More code examples? We heard you.

To access an ever-growing list of hundreds of PSoC code examples, please visit our code examples webpage. You can also explore the PSoC video library here.

AN88619 shows you how to design a hardware system around a PSoC® 4 device, starting with considerations for package selection, power, clocking, reset, I/O usage, programming and debugging interfaces, and analog module design.

Contents

1 Introduction ... 1
2 PSoC Resources .. 2
 2.1 PSoC Creator ... 3
 2.2 Code Examples .. 4
 2.3 PSoC Creator Help 5
 2.4 Technical Support 5
3 Package Selection .. 5
4 Power ... 6
 4.1 Power Pin Connections 6
 4.2 Power Ramp-Up Considerations 7
 4.3 PSoC Creator Settings for Device Power 8
 4.4 Thermal Considerations 8
5 Clocking ... 9
6 Reset ... 10
7 Programming and Debugging 10
8 GPIO Pins .. 11
9 Component Placement 15
10 Analog Module Design Tips 16
 10.1 SAR ADC ... 16
 10.2 Opamps .. 20
 10.3 Comparators ... 20
 10.4 CapSense ... 21
 10.5 Current DACs (IDACs) 21
11 Summary .. 22
12 Related Documents 23
Appendix A. PCB Layout Tips 24
Appendix B. Family Hardware Resources
 Look-Up Table .. 25
Appendix C. Schematic Checklist 28
13 Worldwide Sales and Design Support 30

1 Introduction

PSoC 4 is a powerful, programmable microcontroller with an Arm® Cortex®-M0 CPU. It provides the capability and flexibility for analog and digital applications beyond what traditional MCUs offer. Currently, PSoC 4 portfolio contains the following families: PSoC 4000, 4100, 4200, 4100M, 4200M, 4100L, 4200L, 4000S, 4100S, 4100PS, 4500, and PSoC 4 BLE. For an overview and comparison of these device families see Appendix B - Family Hardware Resources Look-Up Table.

This application note discusses considerations for hardware design including package, power, clocking, reset, I/O use, programming, and debugging; and provides design tips for analog modules for these family of devices. It also discusses good board-layout techniques, which are particularly important for precision analog applications.
The PSoC 4 device must be configured to work in its hardware environment, which you can with the PSoC Creator™ integrated design environment (IDE). The example configuration shown in this application note is based on a PSoC 4200 device; configurations for the other devices should be similar.

This application note assumes that you have some basic familiarity with PSoC 4 devices and PSoC Creator. If you are new to PSoC 4, see AN79953 – Getting Started with PSoC 4. If you are new to PSoC Creator, see the PSoC Creator home page. PSoC 4 BLE related topics are covered in AN91267 - Getting Started with PSoC 4 BLE. For the PSoC 4 BLE family, there is an important topic for hardware design: BLE antenna design. As it involves specific RF expertise, we explore this topic in others application notes, please see related documents.

2 PSoC Resources

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see KBA86521 - How to Design with PSoC 3, PSoC 4, and PSoC 5LP. The following is an abbreviated list for PSoC 4:

- **Overview:** PSoC Portfolio, PSoC Roadmap
- **Product Selectors:** PSoC 1, PSoC 3, PSoC 4, PSoC 5LP, or PSoC 6 MCU. In addition, PSoC Creator includes a device selection tool.
- **Datasheets:** Describe and provide electrical specifications for the PSoC 4000, PSoC 4100, and PSoC 4200, PSoC 4xx7 BLE, PSoC 4100M, PSoC 4200M, PSoC 4200-L, PSoC 4000S, PSoC 4100S, PSoC 4100PS, and PSoC 4100S Plus devices.
- **CapSense Design Guide:** Learn how to design capacitive touch-sensing applications with the PSoC 4 family of devices. Refer to AN64846 - Getting Started with CapSense® to learn more about CapSense technology.
- **Application Notes and Code Examples** cover a broad range of topics, from basic to advanced level. Many of the application notes include code examples.

- **Technical Reference Manuals (TRM)** provide detailed descriptions of the architecture and registers in each of the PSoC 3, PSoC 4, and PSoC 5LP device families.
- **Development Kits:**
 - CY8CKIT-040, CY8CKIT-041, CY8CKIT-042, CY8CKIT-042-BLE, CY8CKIT-044, and CY8CKIT-046 Pioneer Kits are easy-to-use and inexpensive development platforms. These kits include connectors for Arduino™ compatible shields and Digilent® Pmod™ daughter cards.
 - CY8CKIT-049, CY8CKIT-147, and CY8CKIT-149 are very low-cost prototyping platform for sampling PSoC 4 devices.
 - CY8CKIT-001 is a common development platform for all PSoC family devices.
- The MiniProg3 device provides an interface for flash programming and debug.
2.1 PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of systems based on PSoC 3, PSoC 4, and PSoC 5LP. See Figure 1 – with PSoC Creator, you can:

1. Drag and drop Components to build your hardware system design in the main design workspace
2. Codesign your application firmware with the PSoC hardware
3. Configure Components using configuration tools
4. Explore the library of 100+ Components
5. Review Component datasheets

Figure 1. PSoC Creator Features
2.2 Code Examples

PSoc Creator includes many code example projects. These projects are available from the PSoC Creator Start Page, as Figure 2 shows.

Example projects can speed up your design process by starting you off with a complete design, instead of a blank page. The example projects also show how you can use PSoC Creator Components for various applications. Code examples and datasheets are included, as Figure 2 shows.

In the **Find Code Example Project** dialog shown in Figure 3, you have several options:

- Filter for examples based on device family (such as PSoC 3, PSoC 4, or PSoC 5LP); category; or keyword
- Select from the menu of examples offered based on the **Filter Options**
- Review the datasheet for the selection (on the **Documentation** tab)
- Review the code example for the selection. You can copy and paste code from this window to your project, which can help speed up code development, or
- Create a new project (and a new workspace, if needed) based on the selection. This can speed up your design process by starting you off with a complete, basic design. You can then adapt that design to your application.
2.3 PSoC Creator Help
Visit the PSoC Creator home page to download the latest version of PSoC Creator. Then, launch PSoC Creator and navigate to the following items:

- **Quick Start Guide**: Choose Help > Documentation > Quick Start Guide. This guide gives you the basics for developing PSoC Creator projects.
- **Simple Component example projects**: Choose File > Open > Example projects. These example projects demonstrate how to configure and use PSoC Creator Components.
- **System Reference Guide**: Choose Help > System Reference > System Reference Guide. This guide lists and describes the system functions provided by PSoC Creator.
- **Component datasheets**: Right-click a Component and select Open Datasheet. Visit the PSoC 4 Component Datasheets page for a list of all PSoC 4 Component datasheets.
- **PSoC Creator Training Videos**: These videos provide step-by-step instructions on how to get started with PSoC Creator.
- **Document Manager**: PSoC Creator provides a document manager to help you to easily find and review document resources. To open the document manager, choose the menu item Help > Document Manager.

2.4 Technical Support
If you have any questions, our technical support team is happy to assist you. You can create a support request on the Cypress Technical Support page.

If you are in the United States, you can talk to our technical support team by calling our toll-free number: +1-800-541-4736. Select option 8 at the prompt.

You can also use the following support resources if you need quick assistance.

- Self-help
- Local Sales Office Locations

3 Package Selection
One of the first decisions you must make for your PCB is the choice of package. Several considerations drive this decision, including the number of PSoC device pins required, PCB and product size, PCB design rules, and thermal and mechanical stability. PSoC devices are available in the following packages with different characteristics.

- **SOIC (Small-Outline Integrated Circuit)**: This package type is evolved from DIP (Dual In-line Package). It has two lines of pins, and is generally used for chips with a small number of pins (Less than 20). Because it has a very large pitch, it is easy to route signals and manually weld. It also provides a good mechanical stability.
- **TQFP (Thin Quad Flat Package)**: This package type makes it easy to route signals due to the large pitch and the open area below the part. Disadvantages are that it is more difficult to route signals due to the center pad.
- **SSOP (Shrink Small-Outline Package)**: This package type provides the same advantages and disadvantages as the TQFP package.
- **QFN (Quad Flat No-lead)**: This package type is much smaller than the other two packages. The central exposure pad gives the package the best heat dispersion performance and mechanical stability. Disadvantages are that it is more difficult to route signals due to the center pad. For more information, see AN72845 – Design Guidelines for QFN Packaged Devices.
- **WLCSP (Wafer Level Chip-Scale Package)**: This package type makes the chip size as small as the die. All pins are led as balls underneath the package. The extremely tiny size of the package makes it a perfect option for the scenarios where the PCB room is critical, such as in portable applications. The disadvantage is that the package provides less mechanical stability than other packages.
- **VFBGA (Very Fine-Pitch Ball Grid Array)**: This package type is used for devices with large number of I/Os, as it provides a miniature package for more than hundreds of pins. The disadvantage is a low mechanical stability.

As a design reference, see PSoC 4 CAD Libraries, which contain PSoC 4 schematics and PCB libraries. Note that you may need to modify the libraries slightly when you use them in your hardware design. Cypress takes no responsibility for issues related to the use of the libraries.
4 Power

PSoC 4 can be powered by a single supply with a wide voltage range, from 1.71 V to 5.5 V. As listed in Table 1, it has separate power domains for analog and digital modules. \(V_{\text{DDA}} \) is the analog power supply pin, \(V_{\text{SSA}} \) is the analog ground pin, \(V_{\text{DDD}} \) and \(V_{\text{CCD}} \) are the digital power supply pins, \(V_{\text{DDIO}} \) is the power supply pin for I/Os, \(V_{\text{SS}} \) is the digital ground pin, and \(V_{\text{DDR}} \) is the RF power pin.

<table>
<thead>
<tr>
<th>Power Domain</th>
<th>Associated Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>(V_{\text{DDA}}, V_{\text{SSA}})</td>
</tr>
<tr>
<td>Digital</td>
<td>(V_{\text{DDD}}, V_{\text{CCD}}, V_{\text{SS}})</td>
</tr>
<tr>
<td>I/O</td>
<td>(V_{\text{DDIO}})</td>
</tr>
<tr>
<td>RF</td>
<td>(V_{\text{DDR}})</td>
</tr>
</tbody>
</table>

Note: \(V_{\text{DDIO}} \) is available only in certain device families/packages. I/Os are powered from \(V_{\text{DDD}} \) in devices without a \(V_{\text{DDIO}} \) pin. In some packages, \(V_{\text{DDA}} \) and \(V_{\text{DDD}} \) are combined into a single \(V_{\text{DDD}} \) pin, and \(V_{\text{SSA}} \) and \(V_{\text{SS}} \) are combined into a single \(V_{\text{SS}} \) pin. \(V_{\text{DDR}} \) is available only in PSoC 4 BLE family devices. The \(V_{\text{DDR}} \) supply should always be less than equal to the applied \(V_{\text{DDD}} \) supply.

4.1 Power Pin Connections

PSoC 4 devices can be powered by two modes of power supply: unregulated external supply and regulated external supply modes. Power pin connections for these two modes are illustrated in Figure 4 and Figure 5.

Unregulated external supply is from 1.9 V to 5.5 V for the PSoC 4 BLE family, and 1.8 V to 5.5 V for other families. Some of the internal regulators convert the \(V_{\text{DDO}} \) input into the power supply for the digital domain. Outputs of the regulators are also routed to \(V_{\text{CCD}} \). In such cases, do not power this pin or connect any external load to \(V_{\text{CCD}} \) except a 1-\(\mu \)F capacitor, as shows.

Some other internal regulators convert the \(V_{\text{DDR}} \) input into the power supply for the BLE RF transceiver. Note that the regulators for the RF transceiver in a BLE device stops working when \(V_{\text{DDR}} \) is lower than 1.9 V.

![Figure 4. An Example of Using Unregulated External Power Supply](image)

You can also power PSoC 4 (except the BLE family) with a regulated 1.8-V (±5%) external supply, as Figure 5 shows. The \(V_{\text{CCD}} \) pins must be tied to the \(V_{\text{CCD}} \) pin, and powered directly. The unused regulators can be disabled by setting the EXT_VCCD bit in the PWR_CONTROL register to reduce power consumption. For more information, see the PSoC 4 device datasheets, and technical reference manuals (TRM).
Figure 5. An Example of Using Regulated External Power Supply (Not Applicable for BLE Family)

In both modes, connect one 0.1-μF and one 1-μF ceramic decoupling capacitor to each power supply pin (Note that certain packages have more than one VDD, VDDA, and VDDD pin). The PCB trace between the pin and the capacitors should be as short as possible. For more information, see Appendix A - PCB Layout Tips.

Note: It is a good practice to check a capacitor’s datasheet before you use it, specifically for working voltage and DC bias specifications. With some capacitors, the actual capacitance can decrease considerably when the DC bias is a significant percentage of the rated working voltage.

You can use a single power supply rail for digital power and analog power, which helps to simplify the power design in your board. However, to get a better analog performance in a mixed-signal circuit design, use separate power supply rails for the digital power and the analog power. In all cases, ensure that VDDIO ≤ VDDD ≤ VDDA. For more mixed-signal circuit design techniques, see AN57821 – PSoC Mixed-Signal Circuit Board Layout Considerations.

Proper use and layout of capacitors and ferrite beads help to improve the EMC performance. For more information, see AN80994 – PSoC 3, PSoC 4, and PSoC 5LP EMC Best Practices and Recommendations.

The Cypress PSoC 4 kit webpages (CY8CKIT-040, CY8CKIT-042, CY8CKIT-049, CY8CKIT-044, CY8CKIT-043, CY8CKIT-046, CY8CKIT-042-BLE, and CY8CKIT-147) provide schematics and bills of material (BoMs) that give good examples of how to incorporate PSoC 4 into board schematics. For more information, see Related Documents.

4.2 Power Ramp-Up Considerations

As mentioned previously, if you use separate power rails for analog and digital power domains, the voltage at the VDDA pin must always be greater than or equal to the voltage at the VDDD pin. When PSoC 4 is powered up, the voltage at the VDDA pin must be present before or at the same time as the voltage at the VDDD pin. The maximum allowed voltage ramp rate for any power pin is 67 mV/μs.
4.3 PSoC Creator Settings for Device Power

PSoC Creator automatically configures Components for optimal performance for the voltages applied to the power pins. To do so, it needs to know the value of these voltages. The **System** tab in the PSoC Creator project's Design-Wide Resources (DWR) window is used for this purpose. To open the DWR window, double-click the `.cydw` file in the project navigator, as Figure 6 shows.

![Figure 6. Device Power Settings in PSoC Creator](image)

The **Variable VDDA** feature helps the PSoC internal analog routing switch operations by charging pumps when the PSoC analog power supply is low. It is enabled by default when the configured VDDA is lower than or equal to 4.0 V. You can disable it to save power when VDDA exceeds 4.0 V. See the **PSoC Creator System Reference Guide** for more information.

4.4 Thermal Considerations

Thermal considerations are important in the hardware design processes, such as package selection and PCB layout. PSoC 4 targets low-power applications, as it consumes no more than 0.2 W. The maximum power consumption is so low enough that thermal considerations are unnecessary.
5 Clocking

PSoC 4000/PSoC 4000S and PSoC 4100/4200/PSoC 4100S/PSoC 4100PS/4500 have two oscillators: an internal main oscillator (IMO), which drives the high-frequency clock (HFCLK), and an internal low-speed oscillator (ILO), which drives the low-frequency clock (LFCLK). No external crystal is required for IMO and ILO. The IMO is rated at ±2 percent accuracy.

Other than the IMO and ILO, PSoC 4100M/4200M/4100L/4200L/4000S/4100S/PSoC 4100PS provides an additional watch crystal oscillator (WCO), which provides ±50 ppm accuracy. You can hook a 32.768-kHz crystal up to the fixed pins to get an alternative, high-accuracy clock for the LFCLK. Note that the WCO of PSoC 4000S/4100S/PSoC 4100PS devices can’t be a source for LFCLK.

Other than IMO, ILO, and WCO, PSoC 4100BLE/4200BLE/4100L/4200L provides an additional external crystal oscillator (ECO), which provides ±50 ppm accuracy. You can hook a 24-MHz crystal up to the fixed pins to get an alternative, high-accuracy clock for the HFCLK.

A way to get high-accuracy clock for all PSoC 4 devices is to bring in a precision clock via the EXT_CLK pin to drive the HFCLK. The external clock’s frequency can be up to 48 MHz. Its duty cycle must be from 45 percent to 55 percent; a square-wave clock is recommended. Check datasheets to get where the EXT_CLK pin is located on different PSoC 4 devices.

Using PSoC Creator, you can configure sources and paths for HFCLK and LFCLK that are configurable in two independent sub-tabs (High Frequency Clocks and Low Frequency Clocks). Switch to Clocks tab in the DWR window, and double-click any row in the table of clocks to open the Configure System Clocks dialog, as Figure 7 shows.

Figure 7. Clock Settings in PSoC Creator

PSoC 4 provides flexible internal clock routing solutions. You can use up to four digital signals in PSoC 4 as the routed clock for internal digital logic, which are generally implemented with UDB resources. Select Topics in the PSoC Creator Help menu and search “Configure System Clocks” to get more information.

Note: Unlike PSoC 3 and PSoC 5LP devices, PSoC 4 cannot route the high-frequency clock (HFCLK) directly to any pin owing to its unique internal clock path structure.
6 Reset

PSOC 4 has a reset pin, XRES, which is active LOW. XRES is internally pulled up to \(V_{DD} \) via a 5.6-k\(\Omega \) resistor; you do not need an external pull-up resistor for XRES.

You can connect a capacitor to the XRES pin, as Figure 8 shows, to filter out glitches and give the reset signal better noise immunity. A typical capacitance is 0.1 \(\mu F \).

```
Figure 8. XRES Pin Connection
```

```
Digital Power
\( V_{DD} \)
\( \approx 5.6 \, k\Omega \)
0.1 \( \mu F \)
XRES
```

7 Programming and Debugging

PSOC 4 supports serial wire debug (SWD) interfaces for device programming and debugging. For programming or debugging, you can use the built-in debugger of PSOC 4 Kits, or connect PSOC 4 to a debugger such as CY8CKIT-002 MiniProg3 via a 10-pin or 5-pin connector (see Figure 9 for pin map). For a 10-pin connector, Samtec FTSH-105-01-L-DV-K (surface mount) or FTSH-105-01-L-D-K (through hole) is recommended. For a 5-pin connector, Molex 22-23-2051 is recommended. Similar parts are available from other vendors.

```
Figure 9. SWD Connector Pin Maps for MiniProg3
```

```
1 Vtarget SWDIO 2 Vtarget 1
3 Gnd SWDCLK 4 Gnd 2
5 Gnd NC 6 Gnd 3
7 Gnd NC 8 SWDCLK 4
9 Gnd XRES 10 SWDIO 5
```

Figure 10 shows the SWD connections.

```
Figure 10. SWD Connections to PSOC 4100/4200
```

```
PSOC 4100/4200

SWDIO P_x[x] SWDIO
SWDCLK P_x[x] SWDCLK
XRES XRES
Vtarget
Gnd VDDD
```

SWD pins are located in different ports in different device families. The pins could be used for other functionality, when the devices are not being programmed; see the device datasheet for the possible functionality details.

However, if you need to use SWD pins for run-time debugging, select SWD (serial wire debug), instead of GPIO, from the Debug Select pull-down list in the System tab of the DWR window, as Figure 11 shows. In this case, the pins cannot be used for other functionality any longer.

Figure 11. PSoC Creator Debugging Settings

8 GPIO Pins

PSoC 4 provides flexible GPIO pins. Each pin has 4-mA source or 8-mA sink capability. All GPIO pins can be controlled by firmware. Most of them also have alternative connections to PSoC 4 peripherals. Different components have different dedicated or fixed pins for their terminals. With dedicated pins, you get the best performance when the peripheral is connected to its own dedicated pin or pins. However, for flexibility, you can connect the peripheral to other pins at the cost of using some internal routing resources.

If a peripheral has fixed pins, then you can connect it only to those pins.

8.1 I/O Pin Selection

When you design a hardware system based on PSoC 4, you should assign the GPIO pins in the following sequence. Note that pins with names in bold may be located at different pins of different ports for different PSoC 4 device families; check datasheets for details.

1. System function pins
 a. SWD: If you need run-time debugging, use the SWD_CLK and SWD_DATA pins.
 b. External clock: If you need to use an external clock, use the EXT_CLK pin.
 c. External 32.768-kHz crystals: for applicable families, if you need a high-accuracy, low-frequency clock, use the WCO_IN (or XTAL32I) pin and the WCO_OUT (or XTAL32O) pin.
 d. Wakeup: This pin is used to wake up PSoC 4 from the Stop low-power mode. If you need this feature, use the WAKEUP pin. For more information, see AN86233 – PSoC 4 Low-Power Modes and Power Reduction Techniques.

2. Analog pins
 a. SAR ADC: SARMUX [7:0] pins are used as multichannel inputs to the SAR ADC. In addition, if you want an ADC clock faster than 3 MHz or you need to apply an external reference, reserve VREF for an external bypass capacitor connection. See SAR ADC Acquisition Time for details.
3. Digital pins
 a. Timer/Counter Pulse-Width Modulator (TCPWM): PSoC 4 has up to eight TCPWM blocks. Each TCPWM can output two complementary PWM signals. All these signals are routed to dedicated GPIO pins via high-speed paths. See the device datasheet to learn more about these dedicated pins.
 You can also route these signals via an internal digital connection to other GPIO pins that support digital signal interconnect (DSI). See the respective device datasheet for more details.
 b. Serial Communication Block (SCB): PSoC 4 has up to four SCBs. Each SCB can be configured as SPI, I²C, or UART. Each SCB has fixed pins for its terminals. See the device datasheet to learn more about these pins. Note that PSoC 4100PS has up to three SCBs.
 c. Controller Area Network (CAN): PSoC 4 has up to two CANs. These have fixed pins for its terminals.
 d. Universal Serial Bus (USB): PSoC 4 has fixed pins for USB connectivity. See the respective device datasheet for more details.
 Unlike TCPWM, the SCB terminals are routed to fixed pins and cannot be routed to any other GPIO pin. You must follow the fixed pin assignments when using the SCBs.
 If your system needs a serial communication interface with a more flexible GPIO pin assignment, you can use a Universal Digital Block (UDB) to implement it. See PSoC 4 Architecture TRM for details.
8.2 Special Ports

In PSoC 4, certain groups of ports have interconnect fabric different from the fabric the other ports have. Therefore, some of the flexible configurations are not available on them. Use the following table as a guideline in the system design. “Y” means the port(s) support the functionality; “N” means the port(s) do not.

<table>
<thead>
<tr>
<th>Port Number</th>
<th>PSoC 4000/4000S/4100S</th>
<th>PSoC 4100PS/4500</th>
<th>PSoC 4100/4200</th>
<th>PSoC 4100M/4200M</th>
<th>PSoC 4100BLE/4200 BLE</th>
<th>PSoC 4100L/4200L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1, 2</td>
<td>3</td>
<td>1, 2, 3, 4</td>
<td>0, 1, 2, 3</td>
<td>4, 5, 6, 7</td>
<td>4</td>
<td>0, 1, 2, 3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4, 5, 6, 7</td>
</tr>
<tr>
<td>0, 1, 2, 3</td>
<td>4</td>
<td>0, 1, 2, 3, 4</td>
<td>4, 5, 6, 7</td>
<td></td>
<td></td>
<td>6, 7, 8, 9, 12, 13</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6, 7, 8, 9, 12, 13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Digital Input / Output Synchronization</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>Y</th>
<th>N</th>
<th>Y</th>
<th>N</th>
<th>Y</th>
<th>N</th>
<th>N</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Digital Routing²</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Internal Analog Routing²</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Note:

1. **Digital Input / Output Synchronization**: A digital signal, which input to or output from a PSoC 4 pin, can be synchronized to HFCLK. The configurations in PSoC Creator are shown in the following figures. Certain port pins, as explained in the section above, do not have this capability. The only valid configuration here is “Transparent.”

Figure 12. GPIO Pin Output Setting
2. **Internal Digital Routing:** A digital signal can be routed to a PSoC 4 pin with internal digital routing resources. For example, you can route a TCPWM’s output terminals to pins that are not the TCPWM’s dedicated ones. Certain port pins do not have this capability.

 Note: In PSoC 4100/4200 devices, if P4[2] or P4[3] is used to connect C\textsubscript{MOD} or C\textsubscript{SH_TANK}, you cannot route a digital output signal to P3[6] or P3[7].

3. **Internal Analog Routing:** An analog signal can be routed to a PSoC 4 pin with internal analog routing resources. For example, you can route an opamp’s input terminals to pins which are not the opamp’s dedicated ones.
9 Component Placement

In PSoC Creator, you can place Components in different blocks in several ways. For Components with fixed pins, assign the component terminals to the appropriate pin. The following is an example of the UART (SCB mode) Component placement in a PSoC 4200 device, where the SCB implements a UART.

In Figure 14, there are two pin settings for the UART tx and rx terminals. If you select P4[0] and P4[1], the UART is placed on SCB_0; if you select P0[4] and P0[5], the UART is placed on SCB_1. You can configure these pins in the Pin Editor by clicking the Pins tab in the DWR window.

Figure 14. SCB Component Placement by Pin Selection

Analog Components can be placed using the Analog Device Editor. Click the Analog tab in the DWR window to open it. Figure 15 shows an example of Opamp Component placement.

Right-click the opamp (OAx) to relocate the Component to another available hardware slot. The pins change automatically when the Component is relocated.

The third method to place Components is to use the Directive Editor. Select Topics in the PSoC Creator Help menu and search “directive” to get more information.

Figure 15. Opamp Component Placement
10 Analog Module Design Tips

Analog design is always challenging. Using the PSoC 4 analog modules involves several hardware design considerations.

10.1 SAR ADC

PSoC 4 has up to two unit 12-bit differential SAR ADC, with a sampling rate up to 1 Msps. As mentioned in I/O Pin Selection, SARMUX [7:0] pins are dedicated for SAR ADC multichannel inputs except PSoC 4500, PSoC 4500 use PASS[0:1].SARMUX_PADS [7:0] pins. They provide the lowest parasitic path resistance and capacitance. You can also route the signals from other pins to the SAR ADC using the internal analog bus, but doing so will introduce high switch resistance (R_{SW} in Figure 17 on page 17) and additional parasitic capacitance.

PSoC 4 also has an internal precision reference of 1.024 V (±1 percent). You can use other internal references, including V_{DDA} and V_{DDA}/2, to extend the SAR ADC’s input range. However, note that the accuracy of V_{DDA} and V_{DDA}/2 as references depends on your power system design, and it probably cannot be better than the 1.024-V precision reference. When you use the internal reference or V_{DDA}/2 as your reference, a bypass capacitor on VREF pin can help you run the SAR ADC at a faster clock. See Table 2 for details.

Table 2. References for SAR ADC

<table>
<thead>
<tr>
<th>References</th>
<th>Bypass Capacitor at VREF pin</th>
<th>Maximum Component Clock Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal 1.024 V</td>
<td>Optional</td>
<td>1.6 MHz</td>
</tr>
<tr>
<td>V_{DDA}/2</td>
<td>Optional</td>
<td>1.6 MHz</td>
</tr>
<tr>
<td>V_{DDA}</td>
<td>Optional</td>
<td>9 MHz</td>
</tr>
<tr>
<td>Internal 1.024 V, bypassed</td>
<td>Mandatory</td>
<td>18 MHz</td>
</tr>
<tr>
<td>V_{DDA}/2, bypassed</td>
<td>Mandatory</td>
<td>18 MHz</td>
</tr>
<tr>
<td>External Vref</td>
<td>Mandatory</td>
<td>18 MHz</td>
</tr>
</tbody>
</table>

If you need a reference with a higher accuracy or a specific voltage value, you can connect a custom external reference and a bypass capacitor to the VREF pin.

The SAR ADC is differential physically. When you select single-ended input mode, you must select the connection for the negative input. There are three options: V_{SS}, V_{REF}, and an external pin. The SAR ADC’s input range is affected by the selection as well as by the value of the reference voltage. See the chapter “SAR ADC” in Architecture TRM of PSoC 4 devices for more information.
You can select the reference and the negative input connection in the **General** tab of the ADC_SAR_SEQ_P4 Component customizer dialog, as **Figure 16** shows.

Figure 16. SAR ADC Reference and Negative Input Settings

The bandgap reference voltage of PSoC 4100PS device is 1.2 V. See the Scan_ADC Component datasheet for more details.

10.1.1 SAR ADC Acquisition Time

Another parameter of concern is the SAR ADC acquisition time, which depends on your hardware design, as **Figure 17** shows.

Figure 17. Equivalent Sample and Hold Circuit of PSoC 4 SAR ADC

V_{SRC} is the sampled signal source, and R_{SRC} is its output resistance. R_{SW} is the resistance of the path from a dedicated pin to the SAR ADC input, which is about 2.2 kΩ. C_{HOLD} is the sample and hold capacitance, which is about 10 pF.
Figure 18 shows how \(C_{\text{HOLD}} \) is charged during acquisition time. During acquisition time, the switch in Figure 17 is ON. Assuming that \(C_{\text{HOLD}} \) is charged from 0, acquisition time is the time required to charge \(C_{\text{HOLD}} \) to a voltage level \((V_{\text{HOLD}}) \) such that the error \((V_{\text{SRC}} - V_{\text{HOLD}})\) is less than the ADC’s resolution.

![Figure 18. \(C_{\text{HOLD}} \) Charging Process](image)

If the error is smaller than half the ADC’s resolution \((1/2 \,* \, \text{LSB})\), it should be okay. The error can be related to the acquisition time in the following equation:

\[
\text{Error} = V_{\text{SRC}} \cdot e^{-\frac{t_{\text{ACQ}}}{\tau}} = V_{\text{SRC}} \cdot e^{-\frac{t_{\text{ACQ}}}{(R_{\text{SRC}} + R_{\text{SW}})C_{\text{HOLD}}}}
\]

Here, \(t_{\text{ACQ}} \) is the acquisition time, while \(\tau \) is the charging time constant.

PSoc 4100/4200 provides a 12-bit differential ADC. If \(V_{\text{REF}} \) is the reference voltage, the resolution can be expressed in the following equation:

\[
\text{LSB} = \frac{2V_{\text{REF}}}{2^{12}}
\]

This example assumes that the negative input is connected to \(V_{\text{REF}} \), so that \(V_{\text{SRC}} \) has an input range from 0 to \(2 V_{\text{REF}} \). If the acquisition time is \(9 \,* \,(R_{\text{SRC}} + R_{\text{SW}}) \,* \, C_{\text{HOLD}} \), the error can be expressed as follows:

\[
\text{Error} = V_{\text{SRC}} \cdot e^{-9} \approx \frac{V_{\text{SRC}}}{8013} < 2V_{\text{REF}} \approx \frac{1}{2} \cdot \frac{2V_{\text{REF}}}{2^{12}} = \frac{1}{2} \cdot \text{LSB}
\]
This equation shows that you should choose an acquisition time that is longer than \(9 \times (R_{\text{SRC}} + R_{\text{SW}}) \times C_{\text{HOLD}}\) to make the error less than \(1/2 \times \text{LSB}\) of the 12-bit ADC. Select the acquisition time in the Channels tab of the ADC_SAR_SEQ_P4 Component customizer dialog, as Figure 19 on page 19 shows. Note that when you select the number of ADC clocks, the corresponding acquisition time is automatically calculated. See the ADC_SAR_SEQ_P4 Component datasheet for details.

Figure 19. SAR ADC Acquisition Time Settings

In conclusion, pay attention to the output resistance of the sampled signal source, \(R_{\text{SRC}}\), and the resistance introduced by PCB traces in your ADC hardware design. These determine the acquisition time and therefore the sampling rate.
10.2 Opamps

A CTBm/CTB block in PSoC 4 provides up to four opamps), which facilitate your analog signal chain design. You can configure each opamp as an amplifier, a follower, or a comparator, as shown in Figure 20. The CTB blocks in PSoC 4100PS device can be configured as programmable gain amplifiers (PGAs) with in-built gain setting resistors.

You can configure the power mode and output drive capability in the General tab of the OpAmp_P4 customizer dialog, as Figure 20 shows. The opamps have three power modes. For each power mode, the opamp has a different input offset voltage, gain bandwidth (GBW) product, and operating current. See the device datasheet for specific values.

You should consider the relation between bandwidth and gain. For example, the highest GBW, 6 MHz, occurs in the high-power/bandwidth mode. In this case, if the bandwidth of the signal to be amplified is 60 kHz, then the gain cannot be higher than 100 or the amplified signal will be distorted.

If you route an opamp output terminal to a pin for external use, select Output to pin for the output mode. If you route the output terminal for internal use, for example to an input of the SAR ADC, select Internal only instead.

![Figure 20. OpAmp_P4 Component Settings](image)

10.3 Comparators

PSOC 4 provides as many as six comparators. Four comparators are implemented using the opamps in the CTBm/CTB module, and the other two are the low-power comparators. All comparators' outputs can be routed to PSoC 4 UDB resources. This helps you leverage the outputs flexibly. For example, you can invert an output’s logic value. PSoC 4 provides three speed modes for each comparator. For each mode, the comparator has a different output slew rate and operating current. See the device datasheet for specific values.

The low-power comparators can monitor external analog voltage levels in low-power modes. For more information, see the device datasheets.

When an analog signal’s voltage is divided by a resistor network before it is input into a comparator, take the input resistance of the comparator into account. You can get the comparator’s input resistance from the device datasheet.
10.4 CapSense

You can connect any PSoC 4 pin to a CapSense sensor except \texttt{CMOD} (or \texttt{C_MOD}) pin, which are reserved for \texttt{CMOD}. When you need to use a shield electrode for waterproofing or proximity features, you may also need to reserve \texttt{CTANK} (or \texttt{C_SH_TANK}) pin for \texttt{C_SH_TANK}. If the parasitic capacitance of the shield is less than 200 pF, it is optional to use \texttt{C_SH_TANK}; otherwise, it is mandatory.

The value for \texttt{CMOD} and \texttt{C_SH_TANK} is usually 2.2 nF. The value may be higher if the parasitic capacitance of the sensors is higher.

CapSense detects a finger touch by a tiny variation in the sensor’s capacitance (less than 1 pF). It is very sensitive to both signal and noise. Note the PCB layout tips for CapSense. See PSoC 4 CapSense Design Guide for more details.

Pins with a large sink current that are close to CapSense pins can introduce an offset to the CapSense module’s “GND.” Figure 21 illustrates a switch circuit for CapSense in IDAC source mode. R1 and R2 represent the resistances of PSoC 4 internal traces, and R3 represents the resistance of a PCB trace. A shared return path of sink current and CapSense current is composed of R2 and R3. The closer a pin with a large sink current is to the CapSense pin, the more the sink current that flows through the return path, generating a greater offset.

![Figure 21. Sharing Return Path](image)

This offset is undesirable and may cause fluctuations in the CapSense reading and possible false triggers. Offset compensation can be done in firmware, but it is strongly recommended that you remove the offset in the hardware design instead. Keep pins with a large sink current as far as possible from the CapSense pins (best practice is by more than three pins). In addition, pay attention to the return path in your PCB. See AN57821 – PSoC 3, PSoC 4, and PSoC 5LP Mixed-Signal Circuit Board Layout Considerations for more details on mixed-signal circuit design.

10.5 Current DACs (IDACs)

PSoC 4 provides up to four IDACs: two 8-bit and the other two 7-bit. See the device datasheet for the electrical specifications. There are two gain options for each IDAC. Table 3 gives the detailed resolutions and capabilities for each IDAC and gain option.

<table>
<thead>
<tr>
<th>IDAC Type</th>
<th>4X Gain</th>
<th>8X Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step (µA/Bit)</td>
<td>Output Capability (µA)</td>
</tr>
<tr>
<td>8-Bit IDAC</td>
<td>1.2</td>
<td>306</td>
</tr>
<tr>
<td>7-Bit IDAC</td>
<td>1.2</td>
<td>152.4</td>
</tr>
</tbody>
</table>
You can set up the IDACs in the **Configure** tab of the IDAC_P4 Component customizer dialog, as **Figure 22** shows.

Figure 22. IDAC Settings

Through two internal analog buses, you can route IDAC outputs to any two different pins that support analog routing.

Note: CapSense requires one or two IDACs. Ensure that the intended IDACs are not used by CapSense.

The PSoC 4100PS device has programmable voltage reference (PVref) and a 13-bit voltage DAC (VDAC) Components. See **PVref Component datasheet** and **VDAC Component datasheet** for more details on Component parameters.

11 **Summary**

PSoC 4 provides a flexible solution for designing digital and analog applications. This application note documented the considerations that you need to keep in mind when you build a hardware system around PSoC 4. You can use **Appendix B - Family Hardware Resources Look-Up Table** to quickly check your hardware design.
12 Related Documents

- AN79953 – Getting Started with PSoC 4
- AN72845 – Design Guidelines for QFN Packaged Devices
- AN86233 – PSoC 4 Low-Power Modes and Power Reduction Techniques
- AN80994 – PSoC 3, PSoC 4, and PSoC 5LP EMC Best Practices and Recommendations
- AN57821 – PSoC 3, PSoC 4, and PSoC 5LP Mixed-Signal Circuit Board Layout Considerations
- AN91445 – Antenna Design Guide
- AN91184 – PSoC 4 BLE – Designing BLE Applications
- AN95089 – PSoC 4/PRoC BLE Crystal Oscillator Selection and Tuning Techniques
- AN73854 – PSoC 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders
- CY8C4xxx, CYBLxxxx Programming Specifications
- PSoC 4 Application Notes
- PSoC 4 CAD Resources
- PSoC 4 Device Datasheets
- PSoC 4 Technical Reference Manuals
- PSoC 4 CapSense Design Guide

Cypress PSoC 4 kit schematics are good examples of how to incorporate PSoC into board schematics. It may be helpful to review the following Cypress kit schematics:

- CY8CKIT-040 – PSoC 4000 Pioneer Kit
- CY8CKIT-042 – PSoC 4200 Pioneer Kit
- CY8CKIT-049 4xx – PSoC 4100/4200 Prototyping Kit
- CY8CKIT-042-BLE – PSoC 4200 BLE Pioneer Kit
- CY8CKIT-044 – PSoC 4200M Pioneer Kit
- CY8CKIT-043 – PSoC 4200M Prototyping Kit
- CY8CKIT-046 – PSoC 4200L Pioneer Kit
- CY8CKIT-147 – PSoC 4100PS Prototyping Kit
- CY8CKIT-149 - PSoC 4100S Plus Prototyping Kit

Note: On the kit webpage, scroll to the link Board Design Files (Schematic, Layout, Gerber, BOM).zip.

About the Author

Name: Johnny Zhang
Title: Applications Engineer Sr.
Background: Johnny Zhang graduated from Anhui University with a BSEE and from Tongji University with a MSEE. He is an application engineer at Cypress and focuses on PSoC applications.
Appendix A. PCB Layout Tips

Note: Before beginning a PCB layout for PSoC, it is a good idea to look at AN57821 – PSoC Mixed-Signal Circuit Board Layout Considerations. Appendix A of that application note shows example PCB layouts and schematics for various PSoC packages.

Note: Cypress PSoC 3, PSoC 4, and PSoC 5LP kit schematics provide good examples of how to incorporate PSoC into board schematics. For more information, see Related Documents.

There are many classic techniques for designing PCBs for low noise and EMC. Some of these techniques include:

- **Multiple layers**: Although they are more expensive, it is best to use a multilayer PCB with separate layers dedicated to the VSS and VDD supplies. This gives good decoupling and shielding effects. Separate fills on these layers should be provided for VSSA, VSSD, VDDA, VDDIO, and VDDD. To reduce cost, a two-layer or even a single-layer PCB can be used. In that case, you must have a good layout for all VSS and VDD.

- **Ground and power supply**: There should be a single point for gathering all ground returns. Avoid ground loops, or minimize their surface area. All component-free surfaces of the PCB should be filled with additional grounding to create a shield, especially when using two-layer or single-layer PCBs. The power supply should be close to the ground line to minimize the area of the supply loop. The supply loop can act as an antenna and can be a major emitter or receiver of EMI.

- **Decoupling**: The standard decoupler for external power is a 100-µF capacitor. Supplementary 0.1-µF capacitors should be placed as close as possible to the VSS and VDD pins of the device to reduce high-frequency power supply ripple. Generally, you should decouple all sensitive or noisy signals to improve the EMC performance. Decoupling can be both capacitive and inductive.

- **Component position**: Separate the circuits on the PCB according to their EMI contribution. This will help reduce cross-coupling on the PCB. For example, separate noisy high-current circuits, low-voltage circuits, and digital components.

- **Signal routing**: When designing an application, the following areas should be closely studied to improve the EMC performance:
 - Noisy signals. For example, signals with fast edge times
 - Sensitive and high-impedance signals
 - Signals that capture events, such as interrupts and strobe signals
 To improve the EMC performance, keep the trace lengths as short as possible and isolate the traces with VSS traces. To avoid crosstalk, do not route them near to or parallel to other noisy and sensitive traces.

For more information, several references are available:

- *The Circuit Designer's Companion, Second Edition* (EDN Series for Design Engineers), by Tim Williams
- *PCB Design for Real-World EMI Control* (The Springer International Series in Engineering and Computer Science), by Bruce R. Archambeault and James Drewniak
- *Printed Circuits Handbook* (McGraw Hill Handbooks), by Clyde Coombs
- *EMC and the Printed Circuit Board: Design, Theory, and Layout Made Simple*, by Mark I. Montrose
- *Signal Integrity Issues and Printed Circuit Board Design*, by Douglas Brooks
Appendix B. Family Hardware Resources Look-Up Table

This appendix provides a look-up table, which contains an overview for on-chip hardware resources of different families on PSoC 4 portfolio. The data below show the maximum capability of these families. For detailed information of a specific part, please refer to the corresponding family datasheet.

<table>
<thead>
<tr>
<th>Features</th>
<th>Device Family</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CY8C4000</td>
</tr>
<tr>
<td>CPU</td>
<td>16-MHz Cortex-M0</td>
</tr>
<tr>
<td>DMA</td>
<td>N/A</td>
</tr>
<tr>
<td>Flash memory</td>
<td>16 KB</td>
</tr>
<tr>
<td>SRAM</td>
<td>2 KB</td>
</tr>
<tr>
<td>GPIOs</td>
<td>20</td>
</tr>
<tr>
<td>CapSense</td>
<td>16 sensors</td>
</tr>
<tr>
<td>ADC</td>
<td>None</td>
</tr>
<tr>
<td>Opamps/PGAs</td>
<td>None</td>
</tr>
<tr>
<td>Comparators</td>
<td>One CSD comparator with fixed threshold (1.2 V)</td>
</tr>
<tr>
<td>Programmable Voltage Reference (PVref)</td>
<td>None</td>
</tr>
<tr>
<td>Voltage DAC (VDAC)</td>
<td>None</td>
</tr>
<tr>
<td>IDACs*</td>
<td>One 7-bit and one 8-bit</td>
</tr>
<tr>
<td>Programmable logic blocks (UDBs)</td>
<td>None</td>
</tr>
<tr>
<td>Power supply range</td>
<td>1.71 V to 5.5 V</td>
</tr>
<tr>
<td>Low-power modes</td>
<td>Deep Sleep at 2.5 µA</td>
</tr>
<tr>
<td>Segment LCD drive</td>
<td>None</td>
</tr>
<tr>
<td>Serial communication</td>
<td>One I²C</td>
</tr>
<tr>
<td>Timer Counter</td>
<td>1</td>
</tr>
<tr>
<td>Pulse-Width Modulator (TCPWM)</td>
<td></td>
</tr>
<tr>
<td>Controller Area Network (CAN)</td>
<td>None</td>
</tr>
</tbody>
</table>
Features of PSoC 4-BLE are listed in the table below.

<table>
<thead>
<tr>
<th>Device Family</th>
<th>CY8C4000</th>
<th>CY8C41000/4200**</th>
<th>CY8C4100M/4200M**</th>
<th>CY8C4200L</th>
<th>CY8C4100PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Full Speed USB Device with eight endpoints</td>
<td>None</td>
</tr>
<tr>
<td>Clocks</td>
<td>24-MHz / 32-MHz internal main oscillator (IMO) 32-kHz internal low-speed oscillator (ILO)</td>
<td>3-MHz to 48-MHz IMO 32-kHz ILO</td>
<td>3-MHz to 48-MHz IMO 32-kHz ILO</td>
<td>3-MHz to 48-MHz IMO 4-MHz to 33-MHz ECO 32-kHz ILO 32-kHz watch crystal oscillator (WCO)</td>
<td>24-MHz to 48-MHz IMO 40-kHz ILO 32-kHz WCO</td>
</tr>
<tr>
<td>Power supply monitoring</td>
<td>Power-on reset (POR), Brown-out detection (BOD)</td>
<td>POR, BOD, LVD</td>
<td>POR, BOD, LVD</td>
<td>POR, BOD, LVD</td>
<td>POR, BOD</td>
</tr>
</tbody>
</table>

*IDACs are available only when CapSense is not in use. See the respective PSoC 4 Technical Reference Manual for more details.

**PSoC 4100 is only slightly different from PSoC 4200 on CPU frequency, ADC sampling rate, and UDB resources. So is PSoC 4100M from PSoC 4200M. Read Device Datasheets for further details.

Features of PSoC 4-BLE are listed in the table below.

<table>
<thead>
<tr>
<th>Device Family</th>
<th>CY8C41x7-BLxxx</th>
<th>CY8C42x7-BLxxx</th>
<th>CY8C41x8-BL</th>
<th>CY8C42x8-BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLE Subsystem</td>
<td>BLE radio and link-layer hardware blocks with Bluetooth 4.1-compatible protocol stack</td>
<td>BLE radio and link-layer hardware blocks with Bluetooth 4.1-compatible protocol stack</td>
<td>BLE radio and link-layer hardware blocks with Bluetooth 4.2-compatible protocol stack**</td>
<td>BLE radio and link-layer hardware blocks with Bluetooth 4.2-compatible protocol stack**</td>
</tr>
<tr>
<td>Bluetooth 4.2 Features</td>
<td>LE Secure Connection</td>
<td>LE Secure Connection</td>
<td>LE Secure Connection, Link Layer Privacy, and Link Layer Data Length Extension**</td>
<td>LE Secure Connection, Link Layer Privacy, and Link Layer Data Length Extension**</td>
</tr>
<tr>
<td>CPU</td>
<td>24-MHz ARM® Cortex®-M0 CPU with single-cycle multiply</td>
<td>48-MHz ARM Cortex-M0 CPU with single-cycle multiply</td>
<td>24-MHz ARM Cortex-M0 CPU with single-cycle multiply</td>
<td>48-MHz ARM Cortex-M0 CPU with single-cycle multiply</td>
</tr>
<tr>
<td>Flash Memory</td>
<td>128 KB</td>
<td>128 KB</td>
<td>256 KB</td>
<td>256 KB</td>
</tr>
<tr>
<td>SRAM</td>
<td>16 KB</td>
<td>16 KB</td>
<td>32 KB</td>
<td>32 KB</td>
</tr>
<tr>
<td>GPIOs</td>
<td>Up to 36</td>
<td>Up to 36</td>
<td>Up to 36</td>
<td>Up to 36</td>
</tr>
<tr>
<td>CapSense®</td>
<td>Up to 35 sensors</td>
<td>Up to 35 sensors</td>
<td>Up to 35 sensors</td>
<td>Up to 35 sensors</td>
</tr>
<tr>
<td>CapSense® Gestures</td>
<td>On selected devices</td>
<td>On selected devices</td>
<td>On selected devices</td>
<td>On selected devices</td>
</tr>
<tr>
<td>ADC</td>
<td>12-bit, 806-kSPS SAR ADC with sequencer</td>
<td>12-bit, 1-MSPS SAR ADC with sequencer</td>
<td>12-bit, 806-kSPS SAR ADC with sequencer</td>
<td>12-bit, 1-MSPS SAR ADC with sequencer</td>
</tr>
<tr>
<td>Opamps</td>
<td>Two programmable opamps that are active in Deep Sleep mode</td>
<td>Four programmable opamps that are active in Deep Sleep mode</td>
<td>Two programmable opamps that are active in Deep Sleep mode</td>
<td>Four programmable opamps that are active in Deep Sleep mode</td>
</tr>
<tr>
<td>Features</td>
<td>CY8C41x7-BLxxx</td>
<td>CY8C42x7-BLxxx</td>
<td>CY8C41x8-BL</td>
<td>CY8C42x8-BL</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Comparators</td>
<td>Two low-power comparators with the wake up feature</td>
</tr>
<tr>
<td>Current DACs</td>
<td>One 7-bit, and one 8-bit</td>
</tr>
<tr>
<td>Power Supply Range</td>
<td>1.9 V to 5.5 V</td>
</tr>
<tr>
<td>Low-Power Modes</td>
<td>Deep Sleep mode at 1.3 μA</td>
<td>Hibernate mode at 150 nA</td>
<td>Hibernate mode at 150 nA</td>
<td>Hibernate mode at 150 nA</td>
</tr>
<tr>
<td></td>
<td>Hibernate mode at 150 nA</td>
<td>Stop mode at 60 nA</td>
<td>Stop mode at 60 nA</td>
<td>Stop mode at 60 nA</td>
</tr>
<tr>
<td>Segment LCD Drive</td>
<td>4-COM, 32-segment LCD drive on select devices</td>
</tr>
<tr>
<td>Serial Communication</td>
<td>Two independent serial communication blocks (SCBs) with programmable I²C, SPI, or UART</td>
<td>Two independent serial communication blocks (SCBs) with programmable I²C, SPI, or UART</td>
<td>Two independent serial communication blocks (SCBs) with programmable I²C, SPI, or UART</td>
<td>Two independent serial communication blocks (SCBs) with programmable I²C, SPI, or UART</td>
</tr>
<tr>
<td>Timer Counter</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Pulse-Width Modulator (TCPWM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universal Digital Blocks (UDBs)</td>
<td>None</td>
<td>Four, each with eight macrocells and one datapath. Can be used to synthesize additional digital peripherals (Timer, Counter, PWM) or communication interfaces (UART, SPI)</td>
<td>None</td>
<td>Four, each with eight macrocells and one datapath. Can be used to synthesize additional digital peripherals (Timer, Counter, PWM) or communication interfaces (UART, SPI)</td>
</tr>
<tr>
<td>Additional Digital Peripherals (I²S, PWM)</td>
<td>None</td>
<td>Yes (UDB-based digital peripherals on select devices)</td>
<td>None</td>
<td>Yes (UDB-based digital peripherals on select devices)</td>
</tr>
<tr>
<td>Clocks</td>
<td>3-MHz to 24-MHz IMO</td>
<td>3-MHz to 48-MHz IMO</td>
<td>3-MHz to 24-MHz IMO</td>
<td>3-MHz to 48-MHz IMO</td>
</tr>
<tr>
<td></td>
<td>32-kHz ILO</td>
<td>32-kHz ILO</td>
<td>32-kHz ILO</td>
<td>32-kHz ILO</td>
</tr>
<tr>
<td></td>
<td>24-MHz ECO</td>
<td>24-MHz ECO</td>
<td>24-MHz ECO</td>
<td>24-MHz ECO</td>
</tr>
<tr>
<td></td>
<td>32-kHz WCO</td>
<td>32-kHz WCO</td>
<td>32-kHz WCO</td>
<td>32-kHz WCO</td>
</tr>
<tr>
<td>Power Supply Monitoring</td>
<td>Power-on reset (POR) Brown-out detection (BOD) Low-voltage detection (LVD)</td>
<td>POR BOD LVD</td>
<td>POR BOD LVD</td>
<td>POR BOD LVD</td>
</tr>
<tr>
<td>Package</td>
<td>56-QFN (7.0 × 7.0 × 0.6 mm) and 68-WLCSP (3.52 × 3.91 × 0.55 mm)</td>
<td>56-QFN (7.0 × 7.0 × 0.6 mm) and 68-WLCSP (3.52 × 3.91 × 0.55 mm)</td>
<td>56-QFN* (7.0 × 7.0 × 0.6 mm) and 76-WLCSP (4.04 × 3.87 × 0.55 mm)</td>
<td>56-QFN* (7.0 × 7.0 × 0.6 mm) and 76-WLCSP (4.04 × 3.87 × 0.55 mm)</td>
</tr>
<tr>
<td>DMA</td>
<td>None</td>
<td>None</td>
<td>Up to 8 channels**</td>
<td>Up to 8 channels**</td>
</tr>
</tbody>
</table>
Appendix C. Schematic Checklist

The answer to each item in the following checklist should be Yes (Y) or Not Applicable (N.A.). For example, if you power a PSoC 4 device with an unregulated external supply in your application, you can mark all the items of “Power (regulated external supply)” as N.A.

<table>
<thead>
<tr>
<th>Catalog</th>
<th>Item</th>
<th>Y/N/N.A.</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (unregulated external supply)</td>
<td>Are the power supply pin connections made in accordance with Figure 4?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (regulated external supply)</td>
<td>Are the power supply pin connections made in accordance with Figure 5?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>Are the 0.1-μF and 1-μF capacitors connected to each VDDD, VDDIO, VDDA, or VDDR pin?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clocking</td>
<td>Are the voltages (including ripples) at the VDDD and VDDA pins in the range of 1.8 V to 5.5 V?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clocking</td>
<td>Are the voltages (including ripples) at the VDDD and VDDA pins in the range of 1.71 V to 1.89 V?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clocking</td>
<td>Does your PSoC device belong to non-BLE families?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>Is the external clock connected to EXT_CLK pin?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>Is the external clock’s frequency less than or equal to 48 MHz (including tolerance)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>Is the external clock’s duty cycle from 45 percent to 55 percent?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming and debugging</td>
<td>Are the SWD connector’s pin map in accordance with one of the pin maps in Figure 11?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming and debugging</td>
<td>Are the SWD signals connected to SWD_CLK pin and SWD_DATA pin?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO pins</td>
<td>Is the assignment of your GPIO pins done in the sequence described in I/O Pin Selection?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO pins</td>
<td>Is any GPIO pin’s sink current lower than 8 mA?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO pins</td>
<td>Is any GPIO pin’s source current lower than 4 mA?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO pins</td>
<td>Is the GPIO pins’ total source current or sink current smaller than device capability?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-power comparators</td>
<td>Are Port 4, 5, 6, and 7 GPIO Pins used according to Port 4, 5, 6, and 7 GPIO Pins?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTBm</td>
<td>Is the assignment of the CTBm’s fixed pins in accordance with supported pins?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCB</td>
<td>Is the assignment of the SCB’s fixed pins in accordance with the device datasheet?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAR ADC</td>
<td>Is the connection of the bypass capacitor in accordance with supported pin?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAR ADC</td>
<td>Is the acquisition time of each SAR ADC channel enough to keep the error less than 1/2 LSB?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CapSense</td>
<td>Are the pins with strong sink current kept away from the CapSense pins (the space is more than three pins)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CapSense</td>
<td>Is CMOD connected to CMOD (or C_MOD) pin?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CapSense</td>
<td>Is CSH,TANK connected to CTANK (or C_SH,TANK) pin?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDAC</td>
<td>Is the IDAC not being used by CapSense?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13 Document History

Document Title: AN88619 - PSoC 4 Hardware Design Considerations
Document Number: 001-88619

<table>
<thead>
<tr>
<th>Revision</th>
<th>ECN</th>
<th>Orig. of Change</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>4293447</td>
<td>JOZH</td>
<td>02/27/2014</td>
<td>New application note</td>
</tr>
</tbody>
</table>
| *A | 4517949| JOZH | 10/07/2014 | Changed the title to “PSoC® 4100/4200 Hardware Design Considerations - AN88619” to address only PSoC 4100/4200 devices
| | | | | Corrected names and links for reference documents
| | | | | Added the latest references
| | | | | Added the link for PSoC 4100/4200 SCH and PCB libraries |
| *B | 4701455| JOZH | 03/25/2015 | Added a table to illustrate the differences between PSoC 4100 and PSoC 4200
| | | | | Added TQFP-48 descriptions
| | | | | Added variable VDDA introduction
| | | | | Added routed clock introduction in “Clocking” section
| | | | | Updated PSoC Creator Component snapshot per PSoC Creator 3.1 |
| *C | 4772693| NIDH | 05/26/2015 | Updated for PSoC 4100M/4200M device
| | | | | Updated template
| | | | | Changed the title |
| *D | 4965182| JOZH | 10/15/2015 | Updated the descriptions to accommodate all PSoC 4 device families
| | | | | Corrected SAR’s clock frequency upper limits under different VREF pin connection scenarios
| | | | | Refreshed the snapshots with PSoC Creator 3.2
| | | | | Corrected the V_{CCD} pin capacitor value from 0.1 μF to 1 μF
| | | | | Clarified that HFCLK connection to pin is not available |
| *E | 5054801| NIDH/JOZH | 01/29/2016 | Added self-help section in the beginning of the document
| | | | | Added PSoC 4 L-series information throughout the document
| | | | | Updated Power Supply Diagram for PSoC 4 BLE
| | | | | Updated Checklist for PSoC 4 BLE and the V_{CCD} pin usage
| | | | | Added Cross References to BLE Documents |
| *F | 6093788| DIMA/TAVA | 03/09/2018 | Updated template
| | | | | Updated for PSoC 4100PS device
| | | | | Updated Figure 4 and Figure 5
| | | | | Updated PSoC Resources with PSoC 6 references
| | | | | Updated Related Documents with references to AN73854 and Programming specification document |
| *G | 6580634| CCTA | 05/24/2019 | Updated for PSoC 4500 device |
Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

- Arm® Cortex® Microcontrollers: cypress.com/arm
- Automotive: cypress.com/automotive
- Clocks & Buffers: cypress.com/clocks
- Interface: cypress.com/interface
- Internet of Things: cypress.com/iot
- Memory: cypress.com/memory
- Microcontrollers: cypress.com/mcu
- PSoC: cypress.com/psoc
- Power Management ICs: cypress.com/pmic
- Touch Sensing: cypress.com/touch
- USB Controllers: cypress.com/usb
- Wireless Connectivity: cypress.com/wireless

PSoC® Solutions

Cypress Developer Community

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2014-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spannung, the Spannung logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.