Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.
1 Introduction

Systems that are dependent on an energy harvesting solution must be designed for a low-power operation based on an energy budget calculation because the amount of energy from the energy harvester such as indoor solar cell is very small.

1.1 Energy Harvesting System

S6AE101A/2A/3A is a power management IC (PMIC) for energy harvesting operated with super-compact solar cells. Figure 1 shows an example of an energy harvesting system with S6AE101A/2A/3A.

Because the energy from a harvester is limited, it should be stored in a capacitor (C_{VSTORE}). A large-value capacitor would take too much time to store the energy into the capacitor; this means that the system cannot be operated frequently. On the other hand, if the capacitor were too small, enough energy cannot be stored on the capacitor for the application block. Therefore, the sizing of the capacitor is very important.

This PMIC has a power gating switch, SW1, for the application block. Once the VSTORE1 pin voltage reaches the VOUT maximum voltage (V_{VOUTH}), the path between the VSTORE1 pin and the VOUT1 pin is connected by the SW1 until the VSTORE1 pin voltage reaches the VOUT minimum voltage (V_{VOUTL}) (see Figure 2).

This PMIC has a switch, SW2, for charging the capacitor efficiently. After starting up the internal circuit of the PMIC, the path between the VDD pin and the VSTORE1 pin is connected by the SW2. When the VSTORE1 pin voltage reaches the V_{VOUTH}, the SW2 disconnects the path. When the VSTORE1 pin voltage reaches the input power reconnect voltage (V_{VOUTM}), the SW2 reconnects the path (see Figure 2).

For more information, see S6AE101A, S6AE102A, and S6AE103A datasheets.
2 Energy Calculation for Energy Harvesting

2.1 Calculation of Energy Consumption

First of all, the voltage \(V_{\text{APP_IN}}\), the current \(I_{\text{APP_IN}}\), and the operation time \(t_{\text{APP_IN}}\) of APP_IN pin in the application block are measured (see Figure 3 and Figure 4). The energy consumption in the application is calculated from Equation 1.

\[
E_{\text{APP_IN}} \left[\mu J \right] = V_{\text{APP_IN}} \times I_{\text{APP_IN}} \times t_{\text{APP_IN}}
\]

However, when checking the waveform of \(V_{\text{APP_IN}}\) and \(I_{\text{APP_IN}}\) in the Figure 4, the waveform is divided into three parts, (1), (2), and (3). Therefore, the energy consumptions of each part should be calculated, and then three energy consumptions are added together.

\[
E_{(1)} = V_{(1)} \times I_{(1)} \times t_{(1)} = 3.28 \, [V] \times 1 \, [mA] \times 5 \, [ms] = 16.4 \, [\mu J]
\]

\[
E_{(2)} = V_{(2)} \times I_{(2)} \times t_{(2)} = 3.15 \, [V] \times 3 \, [mA] \times 20 \, [ms] = 189.0 \, [\mu J]
\]

\[
E_{(3)} = V_{(3)} \times I_{(3)} \times t_{(3)} = 2.80 \, [V] \times 10 \, [mA] \times 1 \, [ms] = 28.0 \, [\mu J]
\]

In this example, the energy consumption for the application block is calculated as 233.4 \(\mu J\).

\[
E_{\text{APP_IN}} = E_{(1)} + E_{(2)} + E_{(3)} = 16.4 \, [\mu J] + 189.0 \, [\mu J] + 28.0 \, [\mu J] = 233.4 \, [\mu J]
\]
2.2 Calculation of Capacitance

Next, the capacitance is calculated based on the energy consumption of the application. Figure 5 shows the capacitor in the system.

The energy stored on a capacitor is calculated by Equation 2 (E: Energy [J], C: capacitance [F], V: Voltage [V]).

\[E = \frac{1}{2} CV^2 \]

Calculation of \(C_{\text{VSTORE1}} \)

The VOUT maximum voltage \((V_{\text{VOUTH}}) \) and the VOUT minimum voltage \((V_{\text{VOUTL}}) \) of S6AE101A/2A/3A are set by changing the external resistances. As a premise, the recommended operating voltage range for the application block is set from 1.8 V to 3.6 V. Then, \(V_{\text{VOUTH}} \) is set to 3.3 V and \(V_{\text{VOUTL}} \) is set to 2.0 V within the range. The stored energy from \(V_{\text{VOUTL}} \) to \(V_{\text{VOUTH}} \) is the available energy for the application. \((E_{\text{AVAILABLE}}: \text{Available energy, see Figure 5}) \). \(E_{\text{AVAILABLE}} \) should be larger than the \(E_{\text{APP_IN}} \) (233.4 µJ). (Equation 3 is derived from Equation 2)

\[E_{\text{AVAILABLE}} = \frac{1}{2} \times C_{\text{VSTORE1}} \times (V_{\text{VOUTH}}^2 - V_{\text{VOUTL}}^2) \]

\[233.4 \, \mu\text{J} = \frac{1}{2} \times C_{\text{VSTORE1}} \times (3.3 \, [V]^2 - 2.0 \, [V]^2) \]
$C_{VSTORE1} = 67.8 \, \mu F \rightarrow 100 \, \mu F$

In this example, the capacitance of $C_{VSTORE1}$ should be larger than 67.8 μF. Moreover, at least 100-μF or larger capacitor is required for this PMIC (see the recommended operating conditions in S6AE101A, S6AE102A, and S6AE103A datasheets). The capacitance is set to 100 μF in this example.

Note:

The calculated capacitance in this example is the ideal value. There is a wide difference between an actual capacitance and a capacitance described in a datasheet. Also, there is a potential for a decrease in a capacitance by DC bias characteristics and temperature characteristics. When selecting a capacitor, please check datasheets for each manufacturer and check the actual capacitances under actual use conditions.

The type of capacitors and the characteristics for the energy harvesting are shown in Table 1. Ceramic capacitors with low leakage current are suitable for energy the harvesting.

<table>
<thead>
<tr>
<th>Type of Capacitor</th>
<th>Capacitance Range</th>
<th>Benefit</th>
<th>Drawback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic capacitor</td>
<td>0.1 μF to 470 μF</td>
<td>Low leakage current (nA), Small size, Low cost</td>
<td>Small capacitance</td>
</tr>
<tr>
<td>Aluminum electrolytic capacitor</td>
<td>0.1 μF to 1.5 F</td>
<td>High capacitance, Low cost</td>
<td>High leakage current (μA)</td>
</tr>
<tr>
<td>Tantalum electrolytic capacitor</td>
<td>33 nF to 6 mF</td>
<td>Low leakage current (nA), High capacitance</td>
<td>High cost</td>
</tr>
<tr>
<td>Electric double-layer capacitor (e.g., Supercapacitor)</td>
<td>Up to 50 F</td>
<td>Ultrahigh capacitance</td>
<td>High leakage current (μA)</td>
</tr>
</tbody>
</table>

2.3 **Calculation of Charging Time**

The parameters for calculating charging time for the capacitor are shown in Figure 6.

Figure 6. Calculating the Parameters for Charging Time

This calculation assumes that the power from a solar cell (P_{SOLAR}) is 200 μW. The charge power ($P_{VSTORE1}$) to be supplied to the VSTORE1 pin capacitor ($C_{VSTORE1}$) is the value P_{SOLAR} minus the power consumption ($V_{VOUTH} \times I_{QIN1}$) of the PMIC (Equation 4). Values of consumption current 1 (I_{QIN1}) of S6AE101A/2A/3A are shown in Table 2. In this example, the value of S6AE101A is used.

Equation 4

$$P_{VSTORE1} = P_{SOLAR} - (V_{VOUTH} \times I_{QIN1}) = 200 \, [\mu W] - (3.3 \, [V] \times 0.25 \, [\mu A]) = 199.2 \, [\mu W]$$
Table 2. Consumption Current 1 (I\text{QIN1})

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Consumption Current 1 (I\text{QIN1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6AE101A</td>
<td>250nA</td>
</tr>
<tr>
<td>S6AE102A</td>
<td>280nA</td>
</tr>
<tr>
<td>S6AE103A</td>
<td></td>
</tr>
</tbody>
</table>

Calculation of Initial Charging Time (t\text{CHARGE})

The capacitor is charged from 0 V to \(V_{\text{OUT}}\) at the time of initial charging. The initial energy (\(E_{\text{INITIAL}}\)) is calculated by Equation 2:

\[
E_{\text{INITIAL}} = \frac{1}{2} \times C_{\text{VSTORE1}} \times V_{\text{OUT}}^2
\]

\[
E_{\text{INITIAL}} = \frac{1}{2} \times 100 \, [\mu\text{F}] \times 3.3 \, [\text{V}]^2
\]

\[
E_{\text{INITIAL}} = 544.5 \, [\mu\text{J}]
\]

Equation 5 is derived from Equation 1 (E: Energy [J], P: Power [W], and t: time [s]). Equation 6 for the charging time is derived from Equation 5.

Equation 5 \(E = (V \times I) \times t = P \times t \)

Equation 6 \(t_{\text{CHARGE}} = \frac{E_{\text{INITIAL}}}{P_{\text{VSTORE1}}} = \frac{544.5 \, [\mu\text{J}]}{199.2 \, [\mu\text{W}]} = 2.73[s] \)

Calculation of Repeat Charging Time (t\text{CHARGE}_R)

\[
t_{\text{CHARGE}_R} = \frac{E_{\text{AVAILABLE}}}{P_{\text{VSTORE1}}} = \frac{233.4 \, [\mu\text{J}]}{199.2 \, [\mu\text{W}]} = 1.17[s] \]

In this example, the initial charging time is 2.73 s, and the repeat charging time is 1.17 s. The repeat charging time is shorter than the initial one.

3 Summary

This application note explored the basic calculation of energy, capacitance, and charging time for an energy harvesting application based on Cypress’s S6AE101A/2A/3A PMIC. The most important concept to be gained from this application note is to figure out a balance of charged energy with energy consumption.

S6AE101A/2A/3A has a set of documentation such as other application notes, development tools, and online resources to assist you during your development process. Visit www.cypress.com/energy-harvesting to find out more.
Moreover, at least 100-µF or larger capacitor is required for this PMIC (see the recommended operating conditions in S6AE101A, S6AE102A, and S6AE103A datasheets). The capacitance is set to 100 µF in this example.

Corrected typo error
Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

- Arm® Cortex® Microcontrollers: cypress.com/arm
- Automotive: cypress.com/automotive
- Clocks & Buffers: cypress.com/clocks
- Interface: cypress.com/interface
- Internet of Things: cypress.com/iot
- Memory: cypress.com/memory
- Microcontrollers: cypress.com/mcu
- PSoC: cypress.com/psoc
- Power Management ICs: cypress.com/pmic
- Touch Sensing: cypress.com/touch
- USB Controllers: cypress.com/usb
- Wireless Connectivity: cypress.com/wireless

PSoC® Solutions

- PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

- Community | Code Examples | Projects | Videos | Blogs | Training | Components

Technical Support

- cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2016-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spanion, the Spanion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

www.cypress.com

Document Number: 002-10772 Rev. "C"