Please note that Cypress is an Infineon Technologies Company. The document following this cover page is marked as “Cypress” document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.
1 Introduction
Cypress ships a number of devices in die form. These products are referred to as Known Good Die (KGD). Cypress has offered KGD since 1990, with over 200 million sold since 1990. This application note is relevant for any die product not packaged and at risk of exposure to UV light, plasma clean, or X-ray during module assembly. In addition to KGD, Known Tested Die (KTD) and Non-Singulated Wafers are available for commercial and industrial applications. Special storage and handling conditions expected for KGD, KTD, and wafer products are outlined in Cypress application note Long Term Storage of Wafer and Die Semiconductor IC Products. This includes storage, handling, and processing issues that need to be considered.

For more information about Cypress KGD offerings, consult the Cypress Flash Memory Roadmap or contact your Cypress representative.

2 KGD, KTD, and Wafer Shipment Methods
KGD, KTD, and wafer products are shipped using one of four methods (see Figure 1):
- GDP = Waffle Pack
- GDT = Surftape and Reel
- GDE = Embossed Tape and Reel
- GWJ = Wafer Jar

Many customers prefer Surftape due to ease of assembly and the fact that Surftape sticky tape can hold each die in place to allow for easy and safe removal of die in the pick-and-place operation. Figure 2 is an example of die ejector equipment used to push and place packaged KGD or KTD in Surftape. Figure 3 is an example of Surftape sticky tape design to hold the die in place. See Packing and Packaging Handbook for further specifications.
In the following example of a die ejector system (Figure 2), die on the Surftape are dispensed with active side facing up. A push-up tool in the Surftape feeder lifts the chip from the sticky tape rails for transfer to the pick head on the assembly placement machine.

Figure 2. Example of Die Ejector System

In the following example of Surftape sticky design, sticky tape runs along the two sides of each window (opening pocket) of the Surftape to hold the die in place. At the assembly pick-and-place operation, it is essentially important to prevent both sticky tapes from peeling when cutting off some window pockets of the Surftape at assembly placement machine. Figure 4 is an example of the correct tape cutting handling method for Surftape.
3 Constraints Regarding UV Erase, Plasma and Radiation

Caution is necessary when using UV machines for curing or plasma equipment for cleaning. Most die or wafer products are only protected by a topside nitride passivation layer. KGD, KTD, and wafer products have the same constraints as SMT packages for X-Ray inspection.

4 UV Equipment Could Cause Erase

Use only a 15 W sec/cm² dosage to completely UV erase the contents of a KGD, KTD, or wafer. Obtain this dosage by exposure to an ultraviolet lamp wavelength of 2537 with intensity of 12,000 µW/cm² for 15 to 20 minutes. The EPROM should be directly under and 1 inch from the source. Flash and EPROM are subject to the same guidelines.

Below is a generic list of UV erasers that use the standard wavelength of 2537 Å. Using the lowest Wattage of 32 µW/cm² at 1 meter, a conversion for intensity at 1 in is computed by the following equation:

\[I_2 = I_1 \times \frac{D_1^2}{D_2^2} \]

(EQ 1)

So,

\[I_2 = \frac{(32 \, \mu W/cm^2) \times (100 \, cm)^2}{(2.54 \, cm)^2} = 49,600 \, \mu W/cm^2. \]

(EQ 3)

This result is greater than four times the intensity needed to UV erase. Cypress flash is fully erased at these intensities and wavelengths. More importantly, partial erasure and loss of chip functionality and/or any stored data could occur at significantly lower, as low as 10% of the above exposure doses and higher (up to 4000A) UV light wavelengths. Therefore, care should be taken to protect flash KGD, KTD, or wafers from exposure to UV radiation.
Flash KGD Assembly

Table 1. UV Radiation Rates

<table>
<thead>
<tr>
<th>Lamp Number</th>
<th>Lamp (Watts)</th>
<th>Approximate Lamp Current (425 mA)</th>
<th>Ultraviolet Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total (Watts) (Note 1)</td>
<td>Microwatts @ 1 meter (Note 2)</td>
</tr>
<tr>
<td>UV1</td>
<td>10</td>
<td>425</td>
<td>3.1</td>
</tr>
<tr>
<td>UV2</td>
<td>16</td>
<td>425</td>
<td>5.3</td>
</tr>
<tr>
<td>UV3</td>
<td>17</td>
<td>425</td>
<td>5.8</td>
</tr>
<tr>
<td>UV4</td>
<td>25</td>
<td>425</td>
<td>8.5</td>
</tr>
<tr>
<td>UV5</td>
<td>32</td>
<td>425</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Notes:
1. Ultraviolet output at 254 nanometers.
2. Microwatts per square centimeter at one meter from lamp.

5 Plasmab Equipment

Plasma equipment used to clean modules during assembly also poses an erasure risk to flash KGD, KTD, or wafers. Some of the gas mixtures and times (Table 2) used by Cypress for routine package assembly are known to erase KGD, KTD, or wafer reference cells.

Cypress corrects this erasure during after-assembly test. If plasma clean is necessary during customer KGD, KTD, or wafer assembly, equipment parameters must be relaxed. Cypress has conducted a small sample of experiments to verify that exposures of less than 20 seconds minimize impact to KGD, KTD, or wafer reference cells. Parameters are listed in Table 3.

Table 2. Cypress Plasma Clean Parameters

<table>
<thead>
<tr>
<th>Plasma Clean Before WireBond</th>
<th>Power (W)</th>
<th>Time (sec)</th>
<th>Oxygen (SCCM)</th>
<th>Argon (SCCM)</th>
<th>Pressure (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>450</td>
<td>295</td>
<td>1</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>500</td>
<td>1</td>
<td>2</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasma Clean Before Mold</th>
<th>Power (W)</th>
<th>Time (sec)</th>
<th>Oxygen (SCCM)</th>
<th>Argon (SCCM)</th>
<th>Pressure (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>415</td>
<td>450</td>
<td>6</td>
<td>10</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>190</td>
<td>3</td>
<td>5</td>
<td>95</td>
</tr>
</tbody>
</table>

Table 3. Cypress Recommendations for 20 Sec Exposure

<table>
<thead>
<tr>
<th>Power (W)</th>
<th>Time (sec)</th>
<th>Oxygen (SCCM)</th>
<th>Argon (SCCM)</th>
<th>Pressure (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>20</td>
<td>8</td>
<td>8</td>
<td>240</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>17</td>
<td>17</td>
<td>240</td>
</tr>
</tbody>
</table>

6 Erasure Risk

X-Ray equipment used to inspect modules and/or boards during assembly also poses an erasure risk. Cypress application note, AN98547 - Dose Minimization During X-ray Inspection of Surface-Mounted Flash ICs address this issue. This application note emphasizes the importance of minimizing X-ray dosage.

7 Conclusion

This application note will be updated with further guidance as study of these issues progress. Given the sensitivity of die to UV, plasma, or Radiation, however, extreme care should be taken to avoid damaging the die.

For further information on these issues, refer to the following:
- Larry Gilg, Challenges in Bare Die Mounting. Die Products Consortium, Austin, Texas;
- Raymond A. Pearson, Crack Initiation at Underfill/Passivation Interfaces. Lehigh University, October 2002.
Document History Page

Document Title: AN99112 - Flash KGD Assembly
Document Number: 001-99112

<table>
<thead>
<tr>
<th>Rev.</th>
<th>ECN No.</th>
<th>Orig. of Change</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
</table>
| ** | – | – | 10/14/2005 to 03/28/2014 | Initial version
Removed the confidential mark.
Updated entire application note |
| *A | 4929367 | MSWI | 10/27/2015 | Updated in Cypress template |
| *B | 5601813 | MSWI | 01/25/2017 | Added advise for Surftape handling
Updated template |
| *C | 5801275 | AESATP12 | 07/06/2017 | Updated logo and copyright. |
Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturers’ representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

- ARM® Cortex® Microcontrollers: cypress.com/arm
- Automotive: cypress.com/automotive
- Clocks & Buffers: cypress.com/clocks
- Interface: cypress.com/interface
- Internet of Things: cypress.com/iot
- Lighting & Power Control: cypress.com/powerpsoc
- Memory: cypress.com/memory
- PSoC: cypress.com/psoc
- Touch Sensing: cypress.com/touch
- USB Controllers: cypress.com/usb
- Wireless/RF: cypress.com/wireless

PSoC® Solutions

- PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

- Forums | WICED IoT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license without a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.