Design Best Practices with CY27410 Four-PLL Spread-Spectrum Clock Generator

Author: Amitava Banerjee, Hiromu Takehara and Pawan Kumar

Associated Part Family: CY27410

Related Application Notes: AN94024, AN93892

AN94074 provides basic design guidelines of the CY27410 four-PLL Spread-Spectrum Clock Generator for the best performance in end systems. You should use this best practices guidance in conjunction with all other design, manufacturing, and software guidelines applicable to CY27410.

1 Introduction

CY27410 is a four-PLL spread-spectrum clock generator that generates eight differential and four single ended clock outputs up to 700 MHz with sub-picosecond jitter. This document outlines the architecture of CY27410 and provides design guidelines for best performance in end systems. This document also contains a case study that illustrates how CY27410 can be used to meet a sample clocking requirement. To create your configuration, use the Cypress proprietary tool (ClockWizard 2.1) and to evaluate the configuration use CY3679 Evaluation Kit.

1.1 General Rule for Configuration

The basic architecture of CY27410 PLL is shown in Figure 1. This device provides clock synthesis for PLL output ports using a scaling factor. The basic formula for determining the final output frequency is:

\[f_{OUT} = f_{REF} \times \frac{(DIV_N)}{(DIV_R) \times (DIV_O)} \]

- \(f_{REF} \) is the input reference frequency,
- \(DIV_R \) (\(DIV_R1 \) and \(DIV_R2 \)) is the division factor of the input frequency reference. These dividers are called pre-scale dividers.
- \(DIV_N \) is the fractional N division factor.
- \(DIV_O \) (\(DIV_O1 \), \(DIV_O2 \), \(DIV_O3 \), and \(DIV_O4 \)) is the post division factor before outputs.

Figure 1. CY27410 PLL Simplified Architecture Block Diagram
The frequency range of operation of the PLL is 2.4 GHz to 3 GHz. The input clock (f_{REF}) is divided by a prescale counter (DIV_R1 or DIV_R2) to produce the input reference clock to the PLL. The count value of DIV_R counter ranges from 1 to 28. The post-division factor DIV_O is an even number and its values range from 4 to 1020. The control loop drives the PLL to match the required f_{OUT} as per the previous equation.

2 Design Guidelines

2.1 VCO Spacing in Frequency

In an advanced design, when more than one PLL is active, frequency planning must provide a minimum frequency spacing between any two VCOs to avoid jitter. These VCO frequencies should have a difference of at least 50 MHz between each other. Otherwise, crosstalk may be induced due to interference between PLL blocks running at the same VCO frequencies. ClockWizard 2.1 does not take values of VCO frequencies that violate this guideline.

2.2 Clock Signal Routing

Near to the input reference signal path (signal routing of IN2N, IN2P, IN1N, and IN1P pins), all outputs should be assigned as differential standards like LVPECL, LVDS, CML, or HCSL. If they are assigned as LVCMOS standard, the large voltage swing will induce more cross-talk into the input frequency reference. The induced crosstalk would affect the performance of PLL, and output clocks may become noisy.

Therefore, the outputs OUT11, OUT12, OUT21, and OUT22 (signal pins marked in orange in Figure 2) are recommended to be assigned as differential output standards as they are closer to the input signal lines (IN2N, IN2P, IN1N, and IN1P). If any of these lines is configured as single-ended CMOS standard, and having 0-V to 3.3-V swing, there is a possibility of jitter on the adjacent differential lines as well. LVCMOS standard outputs are recommended to be located far from these input reference clock lines.

Figure 2. Pinout Diagram of CY27410 Showing High-Frequency Input and Output Signal Lines

1 Contact Cypress Tech Support if your design requirements need VCOs with frequency spacing less than 50 MHz.
CY27410 has four I/O supply domains, VDDIO_D1 (OUT11 to OUT14), VDDIO_S1 (OUT15, OUT16), VDDIO_D2 (OUT21 to OUT24) and VDDIO_S2 (OUT25, OUT26). To have reduced crosstalk and better jitter performance, it is recommended to derive all the outputs of a particular VDDIO domain from one PLL only. For example, derive OUT11 to OUT 14 outputs from PLL1; OUT15, OUT 16 outputs from PLL2; OUT21 to OUT 24 from PLL3; and OUT25, OUT 26 from PLL4.

Figure 2 shows the pinout diagram of CY27410 and its high-frequency input and output lines. Crosstalk between input and output lines is a major contributor to the PLL jitter. This crosstalk may arise from the routing inside the IC and cannot be changed. In the system level, the PCB layout requires special attention of shielding between input and output lines.

2.3 Supply Decoupling
Because the clock IC’s I/O-supply port (VDDIO) may introduce high-frequency noise into the overall power supply network, you should add an inductor (a ferrite bead) besides decoupling capacitor as shown in the Figure 3. A typical value for decoupling capacitors may be C1 = 1 µF, C2 = 1 µF and C3 = 0.1 µF. C3 should be placed as close to the IC I/O supply as possible and C2 as the next closest component. C1 is placed as the decoupling capacitor for power supply net. See Table 1 for typical values and part numbers.

![Figure 3. Supply Decoupling Circuit](Image)

Table 1. Typical Values for components

<table>
<thead>
<tr>
<th>Device</th>
<th>Value</th>
<th>Typical MPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>FERRITE CHIP 220 OHM 450MA 0603</td>
<td>BLM18BB221SN1D</td>
</tr>
<tr>
<td>C1, C2</td>
<td>CAP CER 1UF 25V 10% X5R 0603</td>
<td>TMK107BJ105KA-T</td>
</tr>
<tr>
<td>C3</td>
<td>CAP CER 0.1UF 50V 10% X7R 1206</td>
<td>C1206C104K5RAC7867</td>
</tr>
</tbody>
</table>

These components have been used in Cypress EVK CY3679, which is Cypress’s evaluation platform for CY27410. Other than this, all power pins must be decoupled with capacitors and individual ferrite beads placed as close to the power pins as possible on the PCB.

2.4 Example: Designing Cypress Clocks for Multiple Output Frequencies
The following example shows a case study that illustrates how CY27410 can be used to meet a sample clocking requirement such as the following:

1. Three PCIe Gen 2.0 spread-spectrum (SS) clock (Each 100-MHz frequency, phase-aligned and 0.5% down spread)
2. Five dedicated LVCMOS clocks for four different applications:
 - One 33.33-MHz (0.5% down-spread) clock for ASIC
 - One 25.00-MHz clock for Ethernet
 - One 24.576-MHz clock for modem
 - One 20.00-MHz clock for CPU
 - One 64.00-MHz (0.5% Center Spread) clock for ASIC
The first step in designing this system with CY27410 is frequency planning. This frequency planning for the four PLLs can be done in the following way:

3. The 33.33-MHz SS and 100.00-MHz SS are related but the 64-MHz SS is UNRELATED; therefore, two PLLs are required to generate 33.33-MHz, 64-MHz, and 100-MHz clocks.

 Note: As the range of PLL frequency is 2400 MHz to 3000 MHz, and LCM of 64 and 100 is 1600, there is no solution to set the frequency of one particular PLL that can generate both the clock outputs. Therefore, 64-MHz and 100-MHz clocks are called UNRELATED.

4. As 24.576 MHz is UNRELATED to other clocks, either you can choose the 24.576-MHz clock as a reference input, or it is required to be generated from one PLL.
5. 20.00-MHz and 25.00-MHz clocks can be generated from one PLL.
6. One 64.00-MHz (0.5% center-spread) clock for ASIC.

Therefore, the PLL assignment would be as follows:

 1. Use 24.576 MHz as the reference clock.
 2. Four spread-spectrum clocks (three 100-MHz PCIe clocks and one 33.33-MHz ASIC clock) can be derived from PLL1.
 3. One 25-MHz Ethernet clock and one 20-MHz CPU clock can be generated from PLL2.
 4. The 24.576-MHz modem clock can be generated from PLL3.
 5. The 64.00-MHz (0.5% center-spread) clock can be generated from PLL4.

3 Conclusion

This document presents design recommendations for CY27410 to obtain its best performance. Guidelines presented in this document will assist system designers to plan for proper PLL frequency and output settings. However, it is not always possible to configure all the internal and output parameters as per the typical programming guidelines. Rather, it depends on how complex the system design is, how many interfacing devices are clocked by CY27410, the frequencies of operation, output buffer standards, voltage requirements, jitter specifications etc.

In summary, designers must be aware of the best possible design configuration of CY27410. With this basic knowledge, designers can approach for designing more critical systems where tradeoff between different applications specifications is possible.

About the Authors

Name: Amitava Banerjee, Hiromu Takehara and Pawan Kumar
Title: Applications Engineer Staff
Background:
Amitava Banerjee has Master's degree in Electrical Engineering from IIT Kharagpur, India.
Hiromu Takehara is system-level expert working in Cypress Semiconductor for 14 years in Timing Solution Business Unit.
Pawan Kumar has a Master's in Electrical Engineering from IIT Delhi, India.
Document History

Document Title: AN94074 - Design Best Practices with CY27410 Four-PLL Spread-Spectrum Clock Generator

Document Number: 001-94074

<table>
<thead>
<tr>
<th>Revision</th>
<th>ECN</th>
<th>Orig. of Change</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>4661163</td>
<td>TAVA</td>
<td>02/16/2015</td>
<td>New Application Note.</td>
</tr>
<tr>
<td>*A</td>
<td>5302085</td>
<td>TAVA</td>
<td>06/09/2016</td>
<td>In the section Design Guidelines, the text PLL frequency is changed to VCO frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Updated template</td>
</tr>
<tr>
<td>*B</td>
<td>5698212</td>
<td>PAWK</td>
<td>05/05/2017</td>
<td>Updated Section 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Updated template</td>
</tr>
</tbody>
</table>
Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

<table>
<thead>
<tr>
<th>Category</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM® Cortex® Microcontrollers</td>
<td>cypress.com/arm</td>
</tr>
<tr>
<td>Automotive</td>
<td>cypress.com/automotive</td>
</tr>
<tr>
<td>Clocks & Buffers</td>
<td>cypress.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>cypress.com/interface</td>
</tr>
<tr>
<td>Internet of Things</td>
<td>cypress.com/iot</td>
</tr>
<tr>
<td>Memory</td>
<td>cypress.com/memory</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>cypress.com/mcu</td>
</tr>
<tr>
<td>PSoC</td>
<td>cypress.com/psoc</td>
</tr>
<tr>
<td>Power Management ICs</td>
<td>cypress.com/pmic</td>
</tr>
<tr>
<td>Touch Sensing</td>
<td>cypress.com/touch</td>
</tr>
<tr>
<td>USB Controllers</td>
<td>cypress.com/usb</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>cypress.com/wireless</td>
</tr>
</tbody>
</table>

PSoC® Solutions

<table>
<thead>
<tr>
<th>Category</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSoC 1</td>
<td>PSoC 3</td>
</tr>
</tbody>
</table>

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.