole Structure .. 11
Figure 4-1: System Hardware Structure ... 12
Figure 5-1: Firmware File Structure .. 13
Figure 5-2: Firmware Structure in Project ... 13
Figure 5-3: Interrupt Trigger Process .. 16
Figure 5-4: ADC and MFT Interrupt in Motor Control 17
Figure 5-5: System Run Machine State ... 17
Figure 6-1: Motor Phase Current Wave at 360rpm without Hall Sensor Control 18
Figure 6-2: Motor phase current in 4000rpm without sensor control 19
Figure 6-3: Motor phase current at 360rpm with 3 hall sensor control 19
Figure 6-4: Motor phase current at 4000rpm with 3 hall sensor control 20
Figure 6-5: Motor phase current wave when add lock load with hall sensor at 1000rpm 20
Figure 6-6: Motor Phase Current Wave when Add Lock Load without Hall Sensor at 1000rpm 21
Tables

Table 5-1: Peripherals Used in Firmware ... 14
Table 5-2: Interrupt Function Used in Firmware ... 15
Table 6-1: Motor Parameter in the Test Platform ... 18
1. Introduction

1.1 Purpose

This document describes low voltage 3-phase BLDC/PMSM control on S6E1A1 MCU, including whole system scope, hardware design, software design and test result.

1.2 Definitions, Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW</td>
<td>Hardware, at this document it means Invertor platform hardware board</td>
</tr>
<tr>
<td>FW</td>
<td>Firmware</td>
</tr>
<tr>
<td>I/O</td>
<td>Input and output</td>
</tr>
<tr>
<td>MFT</td>
<td>Multi-Function Timer</td>
</tr>
<tr>
<td>LVBP</td>
<td>Low Voltage 3-Phase BLDC/PMSM</td>
</tr>
</tbody>
</table>

1.3 Document Overview

The rest of document is organized as the following:

Section 2 explains Control.
Section 3 explains System Scope.
Section 4 explains Hardware Design.
Section 5 explains Software Design.
Section 6 explains Results.
2. Control Theory

2.1 Structure of a 3-Phase PMSM

A 3-phase PMSM is mainly composed of two parts: the stator and the rotor.

At stator side, the 3-phase windings are coiled on the stator core. The windings of 3 phases are separately placed by the rule of 120 degrees angle to generate a round rotating magnetic field (Fs) when a 3-phase AC current goes through the 3 phase windings. The separated 3-phase winding placed by the rule of 120 degrees angle is named as 3-phase symmetric winding.

At rotor side, one or more pairs of permanent magnetic poles are mounted to offer a constant rotor magnetic field (Fr).

Figure 2-1: Structure of a 3-Phase PMSM

Because Fs is a rotating magnetic field, the Fr will be dragged and follow the Fs. If the Fr cannot catch up with Fs, the rotor will rotate continuously. If the 3-phase current in 3-phase windings disappears, the Fs will disappear at the same time, and the rotor will also stop.
2.2 FOC Principle

Brush DC motor is a conventional DC motor with a long history. A big advantage of the brush DC motor is that its torque control and magnetizing control are decoupled, which makes brush DC motor is easy to control. The brush DC motor de-coupled control is shown in below figure.

![Figure 2-2: Brush DC Motor De-coupled Control](image)

The magnetizing is controlled by magnetizing current \(i_f\), and the torque control is controlled by torque current \(i_a\). The direction of the magnetizing magnetic field is parallel with d-axis (vertical direction), and the direction of the torque magnetic field is parallel with q-axis (horizontal direction). So these two magnetic fields do not influence each other. That is to say, it is decoupled between the 2 magnetic fields and motor’s magnetizing and torque can be adjusted individually. For example, the torque control formula is \(T_e = C_m\phi i_a\), which means torque is only controlled by torque current \(i_a\).

The condition of PMSM motor control is much more complex than a brush DC motor. The magnetic field of a 3-phase symmetry winding is a coupled magnetic field. We can discover the complex coupled relationship from the torque control formula.

![Figure 2-3: The Coupled Magnetic Flux of a PMSM](image)
From the expression of T_e, it is easy to understand that the torque is determined by all 3-phase inductances (including self-inductance and mutual-inductance) and currents. Obviously, the torque control seems much more complex than a brush DC motor.

Coordinate transformation is just the way to simplify the PMSM torque control. By coordinate transformation, a PMSM control model is converted from A-B-C coordinate to d-q coordinate. The torque control formula is also converted into d-q coordinate, the formula is:

$$T_e = \frac{3}{2} n_p \psi_d I_q \quad (3.1.1 - 2)$$

The simple formula in d-q coordinate makes the PMSM torque control as easy as a brush DC motor.

2.3 FOC Control Structure

From the explanation above, the key of FOC is to make the torque control of PMSM as easy as a DC brush motor through a motor rotor magnetic field orientation technology. In the technology, the coordinate transformation method turns the motor module from the u-v-w coordinate to the rotational d-q coordinate, and the d-q coordinate rotational speed is the same as the stator magnetic field rotational speed. Then the control of a PMSM is simplified and the control performance is almost the same as a DC brush motor.

Some PID regulators are added to adjust the motor output according to the given input. By setting different PID parameters, system gets different dynamic and static performance.

SVPWM technology is applied to accept the driving voltage in $\alpha-\beta$ coordinate and output a set of switching instruction to control the 6 switches in full bridge inverter.

Position and speed estimator is used to observe the real time motor speed by the motor driving voltage and current. The estimated motor speed compares with the reference speed, and the compare result acts as the input of the speed PI regulator. The estimated rotor position angle is used by the coordinate transformation unit.

Motor’s position can be got from physical feedback sensor signal: encoder or hall sensor. On the other hand, it only can be estimated by a firmware sensor less observation module. In this design note, it includes both ways to get the position information.

Figure 2-4: FOC Control Diagram with Hall Sensor
2.4 Hall Sensor Introduction

Hall sensor can sense PMSM/BLDC’s rotor’s position. 2 Hall sensors can check rotor’s 4 point position and 3 Hall sensors can check 6 point position in one electrical cycle. Hall sensor is installed in motor’s stator. It is an independent physical component.

Hall sensor signal has only 2 statuses: high level and low level. Its change process is shown in Figure 2-6.

Figure 2-6: Hall Sensor Electrical Status Change Process

Three hall sensors have 6 statuses by logical combine. It is shown in Figure 2-7.
Hall sensor signals are connected to MCU’s I/O port. Once the status changed, interrupt will occur and the firmware module will calculate the rotor’s position and speed. The process is as shown in figure 2-8.

Figure 2-8: Rotor Angle Calculated by Hall Edge Trigger Interrupt

\[\theta_{\text{rotor}} = \theta_{\text{correct}} + \omega_{\text{rad}} \times t \]

- \(\theta_{\text{correct}} = \theta_{\text{hall}} \)
- \(\omega_{\text{rad}} \) is the rate of rotation in radians per second.
- \(t \) is the time in seconds.

0 degree \(\rightarrow \) 360 degree

\(\theta_{\text{correct}} = \theta_{\text{hall}} \)

: Hall ISR trigger

: 6 positions was known by hall interrupt
2.5 Sensor-less Introduction

Motor’s position also can be got from the Back-EMF when there is no sensor installed in motor. To make the low voltage platform more compatible, one basic rotor position observation method is introduced in this solution. Back-EMF on α and β axis voltage wave is shown in Figure 2-9.

![Figure 2-9: Back-EMF Voltage Wave Vary with Rotor Phase Angle](image)

Rotor position can be calculated in every PWM interrupt time:

$$e_\alpha = \text{LPF}(V_\alpha - R_s i_\alpha - L \frac{di_\alpha}{dt})$$

$$e_\beta = \text{LPF}(V_\beta - R_s i_\beta - L \frac{di_\beta}{dt})$$

$$\theta_e = \arctan \frac{e_\alpha}{e_\beta}$$

The LPF is a one order low pass filter. As filter is used in the calculation process, angle θ_e must have a litter phase delay compared with the real rotor position. Offset angle need to be added on the calculated angle.

$$\theta_{e\text{correct}} = \theta_e + \theta_{\text{offset}}$$

Inner R_s can be checked by “Stator Resistor Check” module and L can be checked by inductor component.

After the Back-EMF angle was calculated, if the hall interrupts happen, angle table can be replaced by value $\theta_{e\text{correct}}$ at high speed.
3. System Scope

This chapter describes the driving system of 3-phase permanent magnet synchronous motor. The system structure and driving performance is shown below.

Figure 3-1: System Whole Structure

- S6E1A1 is the target controller with configured 40MHZ main clock
- Motor can work with hall sensor or sensor-less ways.
- The following is the whole system specification
 - Auto hall sensor phase angle detect.
 - Wide speed range: 360rpm ~ 4000rpm.
 - Input voltage range from 24V to 48V. Max current: 3A.
 - Carrier wave frequency can be changed on line.
 - All protect function implementation.
 - Rapid speed acceleration up to 2000rpm/s
 - Field-weaken do not implement in this system.
 - Accurate speed controlling with less than 1% target error.
- Firmware development environment
 - Windows XP or later
 - IAR 7.3
4. **Hardware Design**

For documents about hardware, please refer to hardware design application note.

Here gives some specification about hardware.

- DC-DC power supply
- Three-shunt current sample
- Support J-LINK connection
- Combine hall sensor interface (HA, HB, HC, 5V, GND)
- IPM for motor drive

Hardware system connection is shown as Figure 4-1.

Figure 4-1: System Hardware Structure
5. Software Design

This chapter describes motor control implementation. Firmware version, firmware structure and control process are explained respectively.

5.1 Firmware File Structure

The following figure shows firmware file structure.

Figure 5-1: Firmware File Structure

Firmware contains three sub-folders: folder code, folder config and folder editor. All source codes are stored in folder code including head-files and c-source files. Configuration files and MCU description files are stored in folder config. Double click on file “fm0_lowvoltagebldc.eww” to open project.

- **Code Folder Introduction**

 Source codes are divided into five different types by function and stored in five different folders. Five layers are named “global”, “driver”, “module”, “app” and “user” respectively.

Figure 5-2: Firmware Structure in Project

Global layer is empty.
Driver layer stores MCU header file and macro definition files.
Module layer stores independent functions.
App layer is related to actual project. Function in this folder is changeable depending on different system.
User layer is open to customer for configuration and debugging.

5.2 Control Implementation

This chapter explains peripherals and interrupts used in firmware firstly, and then control process flow.

5.2.1 Peripherals in Firmware

All peripherals used in firmware are configured in “init_mcu.c” stored in folder “s05_user”.
Details on peripheral initialization can refer to MCU datasheets.

<table>
<thead>
<tr>
<th>Peripherals</th>
<th>Function in firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td>clock</td>
<td>Configure system main clock and bus clock</td>
</tr>
<tr>
<td>NVIC</td>
<td>Enable or disable interrupts, configure priorities</td>
</tr>
<tr>
<td>base timer</td>
<td>Measure the width of hall signal to calculate motor current speed</td>
</tr>
<tr>
<td>Adc</td>
<td>Be used to sample phase current, ADC unit 0 is being used.</td>
</tr>
<tr>
<td>Multi-function timer (MFT)</td>
<td>Generate PWM signals to control 3 half-bridge to drive motor running.</td>
</tr>
<tr>
<td>Watch dog</td>
<td>Reset MCU when program goes wrong</td>
</tr>
</tbody>
</table>

- **Clock setting**
 - SCM_CTL: System clock mode control.
 - BSC_PSR: Base clock mode control.
 - APBC0_PSR: APB0 prescaler register.
 - APBC1_PSR: APB1 prescaler register.
 - APBC2_PSR: APB2 prescaler register.

- **NVIC setting**
 - NVIC_SetPriority(IRQn, x): priority setting
 - NVIC_EnableIRQ(IRQn): enable priority.
 - IRQn: irq number.
 - X: indicate priority number

- **Base timer setting**
 - PWC function is selected in this firmware.
 - TMCR: Timer control register.
 - STC: Status control register.
 - DTBF: Data Buffer control

- **Adc setting**
 - Scan interrupt is enabled in this firmware, priority mode interrupt is not used.
 - ADCR: AD control register.
 - ADSR: AD status register.
 - SCCR: Scan conversion control.

- **MFT setting**
 - FRT, OCU, WFG and ADCMP is used in this firmware.
 - Configuration details can refer to MCU datasheet.
FRT selects up and down count mode. Complementary output of WFG with dead-time is selected.

- Watch dog setting
 - WdogControl: Software watchdog timer control register.
 - WDG_CTL: Hardware watchdog timer control register.

5.2.2 Interrupts in Firmware

The following table shows interrupts being used in system. Function “InitMcu_Nvic()” in “init_mcu.c” is for interrupt control.

More details about interrupt control can refer to document “Cortex-M0 Technical Reference Manual”

Table 5-2: Interrupt Function Used in Firmware

<table>
<thead>
<tr>
<th>Interrupt type</th>
<th>Function in firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-function timer zero match interrupt</td>
<td>FOC algorithm is executing in this interrupt.</td>
</tr>
<tr>
<td>ADC scan interrupt</td>
<td>It is for DC voltage and three-phase current sampling. Triggered by MFT zero matching.</td>
</tr>
<tr>
<td>Multi-function timer DTIF interrupt</td>
<td>It is for hardware over-current protection.</td>
</tr>
<tr>
<td>Software watchdog interrupt</td>
<td>When software watchdog overflow, motor stops running.</td>
</tr>
<tr>
<td>Base timer hall capture interrupt</td>
<td>It is for capture hall sensor signal edge change.</td>
</tr>
</tbody>
</table>

For priority setting, the less the digit is, the higher the priority is.

- NVIC_SetPriority(ADC0_IRQn, 1)
- NVIC_SetPriority(FRT0_ZERO_IRQn, 2)

ADC0_IRQn priority is higher than FRT_ZERO_IRQn through above setting.

MFT and ADC interrupt execution illustration is shown below. MFT and ADC interrupt includes all functions about motor controlling.

MFT and ADC interrupts is triggered every PWM cycle.

Base timer interrupt is triggered by hall sensor edge change.
Figure 5-3: Interrupt Trigger Process

MFT0 counter

Driving signal

1 ADC0 scan interrupt for sample

2 MFT0-FRT zero match

Hall A

Hall B

Hall C

Base timer interrupt trigger
5.2.3 Control Process Flow

Because of higher priority the ADC interrupt is than MFT zero-match, basic control theory is shown below. The main flow about control process contains three primary parts: ADC interrupt, MFT interrupt and main function.

Figure 5-4: ADC and MFT Interrupt in Motor Control

Figure 5-5: System Run Machine State
6. Results

All results are based on a BLDC motor. Control system will run it with sensor and sensor-less mode. Motor parameters are listed on table below.

<table>
<thead>
<tr>
<th>Motor parameters</th>
<th>max</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase current(peak)</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Speed range</td>
<td>360-4000</td>
<td>rpm</td>
</tr>
<tr>
<td>Ld</td>
<td>0.65</td>
<td>mh</td>
</tr>
<tr>
<td>Lq</td>
<td>0.85</td>
<td>mh</td>
</tr>
<tr>
<td>Rs</td>
<td>0.5</td>
<td>Ω</td>
</tr>
<tr>
<td>Ke</td>
<td>2.8</td>
<td>Vrms/krpm</td>
</tr>
<tr>
<td>Pole pairs</td>
<td>2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

6.1 Current Waveform with Sensor-less Control

360rpm and 4000rpm current waveform under sensor control mode is shown below.

Motor’s phase current peak value is less than 190mA. Speed is very stable at low speed. System reached the low speed running requirement.
From the test wave, it can be seen that the motor run at the max speed is very stable and current enveloping is much smooth. Actually, it also can reflect the noise is also much low indirectly.

6.2 Current Waveform with 3 Hall Sensor Control

360rpm and 4000rpm current waveform with hall sensor control is shown below.

Figure 6-3: Motor phase current at 360rpm with 3 hall sensor control
From the test wave, it can be seen that the motor’s phase current at 4000rpm is not better than the sensor-less solution. Because the position calculation result is different: one is from the physical hall sensor and the other is estimated based on the sampled current and Back-EMF. So the harmonic and noise of hall sensor are much worse than sensor-less solution at high speed.

6.3 Lock Rotor
Figure 6-5: Motor phase current wave when add lock load with hall sensor at 1000rpm
Figure 6-6: Motor Phase Current Wave when Add Lock Load without Hall Sensor at 1000rpm

- Increase load: Current become large quickly
- Add load again: speed decrease and current become large
- Release load: current become small
- Rotor locked by heavy load: fault alarm will happen to stop motor
Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document.

Copyright © 2014 Spansion. All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse™, ORNAND™ and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.