General Description

The Cypress CYBLE-222005-00 is a fully certified and qualified module supporting Bluetooth® Low Energy (BLE) wireless communication. The CYBLE-222005-00 is a turnkey solution and includes onboard crystal oscillators, chip antenna, passive components, and Cypress PSoC 4 BLE. Refer to the PSoC 4 BLE datasheet for additional details on the capabilities of the PSoC 4 BLE device used on this module.

The CYBLE-222005-00 supports a number of peripheral functions (ADC, timers, counters, PWM) and serial communication protocols (I²C, UART, SPI) through its programmable architecture. The CYBLE-222005-00 includes a royalty-free BLE stack compatible with Bluetooth 4.1 and provides up to 16 GPIOs in a small 10 × 10 × 1.80 mm package.

The CYBLE-222005-00 is a complete solution and an ideal fit for applications requiring BLE wireless connectivity.

Module Description

- Module size: 10.0 mm ×10.0 mm × 1.80 mm (with shield)
- Drop-in compatible with CYBLE-022001-00 and includes additional VREF input
- 256-KB flash memory, 32-KB SRAM memory
- Up to 16 GPIOs configurable as open drain high/low, pull-up/pull-down, HI-Z analog, HI-Z digital, or strong output
- Bluetooth 4.1 qualified single-mode module
 - QDID: 79920
 - Declaration ID: D029884
- Certified to FCC, ISED, MIC, KC, and CE regulations
 - FCC ID: WAP2005
 - IC ID: 7922A-2005
 - MIC ID: 203-JN0495
 - KC ID: MSIP-CRM-Cyp-2005
- Industrial temperature range: –40 °C to +85 °C
- 32-bit processor (0.9 DMIPS/MHz) with single-cycle 32-bit multiply, operating at up to 48 MHz
- Watchdog timer with dedicated internal low-speed oscillator (ILO)
- Two-pin SWD for programming

Power Consumption

- TX output power: –18 dbm to +3 dbm
- Received signal strength indicator (RSSI) with 1-dB resolution
- TX current consumption of 15.6 mA (radio only, 0 dbm)
- RX current consumption of 16.4 mA (radio only)
- Low power mode support
 - Deep Sleep: 1.3 µA with watch crystal oscillator (WCO) on
 - Hibernate: 150 nA with SRAM retention
 - Stop: 60 nA with XRES wakeup

Functional Capabilities

- Up to 15 capacitive sensors for buttons or sliders with best-in-class signal-to-noise ration (SNR) and liquid tolerance
- 12-bit, 1-Msps SAR ADC with internal reference, sample-and-hold (S/H), and channel sequencer
- Two serial communication blocks (SCBs) supporting I²C (master/slave), SPI (master/slave), or UART
- Four dedicated 16-bit timer, counter, or PWM blocks (TCPWMs)
- Programmable low voltage detect (LVD) from 1.8 V to 4.5 V
- I²S master interface
- Bluetooth Low Energy protocol stack supporting generic access profile (GAP) Central, Peripheral, Observer, or Broadcaster roles
- Switches between Central and Peripheral roles on-the-go
- Standard Bluetooth Low Energy profiles and services for interoperability
- Custom profile and service for specific use cases

Benefits

The CYBLE-222005-00 module is provided as a turnkey solution, including all necessary hardware required to use BLE communication standards.

- Proven, qualified, and certified hardware design ready to use
- Small footprint (10 × 10 mm × 1.80 mm), perfect for space constrained applications
- Reprogrammable architecture
- Fully certified module eliminates the time needed for design, development and certification processes
- Bluetooth SIG qualified with QDID and Declaration ID
- Flexible communication protocol support
- PSoC Creator™ provides an easy-to-use integrated design environment (IDE) to configure, develop, program, and test a BLE application
More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right module for your design, and to help you to quickly and effectively integrate the module into your design.

- Overview: EZ-BLE Module Portfolio, Module Roadmap
- PSoC 4 BLE Silicon Datasheet
- Application notes: Cypress offers a number of BLE application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with EZ-BLE modules are:
 - AN96841 - Getting Started with EZ-BLE Module
 - AN91267 - Getting Started with PSoC® 4 BLE
 - AN97060 - PSoC® 4 BLE and PRoC™ BLE - Over-The-Air (OTA) Device Firmware Upgrade (DFU) Guide
 - AN91162 - Creating a BLE Custom Profile
 - AN91184 - PSoC 4 BLE - Designing BLE Applications
 - AN92584 - Designing for Low Power and Estimating Battery Life for BLE Applications
 - AN85951 - PSoC® 4 CapSense® Design Guide
 - AN95089 - PSoC® 4/PRoC™ BLE Crystal Oscillator Selection and Tuning Techniques
 - AN91445 - Antenna Design and RF Layout Guidelines

Knowledge Base Articles
- KBA04069 - Pin Mapping Differences Between the EZ-BLE™ Creator Evaluation Board (CYBLE-222005-EVAL) and the BLE Pioneer Kit (CY8CKIT-042-BLE)
- KBA97095 - EZ-BLE™ Module Placement
- KBA210559 - RF Regulatory Certifications for EZ-BLE™ Creator Module CYBLE-222005-00 - KBA210559
- KBA213976 - FAQ for BLE and Regulatory Certifications with EZ-BLE modules
- KBA210802 - Queries on BLE Qualification and Declaration Processes
- KBA2108122 - 3D Model Files for EZ-BLE/EZ-BT Modules

Development Kits:
- CYBLE-222005-EVAL, CYBLE-222005-00 Evaluation Board
- CY8CKIT-042-BLE, Bluetooth® Low Energy (BLE) Pioneer Kit
- CY8CKIT-002, PSoC® MiniProg3 Program and Debug Kit

Test and Debug Tools:
- CYSmart, Bluetooth® LE Test and Debug Tool (Windows)
- CYSmart Mobile, Bluetooth® LE Test and Debug Tool (Android/iOS Mobile App)

Two Easy-To-Use Design Environments to Get You Started Quickly

PSoC® Creator™ Integrated Design Environment (IDE)

PSoC Creator is an Integrated Design Environment (IDE) that enables concurrent hardware and firmware editing, compiling and debugging of PSoC 3, PSoC 4, PSoC 5LP, PSoC 4 BLE, and EZ-BLE module systems with no code size limitations. PSoC peripherals are designed using schematic capture and simple graphical user interface (GUI) with over 120 pre-verified, production-ready PSoC Components™.

PSoC Components are analog and digital “virtual chips,” represented by an icon that users can drag-and-drop into a design and configure to suit a broad array of application requirements.

Bluetooth Low Energy Component

The Bluetooth Low Energy Component inside PSoC Creator provides a comprehensive GUI-based configuration window that lets you quickly design BLE applications. The Component incorporates a Bluetooth Core Specification v4.1 compliant BLE protocol stack and provides API functions to enable user applications to interface with the underlying Bluetooth Low Energy Sub-System (BLESS) hardware via the stack.

EZ-Serial™ BLE Firmware Platform

The EZ-Serial Firmware Platform provides a simple way to access the most common hardware and communication features needed in BLE applications. EZ-Serial implements an intuitive API protocol over the UART interface and exposes various status and control signals through the module’s GPIOs, making it easy to add BLE functionality quickly to existing designs.

Use a simple serial terminal and evaluation kit to begin development without requiring an IDE. Refer to the EZ-Serial webpage for User Manuals and instructions for getting started as well as detailed reference materials.

EZ-BLE modules are pre-flashed with the EZ-Serial Firmware Platform. If you do not have EZ-Serial pre-loaded on your module, you can download each EZ-BLE module’s firmware images on the EZ-Serial webpage.

Technical Support

- Frequently Asked Questions (FAQs): Learn more about our BLE ECO System.
- Forum: See if your question is already answered by fellow developers on the PSoC 4 BLE.
- Visit our support page and create a technical support case or contact a local sales representatives. If you are in the United States, you can talk to our technical support team by calling our toll-free number: +1-800-541-4736. Select option 2 at the prompt.
Contents

Overview .. 4
Module Description ... 4
Pad Connection Interface .. 6
Recommended Host PCB Layout ... 7
Digital and Analog Capabilities and Connections 9
Power Supply Connections
and Recommended External Components 10
Connection Options ... 10
External Component Recommendation 10
Critical Components List .. 12
Antenna Design .. 12
Electrical Specification ... 13
GPIO .. 15
XRES ... 17
Digital Peripherals ... 19
Serial Communication ... 21
Memory ... 22
System Resources ... 22
Environmental Specifications ... 28
Environmental Compliance ... 28
RF Certification ... 28
Safety Certification ... 28
Environmental Conditions .. 28
ESD and EMI Protection .. 28
Regulatory Information .. 29
FCC ... 29
ISED ... 30
European R&TTE Declaration of Conformity 30
MIC Japan ... 31
KC Korea ... 31
Packaging ... 32
Ordering Information .. 34
Part Numbering Convention ... 34
Acronyms .. 35
Document Conventions .. 35
Units of Measure ... 35
Document History Page .. 36
Sales, Solutions, and Legal Information 38
Worldwide Sales and Design Support 38
Products ... 38
PSoC® Solutions ... 38
Cypress Developer Community .. 38
Technical Support ... 38

Not Recommended for New Designs
Overview

Module Description
The CYBLE-222005-00 module is a complete module designed to be soldered to the applications main board.

Module Dimensions and Drawing
Cypress reserves the right to select components (including the appropriate BLE device) from various vendors to achieve the BLE module functionality. Such selections will still guarantee that all height restrictions of the component area are maintained. Designs should be held within the physical dimensions shown in the mechanical drawings in Figure 1. All dimensions are in millimeters (mm).

Table 1. Module Design Dimensions

<table>
<thead>
<tr>
<th>Dimension Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module dimensions</td>
<td></td>
</tr>
<tr>
<td>Length (X)</td>
<td>10.00 ± 0.15 mm</td>
</tr>
<tr>
<td>Width (Y)</td>
<td>10.00 ± 0.15 mm</td>
</tr>
<tr>
<td>Antenna location dimensions</td>
<td></td>
</tr>
<tr>
<td>Length (X)</td>
<td>7.00 ± 0.15 mm</td>
</tr>
<tr>
<td>Width (Y)</td>
<td>5.00 ± 0.15 mm</td>
</tr>
<tr>
<td>PCB thickness</td>
<td></td>
</tr>
<tr>
<td>Height (H)</td>
<td>0.50 ± 0.10 mm</td>
</tr>
<tr>
<td>Shield height</td>
<td></td>
</tr>
<tr>
<td>Height (H)</td>
<td>1.10 ± 0.10 mm</td>
</tr>
<tr>
<td>Maximum component height</td>
<td></td>
</tr>
<tr>
<td>Height (H)</td>
<td>1.30-mm typical (chip antenna)</td>
</tr>
<tr>
<td>Total module thickness (bottom of module to highest component)</td>
<td>Height (H)</td>
</tr>
</tbody>
</table>

See Figure 1 on page 5 for the mechanical reference drawing for CYBLE-222005-00.
Figure 1. Module Mechanical Drawing

Note
1. No metal should be located beneath or above the antenna area. Only bare PCB material should be located beneath the antenna area. For more information on recommended host PCB layout, see "Recommended Host PCB Layout" on page 7.
Pad Connection Interface

As shown in the bottom view of Figure 1 on page 5, the CYBLE-222005-00 connects to the host board via solder pads on the back of the module. Table 2 and Figure 2 detail the solder pad length, width, and pitch dimensions of the CYBLE-222005-00 module.

Table 2. Solder Pad Connection Description

<table>
<thead>
<tr>
<th>Name</th>
<th>Connections</th>
<th>Connection Type</th>
<th>Pad Length Dimension</th>
<th>Pad Width Dimension</th>
<th>Pad Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>22</td>
<td>Solder Pads</td>
<td>0.71 mm</td>
<td>0.41 mm</td>
<td>0.76 mm</td>
</tr>
</tbody>
</table>

Figure 2. Solder Pad Dimensions (Seen from Bottom)

To maximize RF performance, the host layout should follow these recommendations:
1. The ideal placement of the Cypress BLE module is in a corner of the host board with the chip antenna located at the far corner. This placement minimizes the additional recommended keep out area stated in item 2. Refer to AN96841 for module placement best practices.
2. To maximize RF performance, the area immediately around the Cypress BLE module chip antenna should contain an additional keep out area, where no grounding or signal traces are contained. The keep out area applies to all layers of the host board. The recommended dimensions of the host PCB keep out area are shown in Figure 3 (dimensions are in mm).

Figure 3. Recommended Host PCB Keep Out Area Around the CYBLE-222005-00 Chip Antenna
Recommended Host PCB Layout

Figure 4, Figure 5, Figure 6, and Table 3 provide details that can be used for the recommended host PCB layout pattern for the CYBLE-222005-00. Dimensions are in millimeters unless otherwise noted. Pad length of 0.91 mm (0.455 mm from center of the pad on either side) shown in Figure 6 is the minimum recommended host pad length. The host PCB layout pattern can be completed using either Figure 4, Figure 5, or Figure 6. It is not necessary to use all figures to complete the host PCB layout pattern.

Figure 4. Host Layout Pattern for CYBLE-222005-00

Figure 5. Module Pad Location from Origin

Top View (Seen on Host PCB)
Table 3 provides the center location for each solder pad on the CYBLE-222005-00. All dimensions are referenced to the center of the solder pad. Refer to Figure 6 for the location of each module solder pad.

Table 3. Module Solder Pad Location

<table>
<thead>
<tr>
<th>Solder Pad (Center of Pad)</th>
<th>Location (X,Y) from Origin (mm)</th>
<th>Dimension from Origin (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0.26, 1.64)</td>
<td>(10.24, 64.57)</td>
</tr>
<tr>
<td>2</td>
<td>(0.26, 2.41)</td>
<td>(10.24, 94.88)</td>
</tr>
<tr>
<td>3</td>
<td>(0.26, 3.17)</td>
<td>(10.24, 124.80)</td>
</tr>
<tr>
<td>4</td>
<td>(0.26, 3.93)</td>
<td>(10.24, 154.72)</td>
</tr>
<tr>
<td>5</td>
<td>(0.26, 4.69)</td>
<td>(10.24, 184.65)</td>
</tr>
<tr>
<td>6</td>
<td>(0.26, 5.45)</td>
<td>(10.24, 214.57)</td>
</tr>
<tr>
<td>7</td>
<td>(0.81, 9.74)</td>
<td>(31.89, 383.46)</td>
</tr>
<tr>
<td>8</td>
<td>(1.57, 9.74)</td>
<td>(61.81, 383.46)</td>
</tr>
<tr>
<td>9</td>
<td>(2.34, 9.74)</td>
<td>(92.13, 383.46)</td>
</tr>
<tr>
<td>10</td>
<td>(3.10, 9.74)</td>
<td>(122.05, 383.46)</td>
</tr>
<tr>
<td>11</td>
<td>(3.86, 9.74)</td>
<td>(151.97, 383.46)</td>
</tr>
<tr>
<td>12</td>
<td>(4.62, 9.74)</td>
<td>(181.89, 383.46)</td>
</tr>
<tr>
<td>13</td>
<td>(5.38, 9.74)</td>
<td>(211.81, 383.46)</td>
</tr>
<tr>
<td>14</td>
<td>(6.15, 9.74)</td>
<td>(242.13, 383.46)</td>
</tr>
<tr>
<td>15</td>
<td>(6.91, 9.74)</td>
<td>(272.05, 383.46)</td>
</tr>
<tr>
<td>16</td>
<td>(7.67, 9.74)</td>
<td>(301.97, 383.46)</td>
</tr>
<tr>
<td>17</td>
<td>(8.43, 9.74)</td>
<td>(331.89, 383.46)</td>
</tr>
<tr>
<td>18</td>
<td>(9.19, 9.74)</td>
<td>(361.81, 383.46)</td>
</tr>
<tr>
<td>19</td>
<td>(9.75, 8.50)</td>
<td>(383.86, 334.65)</td>
</tr>
<tr>
<td>20</td>
<td>(9.75, 7.74)</td>
<td>(383.86, 304.72)</td>
</tr>
<tr>
<td>21</td>
<td>(9.75, 6.98)</td>
<td>(383.86, 274.80)</td>
</tr>
<tr>
<td>22</td>
<td>(9.75, 6.22)</td>
<td>(383.86, 244.88)</td>
</tr>
</tbody>
</table>

Figure 6. Solder Pad Reference Location

Top View (Seen on Host PCB)

Not Recommended for New Designs
Digital and Analog Capabilities and Connections

Table 4 details the solder pad connection definitions and available functions for each connection pad. Table 4 lists the solder pads on CYBLE-222005-00, the BLE device port-pin, and denotes whether the function shown is available for each solder pad. Each connection is configurable for a single option shown with a ✓.

Table 4. Solder Pad Connection Definitions

<table>
<thead>
<tr>
<th>SolderPad Number</th>
<th>Device Port Pin</th>
<th>UART</th>
<th>SPI</th>
<th>I²C</th>
<th>TCPWM[2,3]</th>
<th>Cap-Sense</th>
<th>WCO</th>
<th>ECO</th>
<th>LCD</th>
<th>SWD</th>
<th>GPIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND[4]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P4.1[5]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM0_N)</td>
<td>✓ (Sensor/CTANK)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>P5.1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM3_N)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P5.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM3_P)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>V_DD</td>
<td></td>
<td></td>
<td></td>
<td>Radio Power Supply (1.9V to 5.5V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>V_REF[6]</td>
<td></td>
<td></td>
<td></td>
<td>Voltage Reference Input (Optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>P1.6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓ (Sensor)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>P0.7</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>P0.4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>P0.5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td></td>
<td></td>
<td></td>
<td>Ground Connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>P0.6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>P1.7</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓ (Sensor)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>V_DD</td>
<td></td>
<td></td>
<td></td>
<td>Digital Power Supply Input (1.71 to 5.5V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>XRES</td>
<td></td>
<td></td>
<td></td>
<td>External Reset Hardware Connection Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>P3.5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>P3.4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>P3.7</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>P1.4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>P1.5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>P3.6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>P4.0[7]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (TCPWM)</td>
<td>✓ (CMOD)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Notes

2. TCPWM stands for timer, counter, and PWM. If supported, the pad can be configured to any of these peripheral functions.

3. TCPWM connections on ports 0, 1, 2, and 3 can be routed through the Digital Signal Interconnect (DSI) to any of the TCPWM blocks and can be either positive or negative polarity. TCPWM connections on ports 4 and 5 are direct and can only be used with the specified TCPWM block and polarity specified above.

4. The main board needs to connect both GND connections (Pad 1 and Pad 10) on the module to the common ground of the system.

5. When using the capacitive sensing functionality, Pad 2 (P4.1) can be connected to a CTank capacitor (located off of Cypress BLE Module). CTank should be used if implementing a shield layer on the capacitive sensor. If used, this capacitor should be placed as close to the module as possible.

6. Analog block functionality is augmented for the user with the external VREF input. The internal bandgap may be bypassed with a 1-µF to 10-µF capacitor.

7. When using the capacitive sensing functionality, Pad 22 (P4.0) must be connected to a CMOD capacitor (located off of Cypress BLE Module). The value of this capacitor is 2.2 nF and should be placed as close to the module as possible.

8. If the I²S feature is used in the design, the I²S pins shall be dynamically routed to the appropriate available GPIO by PSoC Creator.
Power Supply Connections and Recommended External Components

Power Connections

The CYBLE-222005-00 contains two power supply connections, VDD and VDDR. The VDD connection supplies power for both digital and analog device operation. The VDDR connection supplies power for the device radio.

VDD accepts a supply range of 1.71 V to 5.5 V. VDDR accepts a supply range of 1.9 V to 5.5 V. These specifications can be found in Table 9. The maximum power supply ripple for both power connections on the module is 100 mV, as shown in Table 7.

The power supply ramp rate of VDD must be equal to or greater than that of VDDR.

Connection Options

Two connection options are available for any application:

1. Single supply: Connect VDD and VDDR to the same supply.
2. Independent supply: Power VDD and VDDR separately.

External Component Recommendation

In either connection scenario, it is recommended to place an external ferrite bead between the supply and the module connection. The ferrite bead should be positioned as close as possible to the module pin connection.

Figure 7 details the recommended host schematic options for a single supply scenario. The use of one or two ferrite beads will depend on the specific application and configuration of the CYBLE-222005-00.

Figure 8 details the recommended host schematic for an independent supply scenario.

The recommended ferrite bead value is 330 Ω, 100 MHz. (Murata BLM21PG331SN1D).

Figure 7. Recommended Host Schematic Options for a Single Supply Option

Figure 8. Recommended Host Schematic for an Independent Supply Option

Document Number: 002-00214 Rev. *I*
The CYBLE-222005-00 schematic is shown in Figure 9.

Figure 9. CYBLE-222005-00 Schematic Diagram
Critical Components List

Table 5 details the critical components used in the CYBLE-222005-00 module.

Table 5. Critical Component List

<table>
<thead>
<tr>
<th>Component</th>
<th>Reference Designator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>U1</td>
<td>76-pin WLCSP PSoC 4 BLE</td>
</tr>
<tr>
<td>Crystal</td>
<td>Y1</td>
<td>24.000 MHz, 10PF</td>
</tr>
<tr>
<td>Crystal</td>
<td>Y2</td>
<td>32.768 kHz, 12.5PF</td>
</tr>
<tr>
<td>Antenna</td>
<td>E1</td>
<td>2.4–2.5 GHz chip antenna</td>
</tr>
</tbody>
</table>

Antenna Design

Table 6 details the chip antenna used in the CYBLE-222005-00 module. The specifications listed are according to the vendor’s datasheet. The Cypress module performance improves many of these characteristics. For more information, see Table 8.

Table 6. Chip Antenna Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip Antenna Manufacturer</td>
<td>Johanson Technology Inc.</td>
</tr>
<tr>
<td>Chip Antenna Part Number</td>
<td>2450AT18B100</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>2400–2500 MHz</td>
</tr>
<tr>
<td>Peak Gain</td>
<td>0.5 dBi typical</td>
</tr>
<tr>
<td>Average Gain</td>
<td>–0.5-dBi typical</td>
</tr>
<tr>
<td>Return Loss</td>
<td>9.5-dB minimum</td>
</tr>
</tbody>
</table>
Electrical Specification

Table 7 details the absolute maximum electrical characteristics for the Cypress BLE module.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDDD_ABS</td>
<td>Analog, digital, or radio supply relative to VSS (VSSD = VSSA)</td>
<td>–0.5</td>
<td>–</td>
<td>6</td>
<td>V</td>
<td>Absolute maximum</td>
</tr>
<tr>
<td>VCCD_ABS</td>
<td>Direct digital core voltage input relative to VSSD</td>
<td>–0.5</td>
<td>–</td>
<td>1.95</td>
<td>V</td>
<td>Absolute maximum</td>
</tr>
<tr>
<td>VDDD_RIPPLE</td>
<td>Maximum power supply ripple for VDD and VDDR input voltage</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>mV</td>
<td>3.0-V supply Ripple frequency of 100 kHz to 750 kHz</td>
</tr>
<tr>
<td>VGPIO_ABS</td>
<td>GPIO voltage</td>
<td>–0.5</td>
<td>–</td>
<td>VDD +0.5</td>
<td>V</td>
<td>Absolute maximum</td>
</tr>
<tr>
<td>IGPIO_ABS</td>
<td>Maximum current per GPIO</td>
<td>–25</td>
<td>–</td>
<td>25</td>
<td>mA</td>
<td>Absolute maximum</td>
</tr>
<tr>
<td>IGPIO_injection</td>
<td>GPIO injection current: Maximum for VIH > VDD and minimum for VIL < VSS</td>
<td>–0.5</td>
<td>–</td>
<td>0.5</td>
<td>mA</td>
<td>Absolute maximum current injected per pin</td>
</tr>
<tr>
<td>LU</td>
<td>Pin current for latch up</td>
<td>–200</td>
<td>200</td>
<td>mA</td>
<td></td>
<td>–</td>
</tr>
</tbody>
</table>

Table 8 details the RF characteristics for the Cypress BLE module.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFo</td>
<td>RF output power on ANT</td>
<td>–18</td>
<td>0</td>
<td>3</td>
<td>dBm</td>
<td>Configurable via register settings</td>
</tr>
<tr>
<td>RXS</td>
<td>RF receive sensitivity on ANT</td>
<td>–</td>
<td>–87</td>
<td>–</td>
<td>dBm</td>
<td>Guaranteed by design simulation</td>
</tr>
<tr>
<td>FR</td>
<td>Module frequency range</td>
<td>2400</td>
<td>–</td>
<td>2480</td>
<td>MHz</td>
<td>–</td>
</tr>
<tr>
<td>GP</td>
<td>Peak gain</td>
<td>–</td>
<td>0.5</td>
<td>–</td>
<td>dBi</td>
<td>–</td>
</tr>
<tr>
<td>GAVG</td>
<td>Average gain</td>
<td>–</td>
<td>–0.5</td>
<td>–</td>
<td>dBi</td>
<td>–</td>
</tr>
<tr>
<td>RL</td>
<td>Return loss</td>
<td>–</td>
<td>–10.5</td>
<td>–</td>
<td>dB</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 9 through Table 47 list the module level electrical characteristics for the CYBLE-222005-00. All specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 9. CYBLE-222005-00 DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD1</td>
<td>Power supply input voltage</td>
<td>1.8</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
<td>With regulator enabled</td>
</tr>
<tr>
<td>VDD2</td>
<td>Power supply input voltage unregulated</td>
<td>1.71</td>
<td>1.8</td>
<td>1.89</td>
<td>V</td>
<td>Internally unregulated supply</td>
</tr>
<tr>
<td>VDDR1</td>
<td>Radio supply voltage (radio on)</td>
<td>1.9</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>VDDR2</td>
<td>Radio supply voltage (radio off)</td>
<td>1.71</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Active Mode, VDD = 1.71 V to 5.5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>IDD3</td>
<td>Execute from flash; CPU at 3 MHz</td>
<td>–</td>
<td>1.7</td>
<td>–</td>
<td>mA</td>
<td>T = 25 °C, VDD = 3.3 V</td>
</tr>
<tr>
<td>IDD4</td>
<td>Execute from flash; CPU at 3 MHz</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
<tr>
<td>IDD5</td>
<td>Execute from flash; CPU at 6 MHz</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>mA</td>
<td>T = 25 °C, VDD = 3.3 V</td>
</tr>
<tr>
<td>IDD6</td>
<td>Execute from flash; CPU at 6 MHz</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
<tr>
<td>IDD7</td>
<td>Execute from flash; CPU at 12 MHz</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>mA</td>
<td>T = 25 °C, VDD = 3.3 V</td>
</tr>
</tbody>
</table>
Table 9. CYBLE-222005-00 DC Specifications (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDD8</td>
<td>Execute from flash; CPU at 12 MHz</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
<tr>
<td>IDD9</td>
<td>Execute from flash; CPU at 24 MHz</td>
<td>–</td>
<td>7.1</td>
<td>–</td>
<td>mA</td>
<td>T = 25 °C, VDD = 3.3 V</td>
</tr>
<tr>
<td>IDD10</td>
<td>Execute from flash; CPU at 24 MHz</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
<tr>
<td>IDD11</td>
<td>Execute from flash; CPU at 48 MHz</td>
<td>–</td>
<td>13.4</td>
<td>–</td>
<td>mA</td>
<td>T = 25 °C, VDD = 3.3 V</td>
</tr>
<tr>
<td>IDD12</td>
<td>Execute from flash; CPU at 48 MHz</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>mA</td>
<td>T = –40 °C to 85 °C</td>
</tr>
</tbody>
</table>

Sleep Mode, VDD = 1.8 V to 5.5 V

| IDD13 | IMO on | – | – | – | mA | T = 25 °C, VDD = 3.3 V, SYSCLK = 3 MHz |

Sleep Mode, VDD and VDDR = 1.9 V to 5.5 V

| IDD14 | ECO on | – | – | – | mA | T = 25 °C, VDD = 3.3 V, SYSCLK = 3 MHz |

Deep-Sleep Mode, VDD = 1.8 V to 3.6 V

IDD15	WDT with WCO on	–	1.5	–	µA	T = 25 °C, VDD = 3.3 V
IDD16	WDT with WCO on	–	–	–	µA	T = –40 °C to 85 °C
IDD17	WDT with WCO on	–	–	–	µA	T = 25 °C, VDD = 5 V
IDD18	WDT with WCO on	–	–	–	µA	T = –40 °C to 85 °C

Deep-Sleep Mode, VDD = 1.71 V to 1.89 V (Regulator Bypassed)

| IDD19 | WDT with WCO on | – | – | – | µA | T = 25 °C |
| IDD20 | WDT with WCO on | – | – | – | µA | T = –40 °C to 85 °C |

Hibernate Mode, VDD = 1.8 V to 3.6 V

| IDD27 | GPIO and reset active | – | 150 | – | nA | T = 25 °C, VDD = 3.3 V |
| IDD28 | GPIO and reset active | – | – | – | nA | T = –40 °C to 85 °C |

Hibernate Mode, VDD = 3.6 V to 5.5 V

| IDD29 | GPIO and reset active | – | – | – | nA | T = 25 °C, VDD = 5 V |
| IDD30 | GPIO and reset active | – | – | – | nA | T = –40 °C to 85 °C |

Stop Mode, VDD = 1.8 V to 3.6 V

IDD33	Stop-mode current (VDD)	–	20	–	nA	T = 25 °C, VDD = 3.3 V
IDD34	Stop-mode current (VDDR)	–	40	–	nA	T = 25 °C, VDDR = 3.3 V
IDD35	Stop-mode current (VDD)	–	–	–	nA	T = –40 °C to 85 °C
IDD36	Stop-mode current (VDDR)	–	–	–	nA	T = –40 °C to 85 °C, VDDR = 1.9 V to 3.6 V

Stop Mode, VDD = 3.6 V to 5.5 V

IDD37	Stop-mode current (VDD)	–	–	–	nA	T = 25 °C, VDD = 5 V
IDD38	Stop-mode current (VDDR)	–	–	–	nA	T = 25 °C, VDDR = 5 V
IDD39	Stop-mode current (VDD)	–	–	–	nA	T = –40 °C to 85 °C
IDD40	Stop-mode current (VDDR)	–	–	–	nA	T = –40 °C to 85 °C
Table 10. AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{CPU}</td>
<td>CPU frequency</td>
<td>DC</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
<td>$1.71 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$</td>
</tr>
<tr>
<td>T_{SLEEP}</td>
<td>Wakeup from Sleep mode</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>µs</td>
<td>Guaranteed by characterization</td>
</tr>
<tr>
<td>$T_{DEEPSLEEP}$</td>
<td>Wakeup from Deep-Sleep mode</td>
<td>–</td>
<td>–</td>
<td>25</td>
<td>µs</td>
<td>24-MHz IMO. Guaranteed by characterization</td>
</tr>
<tr>
<td>$T_{HIBERNATE}$</td>
<td>Wakeup from Hibernate mode</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>ms</td>
<td>Guaranteed by characterization</td>
</tr>
<tr>
<td>T_{STOP}</td>
<td>Wakeup from Stop mode</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>ms</td>
<td>XRES wakeup</td>
</tr>
</tbody>
</table>

GPIO

Table 11. GPIO DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{IH}^{[9]}$</td>
<td>Input voltage HIGH threshold</td>
<td>$0.7 \times V_{DD}$</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>CMOS input</td>
</tr>
<tr>
<td></td>
<td>LVTTL input, $V_{DD} < 2.7 \text{ V}$</td>
<td>$0.7 \times V_{DD}$</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>LVTTL input, $V_{DD} \geq 2.7 \text{ V}$</td>
<td>2.0</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input voltage LOW threshold</td>
<td>–</td>
<td>–</td>
<td>$0.3 \times V_{DD}$</td>
<td>V</td>
<td>CMOS input</td>
</tr>
<tr>
<td></td>
<td>LVTTL input, $V_{DD} < 2.7 \text{ V}$</td>
<td>–</td>
<td>–</td>
<td>$0.3 \times V_{DD}$</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>LVTTL input, $V_{DD} \geq 2.7 \text{ V}$</td>
<td>–</td>
<td>–</td>
<td>0.8</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output voltage HIGH level</td>
<td>$V_{DD} - 0.6$</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>$I_{OH} = 4 \text{ mA at } 3.3 \text{-V } V_{DD}$</td>
</tr>
<tr>
<td></td>
<td>Output voltage HIGH level</td>
<td>$V_{DD} - 0.5$</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>$I_{OH} = 1 \text{ mA at } 1.8 \text{-V } V_{DD}$</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output voltage LOW level</td>
<td>–</td>
<td>–</td>
<td>0.6</td>
<td>V</td>
<td>$I_{OL} = 8 \text{ mA at } 3.3 \text{-V } V_{DD}$</td>
</tr>
<tr>
<td></td>
<td>Output voltage LOW level</td>
<td>–</td>
<td>–</td>
<td>0.6</td>
<td>V</td>
<td>$I_{OL} = 4 \text{ mA at } 1.8 \text{-V } V_{DD}$</td>
</tr>
<tr>
<td></td>
<td>Output voltage LOW level</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
<td>$I_{OL} = 3 \text{ mA at } 3.3 \text{-V } V_{DD}$</td>
</tr>
<tr>
<td>R_{PULLUP}</td>
<td>Pull-up resistor</td>
<td>3.5</td>
<td>5.6</td>
<td>8.5</td>
<td>kΩ</td>
<td>–</td>
</tr>
<tr>
<td>$R_{PULLDOWN}$</td>
<td>Pull-down resistor</td>
<td>3.5</td>
<td>5.6</td>
<td>8.5</td>
<td>kΩ</td>
<td>–</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input leakage current (absolute value)</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>nA</td>
<td>$25 \degree \text{C, } V_{DD} = 3.3 \text{ V}$</td>
</tr>
<tr>
<td>I_{IL_CTBM}</td>
<td>Input leakage on CTBm input pins</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>nA</td>
<td>–</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>Input capacitance</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>pF</td>
<td>–</td>
</tr>
<tr>
<td>V_{HYSTTL}</td>
<td>Input hysteresis LVTTL</td>
<td>25</td>
<td>40</td>
<td>–</td>
<td>mV</td>
<td>$V_{DD} > 2.7 \text{ V}$</td>
</tr>
<tr>
<td>$V_{HYSCMOS}$</td>
<td>Input hysteresis CMOS</td>
<td>$0.05 \times V_{DD}$</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>I_{DIODE}</td>
<td>Current through protection diode to V_{DD}/V_{SS}</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>I_{TOT_GPIO}</td>
<td>Maximum total source or sink chip current</td>
<td>–</td>
<td>–</td>
<td>200</td>
<td>mA</td>
<td>–</td>
</tr>
</tbody>
</table>

Note

9. V_{IH} must not exceed $V_{DD} + 0.2 \text{ V}$.

Not Recommended for New Designs
Table 12. GPIO AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRISEF</td>
<td>Rise time in Fast-Strong mode</td>
<td>2</td>
<td>–</td>
<td>12</td>
<td>ns</td>
<td>3.3-V VDD, CLOAD = 25 pF</td>
</tr>
<tr>
<td>TFALLF</td>
<td>Fall time in Fast-Strong mode</td>
<td>2</td>
<td>–</td>
<td>12</td>
<td>ns</td>
<td>3.3-V VDD, CLOAD = 25 pF</td>
</tr>
<tr>
<td>TRISES</td>
<td>Rise time in Slow-Strong mode</td>
<td>10</td>
<td>–</td>
<td>60</td>
<td>ns</td>
<td>3.3-V VDD, CLOAD = 25 pF</td>
</tr>
<tr>
<td>TFALLS</td>
<td>Fall time in Slow-Strong mode</td>
<td>10</td>
<td>–</td>
<td>60</td>
<td>ns</td>
<td>3.3-V VDD, CLOAD = 25 pF</td>
</tr>
<tr>
<td>FGPIOOUT1</td>
<td>GPIO FOUT: 3.3 V ≤ VDD ≤ 5.5 V Fast-Strong mode</td>
<td>–</td>
<td>–</td>
<td>33</td>
<td>MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
</tr>
<tr>
<td>FGPIOOUT2</td>
<td>GPIO FOUT: 1.7 V ≤ VDD ≤ 3.3 V Fast-Strong mode</td>
<td>–</td>
<td>–</td>
<td>16.7 MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
<td></td>
</tr>
<tr>
<td>FGPIOOUT3</td>
<td>GPIO FOUT: 3.3 V ≤ VDD ≤ 5.5 V Slow-Strong mode</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
</tr>
<tr>
<td>FGPIOOUT4</td>
<td>GPIO FOUT: 1.7 V ≤ VDD ≤ 3.3 V Slow-Strong mode</td>
<td>–</td>
<td>–</td>
<td>3.5</td>
<td>MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
</tr>
<tr>
<td>FGPIOIN</td>
<td>GPIO input operating frequency</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
<td>90/10% VIO</td>
</tr>
</tbody>
</table>

Table 13. OVT GPIO DC Specifications (P5_0 and P5_1 Only)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIL</td>
<td>Input leakage (absolute value). VIH > VDD</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>µA</td>
<td>25°C, VDD = 0 V, VIH = 3.0 V</td>
</tr>
<tr>
<td>VOL</td>
<td>Output voltage LOW level</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
<td>IOL = 20 mA, VDD > 2.9 V</td>
</tr>
</tbody>
</table>

Table 14. OVT GPIO AC Specifications (P5_0 and P5_1 Only)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRISE_OVFS</td>
<td>Output rise time in Fast-Strong mode</td>
<td>1.5</td>
<td>–</td>
<td>12</td>
<td>ns</td>
<td>25-pF load, 10%-90%, VDD=3.3 V</td>
</tr>
<tr>
<td>TFALL_OVFS</td>
<td>Output fall time in Fast-Strong mode</td>
<td>1.5</td>
<td>–</td>
<td>12</td>
<td>ns</td>
<td>25-pF load, 10%-90%, VDD=3.3 V</td>
</tr>
<tr>
<td>TRISESS</td>
<td>Output rise time in Slow-Strong mode</td>
<td>10</td>
<td>–</td>
<td>60</td>
<td>ns</td>
<td>25-pF load, 10%-90%, VDD = 3.3 V</td>
</tr>
<tr>
<td>TFALLSS</td>
<td>Output fall time in Slow-Strong mode</td>
<td>10</td>
<td>–</td>
<td>60</td>
<td>ns</td>
<td>25-pF load, 10%-90%, VDD = 3.3 V</td>
</tr>
<tr>
<td>FGPIOOUT1</td>
<td>GPIO FOUT: 3.3 V ≤ VDD ≤ 5.5 V Fast-Strong mode</td>
<td>–</td>
<td>–</td>
<td>24</td>
<td>MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
</tr>
<tr>
<td>FGPIOOUT2</td>
<td>GPIO FOUT: 1.7 V ≤ VDD ≤ 3.3 V Fast-Strong mode</td>
<td>–</td>
<td>–</td>
<td>16</td>
<td>MHz</td>
<td>90/10%, 25-pF load, 60/40 duty cycle</td>
</tr>
</tbody>
</table>
XRES DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input voltage HIGH threshold</td>
<td>$0.7 \times V_{DD}$</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>CMOS input</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input voltage LOW threshold</td>
<td>–</td>
<td>–</td>
<td>$0.3 \times V_{DD}$</td>
<td>V</td>
<td>CMOS input</td>
</tr>
<tr>
<td>R_{PULLUP}</td>
<td>Pull-up resistor</td>
<td>3.5</td>
<td>5.6</td>
<td>8.5</td>
<td>kΩ</td>
<td>–</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>Input capacitance</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>pF</td>
<td>–</td>
</tr>
<tr>
<td>$V_{HYSXRES}$</td>
<td>Input voltage hysteresis</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>mV</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DIODE}</td>
<td>Current through protection diode to V_{DD}/V_{SS}</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>

XRES AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{RESETWIDTH}$</td>
<td>Reset pulse width</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>µs</td>
<td>–</td>
</tr>
</tbody>
</table>

SAR ADC DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{RES}</td>
<td>Resolution</td>
<td>–</td>
<td>–</td>
<td>12</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td>A_{CHNIS_S}</td>
<td>Number of channels - single-ended</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>6 full-speed[10]</td>
<td></td>
</tr>
<tr>
<td>A_{CHNKSD_D}</td>
<td>Number of channels - differential</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>Diff inputs use neighboring I/O[10]</td>
<td></td>
</tr>
<tr>
<td>A_{MONO}</td>
<td>Monotonicity</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>$A_{GAINERR}$</td>
<td>Gain error</td>
<td>–</td>
<td>–</td>
<td>±0.1</td>
<td>%</td>
<td>With external reference</td>
</tr>
<tr>
<td>A_{OFFSET}</td>
<td>Input offset voltage</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>mV</td>
<td>Measured with 1-V V_{REF}</td>
</tr>
<tr>
<td>A_{ISAR}</td>
<td>Current consumption</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>A_{VINS}</td>
<td>Input voltage range - single-ended</td>
<td>V_{SS}</td>
<td>–</td>
<td>V_{DDA}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>A_{VIND}</td>
<td>Input voltage range - differential</td>
<td>V_{SS}</td>
<td>–</td>
<td>V_{DDA}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>A_{INRES}</td>
<td>Input resistance</td>
<td>–</td>
<td>–</td>
<td>2.2</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>A_{INCAP}</td>
<td>Input capacitance</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>V_{REFSAR}</td>
<td>Trimmed internal reference to SAR</td>
<td>–1</td>
<td>–</td>
<td>1</td>
<td>%</td>
<td>Percentage of Vbg (1.024 V)</td>
</tr>
</tbody>
</table>

SAR ADC AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{PSRR}</td>
<td>Power-supply rejection ratio</td>
<td>70</td>
<td>–</td>
<td>–</td>
<td>dB</td>
<td>Measured at 1-V reference</td>
</tr>
<tr>
<td>A_{CMRR}</td>
<td>Common-mode rejection ratio</td>
<td>66</td>
<td>–</td>
<td>–</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>A_{SAMP}</td>
<td>Sample rate</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>Msp</td>
<td></td>
</tr>
<tr>
<td>Fsarinref</td>
<td>SAR operating speed without external ref. bypass</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>Ksp</td>
<td>12-bit resolution</td>
</tr>
</tbody>
</table>

Note

10. A maximum of six single-ended ADC Channels can be accomplished only if the AMUX Buses are not being used for other functionality (such as CapSense).

If the AMUX Buses are being used for other functionality, then the maximum number of single-ended ADC channels is four. Similarly, if the AMUX Buses are being used for other functionality, then the maximum number of differential ADC channels is two.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/ Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{SNR})</td>
<td>Signal-to-noise ratio (SNR)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>dB</td>
<td>(F_{IN} = 10, kHz)</td>
</tr>
<tr>
<td>(A_{BW})</td>
<td>Input bandwidth without aliasing</td>
<td>–</td>
<td>–</td>
<td>(A_{SAMP}/2) kHz</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(A_{INL})</td>
<td>Integral nonlinearity. (V_{DD} = 1.71, V) to (5.5, V), 1 Msp</td>
<td>–1.7</td>
<td>–</td>
<td>2</td>
<td>LSB</td>
<td>(V_{REF} = 1, V) to (V_{DD})</td>
</tr>
<tr>
<td>(A_{DNL})</td>
<td>Differential nonlinearity. (V_{DD} = 1.71, V) to (5.5, V), 1 Msp</td>
<td>–1</td>
<td>–</td>
<td>2.2</td>
<td>LSB</td>
<td>(V_{REF} = 1, V) to (V_{DD})</td>
</tr>
<tr>
<td>(A_{THD})</td>
<td>Total harmonic distortion</td>
<td>–</td>
<td>–</td>
<td>–65</td>
<td>dB</td>
<td>(F_{IN} = 10, kHz)</td>
</tr>
</tbody>
</table>

CSD Block Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/ Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CSD})</td>
<td>Voltage range of operation</td>
<td>1.71</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>IDAC1 DNL for 8-bit resolution</td>
<td>(-1)</td>
<td>–</td>
<td>1</td>
<td>LSB</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>IDAC1 INL for 8-bit resolution</td>
<td>(-3)</td>
<td>–</td>
<td>3</td>
<td>LSB</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>IDAC2 DNL for 7-bit resolution</td>
<td>(-1)</td>
<td>–</td>
<td>1</td>
<td>LSB</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>IDAC2 INL for 7-bit resolution</td>
<td>(-3)</td>
<td>–</td>
<td>3</td>
<td>LSB</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>Ratio of counts of finger to noise</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>Ratio</td>
<td>Capacitance range of 9 pF to 35 pF, 0.1-pF sensitivity, Radio is not operating during the scan</td>
</tr>
<tr>
<td>(I_{DAC1_CRT1})</td>
<td>Output current of IDAC1 (8 bits) in High range</td>
<td>–</td>
<td>612</td>
<td>–</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(I_{DAC1_CRT2})</td>
<td>Output current of IDAC1 (8 bits) in Low range</td>
<td>–</td>
<td>306</td>
<td>–</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(I_{DAC2_CRT1})</td>
<td>Output current of IDAC2 (7 bits) in High range</td>
<td>–</td>
<td>305</td>
<td>–</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(I_{DAC2_CRT2})</td>
<td>Output current of IDAC2 (7 bits) in Low range</td>
<td>–</td>
<td>153</td>
<td>–</td>
<td>(\mu A)</td>
<td></td>
</tr>
</tbody>
</table>
Digital Peripherals

Timer

Table 19. Timer DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITIM1</td>
<td>Block current consumption at 3 MHz</td>
<td></td>
<td></td>
<td>42</td>
<td>µA</td>
<td>16-bit timer</td>
</tr>
<tr>
<td>ITIM2</td>
<td>Block current consumption at 12 MHz</td>
<td></td>
<td></td>
<td>130</td>
<td>µA</td>
<td>16-bit timer</td>
</tr>
<tr>
<td>ITIM3</td>
<td>Block current consumption at 48 MHz</td>
<td></td>
<td></td>
<td>535</td>
<td>µA</td>
<td>16-bit timer</td>
</tr>
</tbody>
</table>

Table 20. Timer AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTIMFREQ</td>
<td>Operating frequency FCLK</td>
<td></td>
<td></td>
<td>48</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>TCAPWINT</td>
<td>Capture pulse width (internal)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TCAPWEXT</td>
<td>Capture pulse width (external)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TTIMRES</td>
<td>Timer resolution</td>
<td>TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TENWIDINT</td>
<td>Enable pulse width (internal)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TENWIDEXT</td>
<td>Enable pulse width (external)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TIMRESWINT</td>
<td>Reset pulse width (internal)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TIMRESEXT</td>
<td>Reset pulse width (external)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Counter

Table 21. Counter DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICTR1</td>
<td>Block current consumption at 3 MHz</td>
<td></td>
<td></td>
<td>42</td>
<td>µA</td>
<td>16-bit counter</td>
</tr>
<tr>
<td>ICTR2</td>
<td>Block current consumption at 12 MHz</td>
<td></td>
<td></td>
<td>130</td>
<td>µA</td>
<td>16-bit counter</td>
</tr>
<tr>
<td>ICTR3</td>
<td>Block current consumption at 48 MHz</td>
<td></td>
<td></td>
<td>535</td>
<td>µA</td>
<td>16-bit counter</td>
</tr>
</tbody>
</table>

Table 22. Counter AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRFREQ</td>
<td>Operating frequency FCLK</td>
<td></td>
<td></td>
<td>48</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>CTRPWINT</td>
<td>Capture pulse width (internal)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CTRPWEXT</td>
<td>Capture pulse width (external)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CTRRES</td>
<td>Counter Resolution</td>
<td>TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CENWIDINT</td>
<td>Enable pulse width (internal)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CENWIDEXT</td>
<td>Enable pulse width (external)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CTRRESWINT</td>
<td>Reset pulse width (internal)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CTRRESEXT</td>
<td>Reset pulse width (external)</td>
<td>2 × TCLK</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Pulse Width Modulation (PWM)

Table 23. PWM DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPWM1</td>
<td>Block current consumption at 3 MHz</td>
<td></td>
<td></td>
<td>42</td>
<td>µA</td>
<td>16-bit PWM</td>
</tr>
<tr>
<td>IPWM2</td>
<td>Block current consumption at 12 MHz</td>
<td></td>
<td></td>
<td>130</td>
<td>µA</td>
<td>16-bit PWM</td>
</tr>
<tr>
<td>IPWM3</td>
<td>Block current consumption at 48 MHz</td>
<td></td>
<td></td>
<td>535</td>
<td>µA</td>
<td>16-bit PWM</td>
</tr>
</tbody>
</table>
Table 24. PWM AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPWMFREQ</td>
<td>Operating frequency</td>
<td>FCLK</td>
<td>–</td>
<td>48</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>TPWMPWINT</td>
<td>Pulse width (internal)</td>
<td>2 × TCLK</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TPWMEEXT</td>
<td>Pulse width (external)</td>
<td>2 × TCLK</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TPWMKILLINT</td>
<td>Kill pulse width (internal)</td>
<td>2 × TCLK</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TPWMKILLEXT</td>
<td>Kill pulse width (external)</td>
<td>2 × TCLK</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TPWMEINT</td>
<td>Enable pulse width (internal)</td>
<td>2 × TCLK</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TPWMENEXT</td>
<td>Enable pulse width (external)</td>
<td>2 × TCLK</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TPWMRESWINT</td>
<td>Reset pulse width (internal)</td>
<td>2 × TCLK</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TPWMRESWEXT</td>
<td>Reset pulse width (external)</td>
<td>2 × TCLK</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

LCD Direct Drive

Table 25. LCD Direct Drive DC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID228</td>
<td>ILCDLOW</td>
<td>Operating current in low-power mode</td>
<td>–</td>
<td>17.5</td>
<td>–</td>
<td>µA</td>
<td>16 × 4 small segment display at 50 Hz</td>
</tr>
<tr>
<td>SID229</td>
<td>CLCDCAP</td>
<td>LCD capacitance per segment/common driver</td>
<td>–</td>
<td>500</td>
<td>5000</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>SID230</td>
<td>LCDOFFSET</td>
<td>Long-term segment offset</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>SID231</td>
<td>ILCDOP1</td>
<td>LCD system operating current</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>mA</td>
<td>32 × 4 segments, 50 Hz at 25 °C</td>
</tr>
<tr>
<td>SID232</td>
<td>ILCDOP2</td>
<td>LCD system operating current</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>mA</td>
<td>32 × 4 segments, 50 Hz at 25 °C</td>
</tr>
</tbody>
</table>

Table 26. LCD Direct Drive AC Specifications

<table>
<thead>
<tr>
<th>Spec ID</th>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID233</td>
<td>F_LCD</td>
<td>LCD frame rate</td>
<td>10</td>
<td>50</td>
<td>150</td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>
Serial Communication

Table 27. Fixed I2C DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{I2C1}</td>
<td>Block current consumption at 100 kHz</td>
<td>–</td>
<td>–</td>
<td>50</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>I_{I2C2}</td>
<td>Block current consumption at 400 kHz</td>
<td>–</td>
<td>–</td>
<td>155</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>I_{I2C3}</td>
<td>Block current consumption at 1 Mbps</td>
<td>–</td>
<td>–</td>
<td>390</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>I_{I2C4}</td>
<td>I2C enabled in Deep-Sleep mode</td>
<td>–</td>
<td>–</td>
<td>1.4</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 28. Fixed I2C AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{I2C1}</td>
<td>Bit rate</td>
<td>–</td>
<td>–</td>
<td>400</td>
<td>kHz</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 29. Fixed UART DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{UART1}</td>
<td>Block current consumption at 100 kbps</td>
<td>–</td>
<td>–</td>
<td>55</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>I_{UART2}</td>
<td>Block current consumption at 1000 kbps</td>
<td>–</td>
<td>–</td>
<td>312</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 30. Fixed UART AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{UART}</td>
<td>Bit rate</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>Mbps</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 31. Fixed SPI DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{SPI1}</td>
<td>Block current consumption at 1 Mbps</td>
<td>–</td>
<td>–</td>
<td>360</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>I_{SPI2}</td>
<td>Block current consumption at 4 Mbps</td>
<td>–</td>
<td>–</td>
<td>560</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>I_{SPI3}</td>
<td>Block current consumption at 8 Mbps</td>
<td>–</td>
<td>–</td>
<td>600</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 32. Fixed SPI AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{SPI}</td>
<td>SPI operating frequency (master; 6x over sampling)</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td>MHz</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 33. Fixed SPI Master Mode AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{DMO}</td>
<td>MOSI valid after SCLK driving edge</td>
<td>–</td>
<td>–</td>
<td>18</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>T_{DSI}</td>
<td>MISO valid before SCLK capturing edge</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>Full clock, late MISO sampling</td>
</tr>
<tr>
<td>T_{HMO}</td>
<td>Previous MOSI data hold time</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>Referred to Slave capturing edge</td>
</tr>
</tbody>
</table>

Table 34. Fixed SPI Slave Mode AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{DMI}</td>
<td>MOSI valid before SCLK capturing edge</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>T_{DSO}</td>
<td>MISO valid after SCLK driving edge</td>
<td>–</td>
<td>–</td>
<td>42 + 3 × T_{CPU}</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>T_{DSO_{ext}}</td>
<td>MISO Valid after SCLK driving edge in external clock mode, VDD < 3.0 V</td>
<td>–</td>
<td>–</td>
<td>50</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>T_{HSD}</td>
<td>Previous MISO data hold time</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
<tr>
<td>T_{SSELSCK}</td>
<td>SSEL valid to first SCK valid edge</td>
<td>100</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 35. Flash DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V
PE</td>
<td>Erase and program voltage</td>
<td>1.71</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>T
WS48</td>
<td>Number of Wait states at 32–48 MHz</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td></td>
<td>CPU execution from flash</td>
</tr>
<tr>
<td>T
WS32</td>
<td>Number of Wait states at 16–32 MHz</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td></td>
<td>CPU execution from flash</td>
</tr>
<tr>
<td>T
WS16</td>
<td>Number of Wait states for 0–16 MHz</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td></td>
<td>CPU execution from flash</td>
</tr>
</tbody>
</table>

Table 36. Flash AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T
ROWWRITE
[11]</td>
<td>Row (block) write time (erase and program)</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>ms</td>
<td>Row (block) = 256 bytes</td>
</tr>
<tr>
<td>F
END</td>
<td>Flash endurance</td>
<td>100 K</td>
<td>–</td>
<td>–</td>
<td>cycles</td>
<td>–</td>
</tr>
<tr>
<td>F
RET</td>
<td>Flash retention. TA ≤ 55 °C, 100 K P/E cycles</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>years</td>
<td>–</td>
</tr>
<tr>
<td>F
RET2</td>
<td>Flash retention. TA ≤ 85 °C, 10 K P/E cycles</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>years</td>
<td>–</td>
</tr>
</tbody>
</table>

System Resources

Power-on-Reset (POR)

Table 37. POR DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V
RISEIPOR</td>
<td>Rising trip voltage</td>
<td>0.80</td>
<td>–</td>
<td>1.45</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>V
FALLIPOR</td>
<td>Falling trip voltage</td>
<td>0.75</td>
<td>–</td>
<td>1.40</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>V
PORHYST</td>
<td>Hysteresis</td>
<td>15</td>
<td>–</td>
<td>200</td>
<td>mV</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 38. POR AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T
PPOR_TR</td>
<td>Precision power-on reset (PPOR) response time in Active and Sleep modes</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>μs</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 39. Brown-Out Detect

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V
FALLPPOR</td>
<td>BOD trip voltage in Active and Sleep modes</td>
<td>1.64</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>V
FALLDPSLP</td>
<td>BOD trip voltage in Deep Sleep</td>
<td>1.4</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 40. Hibernate Reset

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V
HBRTRIP</td>
<td>BOD trip voltage in Hibernate</td>
<td>1.1</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
</tr>
</tbody>
</table>

Note

11. It can take as much as 20 ms to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Document Number: 002-00214 Rev. *I*
Table 41. Voltage Monitor DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLV1</td>
<td>LVI_A/D_SEL[3:0] = 0000b</td>
<td>1.71</td>
<td>1.75</td>
<td>1.79</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV2</td>
<td>LVI_A/D_SEL[3:0] = 0001b</td>
<td>1.76</td>
<td>1.80</td>
<td>1.85</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV3</td>
<td>LVI_A/D_SEL[3:0] = 0010b</td>
<td>1.85</td>
<td>1.90</td>
<td>1.95</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV4</td>
<td>LVI_A/D_SEL[3:0] = 0011b</td>
<td>1.95</td>
<td>2.00</td>
<td>2.05</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV5</td>
<td>LVI_A/D_SEL[3:0] = 0100b</td>
<td>2.05</td>
<td>2.10</td>
<td>2.15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV6</td>
<td>LVI_A/D_SEL[3:0] = 0101b</td>
<td>2.15</td>
<td>2.20</td>
<td>2.26</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV7</td>
<td>LVI_A/D_SEL[3:0] = 0110b</td>
<td>2.24</td>
<td>2.30</td>
<td>2.36</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV8</td>
<td>LVI_A/D_SEL[3:0] = 0111b</td>
<td>2.34</td>
<td>2.40</td>
<td>2.46</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV9</td>
<td>LVI_A/D_SEL[3:0] = 1000b</td>
<td>2.44</td>
<td>2.50</td>
<td>2.56</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV10</td>
<td>LVI_A/D_SEL[3:0] = 1001b</td>
<td>2.54</td>
<td>2.60</td>
<td>2.67</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV11</td>
<td>LVI_A/D_SEL[3:0] = 1010b</td>
<td>2.63</td>
<td>2.70</td>
<td>2.77</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV12</td>
<td>LVI_A/D_SEL[3:0] = 1011b</td>
<td>2.73</td>
<td>2.80</td>
<td>2.87</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV13</td>
<td>LVI_A/D_SEL[3:0] = 1100b</td>
<td>2.83</td>
<td>2.90</td>
<td>2.97</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV14</td>
<td>LVI_A/D_SEL[3:0] = 1101b</td>
<td>2.93</td>
<td>3.00</td>
<td>3.08</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV15</td>
<td>LVI_A/D_SEL[3:0] = 1110b</td>
<td>3.12</td>
<td>3.20</td>
<td>3.28</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VLV16</td>
<td>LVI_A/D_SEL[3:0] = 1111b</td>
<td>4.39</td>
<td>4.50</td>
<td>4.61</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>LVI_IDD</td>
<td>Block current</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

Table 42. Voltage Monitor AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMONTRIP</td>
<td>Voltage monitor trip time</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>

SWD Interface

Table 43. SWD Interface Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_SWDCLK1</td>
<td>3.3 V ≤ VDD ≤ 5.5 V</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>MHz</td>
<td>SWDCLK ≤ 1/3 CPU clock frequency</td>
</tr>
<tr>
<td>F_SWDCLK2</td>
<td>1.71 V ≤ VDD ≤ 3.3 V</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>MHz</td>
<td>SWDCLK ≤ 1/3 CPU clock frequency</td>
</tr>
<tr>
<td>T_SWDI_SET</td>
<td>T = 1/f SWDCLK</td>
<td>0.25 × T</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>T_SWDI_HOLD</td>
<td>T = 1/f SWDCLK</td>
<td>0.25 × T</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>T_SWDO_VALID</td>
<td>T = 1/f SWDCLK</td>
<td>–</td>
<td>–</td>
<td>0.5 × T</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>T_SWDO_HOLD</td>
<td>T = 1/f SWDCLK</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
Internal Main Oscillator

Table 44. IMO DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{IMO1})</td>
<td>IMO operating current at 48 MHz</td>
<td>–</td>
<td>–</td>
<td>1000</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>(I_{IMO2})</td>
<td>IMO operating current at 24 MHz</td>
<td>–</td>
<td>–</td>
<td>325</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>(I_{IMO3})</td>
<td>IMO operating current at 12 MHz</td>
<td>–</td>
<td>–</td>
<td>225</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>(I_{IMO4})</td>
<td>IMO operating current at 6 MHz</td>
<td>–</td>
<td>–</td>
<td>180</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>(I_{IMO5})</td>
<td>IMO operating current at 3 MHz</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 45. IMO AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{IMOTOL3})</td>
<td>Frequency variation from 3 to 48 MHz</td>
<td>–</td>
<td>–</td>
<td>±2</td>
<td>%</td>
<td>With API-called calibration</td>
</tr>
<tr>
<td>(F_{IMOTOL3})</td>
<td>IMO startup time</td>
<td>–</td>
<td>12</td>
<td>–</td>
<td>µs</td>
<td>–</td>
</tr>
</tbody>
</table>

Internal Low-Speed Oscillator

Table 46. ILO DC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{ILO2})</td>
<td>ILO operating current at 32 kHz</td>
<td>–</td>
<td>0.3</td>
<td>1.05</td>
<td>µA</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 47. ILO AC Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{STARTILO1})</td>
<td>ILO startup time</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>ms</td>
<td>–</td>
</tr>
<tr>
<td>(F_{ILOTRIM1})</td>
<td>32-kHz trimmed frequency</td>
<td>15</td>
<td>32</td>
<td>50</td>
<td>kHz</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 48. Recommended ECO Trim Value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO.Trim</td>
<td>24-MHz trim value (firmware configuration)</td>
<td>0x000A0A0</td>
<td>Recommended trim value that needs to be loaded to register CY_SYS_XTAL_BLERD_BB_XO_CAPTRIM_REG</td>
</tr>
</tbody>
</table>

BLE Subsystem

Table 49. BLE Subsystem

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXS, IDLE</td>
<td>RX sensitivity with idle transmitter</td>
<td>–</td>
<td>–</td>
<td>−89</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>RXS, DIRTY</td>
<td>RX sensitivity with dirty transmitter excluding Balun loss</td>
<td>–</td>
<td>–</td>
<td>−91</td>
<td>dBm</td>
<td>Guaranteed by design simulation</td>
</tr>
<tr>
<td>RXS, HIGHGAIN</td>
<td>RX sensitivity in high-gain mode with idle transmitter</td>
<td>–</td>
<td>–</td>
<td>−91</td>
<td>dBm</td>
<td>–</td>
</tr>
<tr>
<td>PRXMAX</td>
<td>Maximum input power</td>
<td>−10</td>
<td>−1</td>
<td>–</td>
<td>dBm</td>
<td>–</td>
</tr>
<tr>
<td>CI1</td>
<td>Cochannel interference, Wanted signal at −67 dBm and Interferer at FRX</td>
<td>–</td>
<td>9</td>
<td>21</td>
<td>dB</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 49. BLE Subsystem (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI2</td>
<td>Adjacent channel interference</td>
<td>–</td>
<td>3</td>
<td>15</td>
<td>dB</td>
<td>RF-PHY Specification (RCV-LE/CA/03/C)</td>
</tr>
<tr>
<td>CI3</td>
<td>Adjacent channel interference</td>
<td>–</td>
<td>–29</td>
<td>–</td>
<td>dB</td>
<td>RF-PHY Specification (RCV-LE/CA/03/C)</td>
</tr>
<tr>
<td>CI4</td>
<td>Adjacent channel interference</td>
<td>–</td>
<td>–39</td>
<td>–</td>
<td>dB</td>
<td>RF-PHY Specification (RCV-LE/CA/03/C)</td>
</tr>
<tr>
<td>CI5</td>
<td>Adjacent channel interference</td>
<td>–</td>
<td>–20</td>
<td>–</td>
<td>dB</td>
<td>RF-PHY Specification (RCV-LE/CA/03/C)</td>
</tr>
<tr>
<td>CI3</td>
<td>Adjacent channel interference</td>
<td>–</td>
<td>–30</td>
<td>–</td>
<td>dB</td>
<td>RF-PHY Specification (RCV-LE/CA/03/C)</td>
</tr>
<tr>
<td>IMD</td>
<td>Intermodulation performance</td>
<td>–50</td>
<td>–</td>
<td>–</td>
<td>dBm</td>
<td>RF-PHY Specification (RCV-LE/CA/05/C)</td>
</tr>
<tr>
<td>RXSE1</td>
<td>Receiver spurious emission</td>
<td>–</td>
<td>–</td>
<td>–57</td>
<td>dBm</td>
<td>100-kHz measurement bandwidth ETSI EN300 328 V1.8.1</td>
</tr>
<tr>
<td>RXSE2</td>
<td>Receiver spurious emission</td>
<td>–</td>
<td>–</td>
<td>–47</td>
<td>dBm</td>
<td>1-MHz measurement bandwidth ETSI EN300 328 V1.8.1</td>
</tr>
</tbody>
</table>

RF Transmitter Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXP, ACC</td>
<td>RF power accuracy</td>
<td>–</td>
<td>±1</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>TXP, RANGE</td>
<td>RF power control range</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>TXP, 0dBm</td>
<td>Output power, 0-dB Gain setting (PA7)</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>dBm</td>
</tr>
<tr>
<td>TXP, MAX</td>
<td>Output power, maximum power setting (PA10)</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>dBm</td>
</tr>
<tr>
<td>TXP, MIN</td>
<td>Output power, minimum power setting (PA1)</td>
<td>–</td>
<td>–18</td>
<td>–</td>
<td>dBm</td>
</tr>
<tr>
<td>F2AVG</td>
<td>Average frequency deviation for 10101010 pattern</td>
<td>185</td>
<td>–</td>
<td>–</td>
<td>kHz</td>
</tr>
</tbody>
</table>
Table 49. BLE Subsystem (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1AVG</td>
<td>Average frequency deviation for 11110000 pattern</td>
<td>225</td>
<td>250</td>
<td>275</td>
<td>kHz</td>
<td>RF-PHY Specification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(TRM-LE/CA/05/C)</td>
</tr>
<tr>
<td>EO</td>
<td>Eye opening = ΔF2AVG/ΔF1AVG</td>
<td>0.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>RF-PHY Specification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(TRM-LE/CA/05/C)</td>
</tr>
<tr>
<td>FTX, ACC</td>
<td>Frequency accuracy</td>
<td>–150</td>
<td>–</td>
<td>150</td>
<td>kHz</td>
<td>RF-PHY Specification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(TRM-LE/CA/05/C)</td>
</tr>
<tr>
<td>FTX, MAXDR</td>
<td>Maximum frequency drift</td>
<td>–50</td>
<td>–</td>
<td>50</td>
<td>kHz</td>
<td>RF-PHY Specification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(TRM-LE/CA/06/C)</td>
</tr>
<tr>
<td>FTX, INITDR</td>
<td>Initial frequency drift</td>
<td>–20</td>
<td>–</td>
<td>20</td>
<td>kHz</td>
<td>RF-PHY Specification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(TRM-LE/CA/06/C)</td>
</tr>
<tr>
<td>FTX, DR</td>
<td>Maximum drift rate</td>
<td>–20</td>
<td>–</td>
<td>20</td>
<td>kHz/</td>
<td>RF-PHY Specification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 µs</td>
<td>(TRM-LE/CA/06/C)</td>
</tr>
<tr>
<td>IBSE1</td>
<td>In-band spurious emission at 2-MHz offset</td>
<td>–</td>
<td>–</td>
<td>–20</td>
<td>dBm</td>
<td>RF-PHY Specification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(TRM-LE/CA/03/C)</td>
</tr>
<tr>
<td>IBSE2</td>
<td>In-band spurious emission at ≥3-MHz offset</td>
<td>–</td>
<td>–</td>
<td>–30</td>
<td>dBm</td>
<td>RF-PHY Specification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(TRM-LE/CA/03/C)</td>
</tr>
<tr>
<td>TXSE1</td>
<td>Transmitter spurious emissions (average), <1.0 GHz</td>
<td>–</td>
<td>–</td>
<td>-55.5</td>
<td>dBm</td>
<td>FCC-15.247</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXSE2</td>
<td>Transmitter spurious emissions (average), >1.0 GHz</td>
<td>–</td>
<td>–</td>
<td>-41.5</td>
<td>dBm</td>
<td>FCC-15.247</td>
</tr>
</tbody>
</table>

RF Current Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRX</td>
<td>Receive current in normal mode</td>
<td>–</td>
<td>18.7</td>
<td>–</td>
<td>mA</td>
<td>Measured at V_DDR</td>
</tr>
<tr>
<td>IRX_RF</td>
<td>Radio receive current in normal mode</td>
<td>–</td>
<td>16.4</td>
<td>–</td>
<td>mA</td>
<td>Measured at V_DDR</td>
</tr>
<tr>
<td>IRX, HIGHGAIN</td>
<td>Receive current in high-gain mode</td>
<td>–</td>
<td>21.5</td>
<td>–</td>
<td>mA</td>
<td>Measured at V_DDR</td>
</tr>
<tr>
<td>ITX, 3dBm</td>
<td>TX current at 3-dBm setting (PA10)</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>mA</td>
<td>Measured at V_DDR</td>
</tr>
<tr>
<td>ITX, 0dBm</td>
<td>TX current at 0-dBm setting (PA7)</td>
<td>–</td>
<td>16.5</td>
<td>–</td>
<td>mA</td>
<td>Measured at V_DDR</td>
</tr>
<tr>
<td>ITX_RF, 0dBm</td>
<td>Radio TX current at 0 dB setting (PA7)</td>
<td>–</td>
<td>15.6</td>
<td>–</td>
<td>mA</td>
<td>Measured at V_DDR</td>
</tr>
<tr>
<td>ITX_RF, 0dBm</td>
<td>Radio TX current at 0 dB setting excluding Balun loss</td>
<td>–</td>
<td>14.2</td>
<td>–</td>
<td>mA</td>
<td>Measured at V_DDR</td>
</tr>
<tr>
<td>ITX, -3dBm</td>
<td>TX current at –3-dBm setting (PA4)</td>
<td>–</td>
<td>15.5</td>
<td>–</td>
<td>mA</td>
<td>Measured at V_DDR</td>
</tr>
<tr>
<td>ITX, -6dBm</td>
<td>TX current at –6-dBm setting (PA3)</td>
<td>–</td>
<td>14.5</td>
<td>–</td>
<td>mA</td>
<td>Measured at V_DDR</td>
</tr>
<tr>
<td>ITX, -12dBm</td>
<td>TX current at –12-dBm setting (PA2)</td>
<td>–</td>
<td>13.2</td>
<td>–</td>
<td>mA</td>
<td>Measured at V_DDR</td>
</tr>
<tr>
<td>ITX, -18dBm</td>
<td>TX current at –18-dBm setting (PA1)</td>
<td>–</td>
<td>12.5</td>
<td>–</td>
<td>mA</td>
<td>Measured at V_DDR</td>
</tr>
<tr>
<td>Iavg_1sec, 0dBm</td>
<td>Average current at 1-second BLE connection interval</td>
<td>–</td>
<td>17.1</td>
<td>–</td>
<td>µA</td>
<td>TXP: 0 dBm; ±20-ppm master and slave clock accuracy. For empty PDU exchange</td>
</tr>
<tr>
<td>Iavg_4sec, 0dBm</td>
<td>Average current at 4-second BLE connection interval</td>
<td>–</td>
<td>6.1</td>
<td>–</td>
<td>µA</td>
<td>TXP: 0 dBm; ±20-ppm master and slave clock accuracy. For empty PDU exchange</td>
</tr>
</tbody>
</table>

General RF Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQ</td>
<td>RF operating frequency</td>
<td>2400</td>
<td>–</td>
<td>2482</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>
Table 49. BLE Subsystem (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Details/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHBW</td>
<td>Channel spacing</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>MHz</td>
<td>Not Recommended for New Designs</td>
</tr>
<tr>
<td>DR</td>
<td>On-air data rate</td>
<td>–</td>
<td>1000</td>
<td>–</td>
<td>kbps</td>
<td>Not Recommended for New Designs</td>
</tr>
<tr>
<td>IDLE2TX</td>
<td>BLE.IDLE to BLE. TX transition time</td>
<td>–</td>
<td>120</td>
<td>140</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>IDLE2RX</td>
<td>BLE.IDLE to BLE. RX transition time</td>
<td>–</td>
<td>75</td>
<td>120</td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>

RSSI Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSSI, ACC</td>
<td>RSSI accuracy</td>
<td>–</td>
<td>±5</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>RSSI, RES</td>
<td>RSSI resolution</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>RSSI, PER</td>
<td>RSSI sample period</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>µs</td>
</tr>
</tbody>
</table>
Environmental Specifications

Environmental Compliance
This Cypress BLE module is built in compliance with the Restriction of Hazardous Substances (RoHS) and Halogen Free (HF) directives. The Cypress module and components used to produce this module are RoHS and HF compliant.

RF Certification
The CYBLE-222005-00 module is certified under the following RF certification standards:
- FCC: WAP2005
- CE
- IC: 7922A-2005
- MIC: 203-JN0495
- KC: MSIP-CRM-Cyp-2005

Safety Certification
The CYBLE-222005-00 module complies with the following regulations:
- Underwriters Laboratories, Inc. (UL) - Filing E331901
- CSA
- TUV

Environmental Conditions
Table 50 describes the operating and storage conditions for the Cypress BLE module.

Table 50. Environmental Conditions for CYBLE-222005-00

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum Specification</th>
<th>Maximum Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-40 °C</td>
<td>85 °C</td>
</tr>
<tr>
<td>Operating humidity (relative, non-condensation)</td>
<td>5%</td>
<td>85%</td>
</tr>
<tr>
<td>Thermal ramp rate</td>
<td>–</td>
<td>3 °C/minute</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40 °C</td>
<td>85 °C</td>
</tr>
<tr>
<td>Storage temperature and humidity</td>
<td>–</td>
<td>85 °C at 85%</td>
</tr>
<tr>
<td>ESD: Module integrated into system Components[12]</td>
<td>–</td>
<td>15-kV Air</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2-kV Contact</td>
</tr>
</tbody>
</table>

ESD and EMI Protection
Exposed components require special attention to ESD and electromagnetic interference (EMI).

A grounded conductive layer inside the device enclosure is suggested for EMI and ESD performance. Any openings in the enclosure near the module should be surrounded by a grounded conductive layer to provide ESD protection and a low-impedance path to ground.

Device Handling: Proper ESD protocol must be followed in manufacturing to ensure component reliability.

Note
12. This does not apply to the RF pins (ANT, XTALI, and XTALO). RF pins (ANT, XTALI, and XTALO) are tested for 500-V HBM.
Regulatory Information

FCC

FCC NOTICE:
The device CYBLE-222005-00, including the antenna 2450AT18B100 from Johanson Technology, complies with Part 15 of the FCC Rules. The device meets the requirements for modular transmitter approval as detailed in FCC public Notice DA00-1407. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

CAUTION:
The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by Cypress Semiconductor may void the user's authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment on and off, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help

LABELING REQUIREMENTS:
The Original Equipment Manufacturer (OEM) must ensure that FCC labelling requirements are met. This includes a clearly visible label on the outside of the OEM enclosure specifying the appropriate Cypress Semiconductor FCC identifier for this product as well as the FCC Notice above. The FCC identifier is FCC ID: WAP2005.

In any case the end product must be labeled exterior with "Contains FCC ID: WAP2005"

ANTENNA WARNING:
This device is tested with a standard SMA connector and with the antennas listed below. When integrated in the OEMs product, these fixed antennas require installation preventing end-users from replacing them with non-approved antennas. Any antenna not in the following table must be tested to comply with FCC Section 15.203 for unique antenna connectors and Section 15.247 for emissions.

RF EXPOSURE:
To comply with FCC RF Exposure requirements, the Original Equipment Manufacturer (OEM) must ensure to install the approved antenna in the previous.

The preceding statement must be included as a CAUTION statement in manuals, for products operating with the approved antennas in Table 6 on page 12, to alert users on FCC RF Exposure compliance. Any notification to the end user of installation or removal instructions about the integrated radio module is not allowed.

The radiated output power of CYBLE-222005-00 with the chip antenna mounted (FCC ID: WAP2005) is far below the FCC radio frequency exposure limits. Nevertheless, use CYBLE-222005-00 in such a manner that minimizes the potential for human contact during normal operation.

End users may not be provided with the module installation instructions. OEM integrators and end users must be provided with transmitter operating conditions for satisfying RF exposure compliance.
ISED
Innovation, Science and Economic Development Canada (ISED) Certification

CYBLE-222005-00 is licensed to meet the regulatory requirements of Innovation, Science and Economic Development Canada (ISED).

License: IC: 7922A-2005

Manufacturers of mobile, fixed or portable devices incorporating this module are advised to clarify any regulatory questions and ensure compliance for SAR and/or RF exposure limits. Users can obtain Canadian information on RF exposure and compliance from www.ic.gc.ca.

This device has been designed to operate with the antennas listed in Table 6 on page 12, having a maximum gain of 0.5 dBi. Antennas not included in this list or having a gain greater than 0.5 dBi are strictly prohibited for use with this device. The required antenna impedance is 50 ohms. The antenna used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

ISED NOTICE:
The device CYBLE-222005-00 including the antenna 2450AT18B100 from Johanson technology, complies with Canada RSS-GEN Rules. The device meets the requirements for modular transmitter approval as detailed in RSS-GEN. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

ISED RADIATION EXPOSURE STATEMENT FOR CANADA

This device complies with Innovation, Science and Economic Development (ISED) Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

LABELING REQUIREMENTS:
The Original Equipment Manufacturer (OEM) must ensure that ISED labelling requirements are met. This includes a clearly visible label on the outside of the OEM enclosure specifying the appropriate Cypress Semiconductor IC identifier for this product as well as the ISED Notice above. The IC identifier is 7922A-2005. In any case, the end product must be labeled in its exterior with "Contains IC: 7922A-2005".

European R&TTE Declaration of Conformity

Hereby, Cypress Semiconductor declares that the Bluetooth module CYBLE-222005-00 complies with the essential requirements and other relevant provisions of Directive 1999/5/EC. As a result of the conformity assessment procedure described in Annex III of the Directive 1999/5/EC, the end-customer equipment should be labeled as follows:

All versions of the CYBLE-222005-00 in the specified reference design can be used in the following countries: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, The Netherlands, the United Kingdom, Switzerland, and Norway.
MIC Japan
CYBLE-222005-00 is certified as a module with type certification number 203-JN0495. End products that integrate CYBLE-222005-00 do not need additional MIC Japan certification for the end product. End product can display the certification label of the embedded module.

Model Name: EZ-BLE PRoC Module
Part Number: CYBLE-222005-00
Manufactured by Cypress Semiconductor.

KC Korea
CYBLE-222005-00 is certified for use in Korea with certificate number MSIP-CRM-Cyp-2005.

한국 인증 세부정보:

1. 제품명(모델명): 특장분출러무선기기(무선데이터통신시스템용무선기기), CYBLE-222005-00
2. 인증번호: MSIP-CRM-Cyp-2005
3. 라이선스 소유자: Cypress Semiconductor Corporation
4. 제조일자: 2015.10
5. 제조업체/국가명: Cypress Semiconductor Corporation/중국

해당 무선설비는 전파혼신 가능성이 있으므로 인명안전과 관련된 서비스는 할 수 없습니다.
Packaging

Table 51. Solder Reflow Peak Temperature

<table>
<thead>
<tr>
<th>Module Part Number</th>
<th>Package</th>
<th>Maximum Peak Temperature</th>
<th>Maximum Time at Peak Temperature</th>
<th>No. of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYBLE-222005-00</td>
<td>22-pad SMT</td>
<td>260 °C</td>
<td>30 seconds</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 52. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

<table>
<thead>
<tr>
<th>Module Part Number</th>
<th>Package</th>
<th>MSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYBLE-222005-00</td>
<td>22-pad SMT</td>
<td>MSL 3</td>
</tr>
</tbody>
</table>

The CYBLE-222005-00 is offered in tape and reel packaging. Figure 10 details the tape dimensions used for the CYBLE-222005-00.

Figure 10. CYBLE-222005-00 Tape Dimensions

<table>
<thead>
<tr>
<th>Item</th>
<th>W</th>
<th>A₀</th>
<th>B₀</th>
<th>K₀</th>
<th>E₀</th>
<th>P₁</th>
<th>F</th>
<th>E</th>
<th>D₀</th>
<th>D₁</th>
<th>P₀</th>
<th>P₂</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>24.0 ±0.004,5,-0.004</td>
<td>19.26 ±0.004,5,-0.004</td>
<td>2.00 ±0.004,5,-0.004</td>
<td>22.25 mm</td>
<td>16.0 ±0.004,5,-0.004</td>
<td>11.5 ±0.004,5,-0.004</td>
<td>1.75 ±0.004,5,-0.004</td>
<td>1.50 ±0.004,5,-0.004</td>
<td>4.00 ±0.004,5,-0.004</td>
<td>2.00 ±0.004,5,-0.004</td>
<td>0.90 ±0.004,5,-0.004</td>
<td>0.55 ±0.004,5,-0.004</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11 details the orientation of the CYBLE-222005-00 in the tape as well as the direction for unreeling.

Figure 11. Component Orientation in Tape and Unreeling Direction
Figure 12 details reel dimensions used for the CYBLE-222005-00.

Figure 12. Reel Dimensions

<table>
<thead>
<tr>
<th>Index</th>
<th>NOTE</th>
<th>Dimension</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Inside Width</td>
<td>24.4</td>
<td>+2.0 mm, -0.0 mm</td>
</tr>
<tr>
<td>B</td>
<td>Reel Diameter</td>
<td>254.00</td>
<td>+2.0 mm, -2.0 mm</td>
</tr>
<tr>
<td>C</td>
<td>Outer Axis Diameter</td>
<td>100.00</td>
<td>+2.0 mm, -2.0 mm</td>
</tr>
<tr>
<td>D</td>
<td>Inner Axis Diameter</td>
<td>13.20</td>
<td>+0.3 mm, -0.2 mm</td>
</tr>
</tbody>
</table>

The CYBLE-222005-00 is designed to be used with pick-and-place equipment in an SMT manufacturing environment. The center-of-mass for the CYBLE-222005-00 is detailed in Figure 13.

Figure 13. CYBLE-222005-00 Center of Mass
Ordering Information

Table 53 lists the CYBLE-222005-00 part number and features. Table 54 lists the reel shipment quantities for the CYBLE-222005-00.

Table 53. Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>CPU Speed (MHz)</th>
<th>Flash Size (KB)</th>
<th>CapSense</th>
<th>SCB</th>
<th>TCPWM</th>
<th>12-Bit SAR ADC</th>
<th>i²S</th>
<th>LCD Drive</th>
<th>Package</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYBLE-222005-00</td>
<td>48</td>
<td>256</td>
<td>Yes</td>
<td>2</td>
<td>4</td>
<td>1 Msps</td>
<td>Yes</td>
<td>Yes</td>
<td>22-SMT</td>
<td>Tape and Reel</td>
</tr>
</tbody>
</table>

Table 54. Tape and Reel Package Quantity and Minimum Order Amount

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum Reel Quantity</th>
<th>Maximum Reel Quantity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel Quantity</td>
<td>500</td>
<td>500</td>
<td>Ships in 500 unit reel quantities.</td>
</tr>
<tr>
<td>Minimum Order Quantity (MOQ)</td>
<td>500</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Order Increment (OI)</td>
<td>500</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

The CYBLE-222005-00 is offered in tape and reel packaging. The CYBLE-222005-00 ships with a maximum of 500 units/reel.

Part Numbering Convention

The part numbers are of the form CYBLE-FATT##-SB where the fields are defined as follows.

- **CYBLE**: Device Identification Number: Unique sequential product number for each module
- **F** = EZ-BLE Module Type: 2/4 = PSoC4, 3 = WICED, 4 = PSoC6
- **A** = Antenna Type: 0 = No Antenna, 1 = PCB Antenna, 2 = Chip Antenna
- **T** = Flash Size: 0 = 128KB, 2 = 256KB
- **# #**: Temperature Range: 0 = Industrial, 1 = Extended Industrial
- **S**: Marketing Code: BLE = BLE Product Family
- **B**: Company ID: CY = Cypress

For additional information and a complete list of Cypress Semiconductor BLE products, contact your local Cypress sales representative. To locate the nearest Cypress office, visit our website.

<table>
<thead>
<tr>
<th>U.S. Cypress Headquarters Address</th>
<th>198 Champion Court, San Jose, CA 95134</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Cypress Headquarter Contact Info</td>
<td>(408) 943-2600</td>
</tr>
<tr>
<td>Cypress website address</td>
<td>http://www.cypress.com</td>
</tr>
</tbody>
</table>
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLE</td>
<td>Bluetooth Low Energy</td>
</tr>
<tr>
<td>Bluetooth SIG</td>
<td>Bluetooth Special Interest Group</td>
</tr>
<tr>
<td>CE</td>
<td>European Conformity</td>
</tr>
<tr>
<td>CSA</td>
<td>Canadian Standards Association</td>
</tr>
<tr>
<td>EMI</td>
<td>electromagnetic interference</td>
</tr>
<tr>
<td>ESD</td>
<td>electrostatic discharge</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>GPIO</td>
<td>general-purpose input/output</td>
</tr>
<tr>
<td>IC</td>
<td>Industry Canada</td>
</tr>
<tr>
<td>IDE</td>
<td>integrated design environment</td>
</tr>
<tr>
<td>KC</td>
<td>Korea Certification</td>
</tr>
<tr>
<td>MIC</td>
<td>Ministry of Internal Affairs and Communications (Japan)</td>
</tr>
<tr>
<td>PCB</td>
<td>printed circuit board</td>
</tr>
<tr>
<td>RX</td>
<td>receive</td>
</tr>
<tr>
<td>QDID</td>
<td>qualification design ID</td>
</tr>
<tr>
<td>SMT</td>
<td>surface-mount technology; a method for producing electronic circuitry in which the components are placed directly onto the surface of PCBs</td>
</tr>
<tr>
<td>TCPWM</td>
<td>timer, counter, pulse width modulator (PWM)</td>
</tr>
<tr>
<td>TUV</td>
<td>Germany: Technischer Überwachungs-Verein (Technical Inspection Association)</td>
</tr>
<tr>
<td>TX</td>
<td>transmit</td>
</tr>
</tbody>
</table>

Document Conventions

Units of Measure

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>kV</td>
<td>kilovolt</td>
</tr>
<tr>
<td>mA</td>
<td>milliamperes</td>
</tr>
<tr>
<td>mm</td>
<td>millimeters</td>
</tr>
<tr>
<td>mV</td>
<td>millivolt</td>
</tr>
<tr>
<td>µA</td>
<td>microamperes</td>
</tr>
<tr>
<td>µm</td>
<td>micrometers</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>GHz</td>
<td>gigahertz</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
</tbody>
</table>
Document History Page

Document Title: CYBLE-222005-00 EZ-BLE Creator Module
Document Number: 002-00214

<table>
<thead>
<tr>
<th>Revision</th>
<th>ECN</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>4953407</td>
<td>10/08/2015</td>
<td>Preliminary datasheet for CYBLE-222005-00 module.</td>
</tr>
</tbody>
</table>
| *A | 5060713 | 01/07/2016 | Updated **General Description** to add reference and link to PSoC BLE silicon datasheet and include Declaration ID number.
Updated **More Information** section to the datasheet.
Updated **Figure 1, Figure 2, Figure 3, and Figure 4** to improve clarity and viewing.
Added **Figure 5 in Recommended Host PCB Layout** section to show solder pad location from module origin.
Updated **Table 3 and Figure 6 in Recommended Host PCB Layout** section to provide the location to the center of each solder pad from the origin (in mm and mils).
Added **BLE Subsystem** section.
Added French translation for **IC Radiation Exposure Statement For Canada in ISED** section on page 30 in accordance with IC requirements.
Updated **MIC Japan** section on page 31 to specify final MIC certification number.
Updated **KC Korea** section on page 31 to specify final KC certification number.
Added **Table 51 and Table 52** on page 32. |
| *B | 5146846 | 02/22/2016 | Changed status from "Preliminary" to "Final".
Updated **More Information** section to add KBA210574 (Certification Test Reports) to reference list.
Updated **General Description** to include reference and link for QDID.
Updated orientation of module drawings in **Figure 1 through Figure 9 and Figure 13** to match orientation in PSoC Creator.
Updated **Table 4** to add additional information with respect to the functional capabilities for each solder pad. |
| *C | 5421877 | 09/01/2016 | Updated **More Information:**
Added additional Knowledge Base Article references.
Updated **Electrical Specification:**
Updated **System Resources:**
Updated **Internal Low-Speed Oscillator:**
Updated **Table 48** (Updated details in “Value” column corresponding to ECO\textsubscript{TRIM} parameter).
Updated **Ordering Information:**
No change in part numbers.
Added **Table 54** (To specify minimum and maximum reel quantities that ship for orders of the CYBLE-222005-00 module).
Updated to new template.
Completing Sunset Review. |
| *D | 5528433 | 11/23/2016 | Updated **More Information:**
Added **EZ-Serial™ BLE Firmware Platform** section.
Updated **Recommended Host PCB Layout:**
Updated **Figure 4, Figure 5, and Figure 6 captions** to specify that these as “Seen on Host PCB”.
Updated **Power Supply Connections and Recommended External Components:**
Updated **Figure 7 and Figure 8** to specify that these are “Seen from Bottom”.
Updated **Digital and Analog Capabilities and Connections:**
Updated **Table 4:**
Updated TCPWM column to add TCPWM capability on Port 2 pins.
Added Footnote 3.
Updated **Document History Page:**
Remove ",," from Document Title.
Document History Page (continued)

<table>
<thead>
<tr>
<th>Document Title: CYBLE-222005-00 EZ-BLE Creator Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number: 002-00214</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*E</td>
<td>5553544</td>
<td>12/14/2016</td>
<td>Updated Electrical Specification:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated SAR ADC:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated Table 17 to add Note 10 to specify under what conditions the maximum number of ADC channels can be achieved.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*F</td>
<td>5709580</td>
<td>04/24/2017</td>
<td>Updated Cypress Logo and Copyright.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*G</td>
<td>6002363</td>
<td>12/22/2017</td>
<td>Updated reel dimensions in Figure 10 and Figure 12.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*H</td>
<td>6087229</td>
<td>03/12/2018</td>
<td>Updated document title as “EZ-BLE™ Creator Module”.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated “PRoC™” references to “Creator”.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated the links of QDID and Declaration ID in Module Description section as “https://launchstudio.bluetooth.com/ListingDetails/474”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated “PRoC BLE” to “PSoC 4 BLE” throughout the document.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated More Information section.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated the term “IC” to “ISED”.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changed the Heading “Industry Canada (IC) Certification” to “ISED” and added a subtitle “Innovation, Science and Economic Development Canada (ISED) Certification”.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated Part Numbering Convention.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Added “Cet appareil est conforme à la norme sur l’innovation, la science et le développement économique (ISED) norme RSS exempte de licence. L’exploitation est autorisée aux deux conditions suivantes:” in ISED RADIATION EXPOSURE STATEMENT FOR CANADA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated the Copyright year.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated to new template.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Completing Sunset Review.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sales, Solutions, and Legal Information

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products
Arm® Cortex® Microcontrollers cyress.com/arm
Automotive cyress.com/automotive
Clocks & Buffers cyress.com/clocks
Interface cyress.com/interface
Internet of Things cyress.com/iot
Memory cyress.com/memory
Microcontrollers cyress.com/mcu
PSoC cyress.com/psoc
Power Management ICs cyress.com/pmic
Touch Sensing cyress.com/touch
USB Controllers cyress.com/usb
Wireless Connectivity cyress.com/wireless

PSoC® Solutions
PSoC 1 | PSOC 3 | PSOC 4 | PSOC 5LP | PSOC 6 MCU

Cypress Developer Community
Community | Projects | Video | Blogs | Training | Components

Technical Support
cyress.com/support

document number: 002-00214 rev. *i revised october 29, 2019 page 38 of 38