© Cypress Semiconductor Corporation, 2015-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
1. Introduction

Scope of This Document

This application note describes the below products:

<table>
<thead>
<tr>
<th>Series</th>
<th>Product Number (Not Including Package Suffix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB9AF110K Series</td>
<td>All products</td>
</tr>
</tbody>
</table>

1.1 Overview

The FM3 washing machine board is intended to aid the user in the rapid evaluation and development of washing machine motor control applications using FM3 Series MCUs which are embedded with ARM Cortex-M3 core. This Board is targeted to control Permanent Magnet Synchronous Motors or BLDC that are widely employed in washing machine.

Hardware version: schematic v0.3.1, board v0.3.1

Figure 1 provides the block diagram of the board.

Figure 1. Block Diagram
1.2 Features

This board is composed of many elements. The key features of the solution board are listed as below:

AC power stage:
- 220VAC ± 15% input compatible
- On-board EMI filter and in-rush limiter
- 15A/800V rectifier module

Inverter stage:
- Three-phase Intelligent Power Module (IPM) with a power rating of 600V/15A
- Phase current sense resistor for dual shunt vector control
- Over-current protection

Input / Output:
- One hall sensor input connector (J5)
- Two UART connectors (J2 and J9), share the same UART module
- Programming and debug interface:
 - JTAG via 6-pin connector (J8)
2. Getting Started

2.1 Board Elements

The Washing Machine Board comprises four main parts:

- **EMI filter and In-rush Limiter**
 In order to suppress the common mode noise and in-rush current, the board employs EMI filter and in-rush limiter before rectifier module.

- **Rectifier Module and Power Module Stage**
 The rectifier module converts the AC voltage to full wave voltage. Then, it goes through the DC capacitor and provides DC power to the inverter power module.

- **SMPS**
 This board adopts the transformer-less SMPS to provide 5V power to the control unit and 15V power to the driver unit of power module.

- **MCU and User Interface**
 This solution supports MB9AF110K series MCUs. The board provides some dedicated interfaces for washing machine application, for example: UART for data communication between drive board and top board, and hall sensor input interface. The board can be used to drive the washing machine directly.

Figure 2. Top View of the Board
2.2 User Interface

This board uses the following components to interact with user. Figure 3 shows the position of the related components.

- **LED**
 One LED(DT3) is used to indicate 5V.

- **Isolated UART port**
 There are two isolated UART connectors, sharing only one UART port.

- **Debugging port**
 The 6-pin connector(J8) is for JTAG connecting.

- **Hall sensor input port**
 The board provides a hall sensor input connector(J5). This board supports three-phase hall sensor.

- **Motor Connectors**

Figure 3. User Interfaces
Table 1 collects the connectors.

<table>
<thead>
<tr>
<th>Number</th>
<th>Component Designator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J9</td>
<td>UART connector</td>
</tr>
<tr>
<td>2</td>
<td>J2</td>
<td>Isolated UART connector</td>
</tr>
<tr>
<td>3</td>
<td>J5</td>
<td>Hall sensor connector</td>
</tr>
<tr>
<td>4</td>
<td>J8</td>
<td>JTAG connector</td>
</tr>
<tr>
<td>5</td>
<td>D3</td>
<td>Power supply indicator</td>
</tr>
<tr>
<td>6</td>
<td>J1</td>
<td>AC mains connector</td>
</tr>
</tbody>
</table>

2.3 Connection Sequence

The recommended connection sequence is listed below. The user should ensure that the following sequence is met before connecting the system to the AC mains and a motor.

1. Connect J1 to the AC mains with a 10A cable.
2. Connect J5 to the hall sensor connector of the motor.
3. Connect J2 to the motor phases respectively.
4. Connect the J-Link to the JTAG port (J8) on board and connect J-Link to host computer via USB cable.

Note:

Please make sure the AC mains power is isolated power if trying to debug with computer!

2.4 System Connection

Figure 4 shows the system connection for debugging.

![Figure 4. System Connection](image-url)
2.5 Pin Assignment of Connector

2.5.1 UART0 Connector J9

Table 2 lists pins of J9.

Table 2. Pin Assignment of J9

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>RX</td>
<td>Data input</td>
</tr>
<tr>
<td>3</td>
<td>TX</td>
<td>Data output</td>
</tr>
<tr>
<td>4</td>
<td>5V</td>
<td>Power supply</td>
</tr>
</tbody>
</table>

2.5.2 UART1 connector J2

Table 3 lists pins of J2

Table 3. Pins of J2

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HOST_TXD</td>
<td>Isolated data output</td>
</tr>
<tr>
<td>2</td>
<td>HOST_VCC</td>
<td>Isolated VCC</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>Not connected</td>
</tr>
<tr>
<td>4</td>
<td>HOST_GND</td>
<td>Isolated Ground</td>
</tr>
<tr>
<td>5</td>
<td>HOST_RXD</td>
<td>Isolated data input</td>
</tr>
</tbody>
</table>

2.5.3 Hall Sensor Connector J5

Table 4 lists pins of J5

Table 4. Pins of J5

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>5V</td>
</tr>
<tr>
<td>2</td>
<td>HA</td>
<td>Phase A of Hall sensor</td>
</tr>
<tr>
<td>3</td>
<td>HB</td>
<td>Phase B of Hall sensor</td>
</tr>
<tr>
<td>4</td>
<td>HC</td>
<td>Phase C of Hall sensor</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>
2.5.4 JTAG Connector J8

Table 5 lists pins of J8

Table 5. Pins of J8

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>5V</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>TDI</td>
<td>JTAG data input of target CPU</td>
</tr>
<tr>
<td>4</td>
<td>TMS</td>
<td>JTAG mode set input of target CPU</td>
</tr>
<tr>
<td>5</td>
<td>TCK</td>
<td>JTAG clock to target CPU</td>
</tr>
<tr>
<td>6</td>
<td>TDO</td>
<td>JTAG data from target MCU</td>
</tr>
</tbody>
</table>
3. Hardware

3.1 Amplifier Circuit for Phase Current

This solution employs two shunt resistors to measure the phase current of a motor. Accordingly, two channel of amplifier are needed to extend the range of current waveform and lift the middle point of current waveform from ground to 2.5V.

Figure 5 shows the detail of amplifier circuit.

![Amplifier Circuit](image)

Figure 5. Amplifier Circuit

Compute the voltage of current waveform as follow:

\[
U_{out} = 2.5 + \left(\frac{R_{142}}{R_{129}} \right) \cdot U_{in}
\]

Where:

- \(U_{out} = \) amplified voltage
- \(U_{in} = \) voltage between shunt resistor
3.2 Over-current Protection Circuit

To prevent the damage to the IPM caused by the unexpected huge current. The system needs over-current protection circuit Figure 6 to detect the current surge.

Figure 6. Over-Current Projection Circuit

\[
U_{out} = \frac{1}{3} \times \left(\frac{R_{148}}{R_{147} + R_{148}} \right) \times \left(\frac{R_{146}}{R_{145}} + 1 \right) \times U_{nu} (U_{nv} or U_{nw})
\]

Where:

- \(U_{out} \) = voltage to fault pin of IPM
- \(U_{nu}, U_{nv}, U_{nw} \) = voltage between shunt resisters

As mentioned in the specification of IPM, the self-protection function will be trigged if the voltage on the fault pin is higher than 0.5V. Then, it is easy to calculate and adjust the threshold value that trigs the over-current protection.
4. Additional Information

For more Information on Cypress semiconductor products, visit the following websites:

English version address:
http://www.cypress.com/cypress-microcontrollers

Chinese version address:
http://www.cypress.com/cypress-microcontrollers-cn

Please contact your local support team for any technical question

America: http://www.cypress.com/cypress-solutionsnetwork

Other: http://www.cypress.com/spansionsupport
5. Revision History

Document Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Issue Date</th>
<th>Origin of Change</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>02/01/2015</td>
<td>BOZH</td>
<td>Initial Release</td>
</tr>
<tr>
<td>*A</td>
<td>06/14/2016</td>
<td>BOZH</td>
<td>Migrated Spansion guide “MB9AF111K_AN706-00097-E” to Cypress format</td>
</tr>
</tbody>
</table>