

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-94250 Rev. ** Revised September 16, 2014

Features
 3- to 16-bit data width

 Four SPI modes

 Bit rate up to 5 Mbps1

General Description
The SPI Slave provides an industry-standard, 4-wire slave SPI interface. It can also provide a
3-wire (bidirectional) SPI interface. Both interfaces support all four SPI operating modes,
allowing communication with any SPI master device. In addition to the standard 8-bit word
length, the SPI Slave supports a configurable 3- to 16-bit word length for communicating with
nonstandard SPI word lengths.
SPI signals include the standard Serial Clock (SCLK), Master In Slave Out (MISO), Master Out
Slave In (MOSI), bidirectional Serial Data (SDAT), and Slave Select (SS).

When to Use the SPI Slave
You can use the SPI Slave component any time a PSoC device is required to interface with an
SPI Master device. In addition to SPI Master labeled devices, you can use the SPI Slave with
many devices implementing a shift register type interface.
Use the SPI Master component in instances requiring a PSoC device to communicate with an
SPI Slave device. Use the Shift Register component in situations where its low-level flexibility
provides hardware capabilities not available in the SPI Slave component.

1 This value is valid only for MOSI+MISO (Full Duplex) interfacing mode (see the DC and AC Electrical Characteristics section

for details) and is restricted up to 1 Mbps in Bidirectional mode because of internal bidirectional pin constraints.

Serial Peripheral Interface (SPI) Slave
2.41

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 2 of 40 Document Number: 001-94250 Rev. **

Input/Output Connections
This section describes the various input and output connections for the SPI. An asterisk (*) in the
list of I/Os indicates that the I/O may be hidden on the symbol under the conditions listed in the
description of that I/O.

mosi – Input *
The mosi input carries the Master Output Slave Input (MOSI) signal from a master device. This
input is visible when the Data Lines parameter is set to “MOSI + MISO.” If visible, this input must
be connected.

sdat – Inout *
The sdat inout carries the Serial Data (SDAT) signal. This input is used when the Data Lines
parameter is set to Bidirectional. For both PSoC 3 and PSoC 5 silicon an asynchronous clock
crossing warning will be reported between the component clock and the SCLK signal when
timing analysis is performed. The following is an example of such a message: “Path(s) exist
between clocks IntClock and SCLK(0)_PAD, but the clocks are not synchronous to each other.”
This message applies to a path from the register that controls the direction and the sampling of
data by SCLK. SCLK should not be running when the direction is being changed. As long as this
rule is followed, there is no problem and you can ignore this message.

Figure 1. SPI Bidirectional Mode (data transmission from Master to Slave)

SPI Master SPI Slave

Tx Shift Register

Rx Shift Register

Tx Shift Register

Rx Shift Register

Control Logic Control Logic

“1” “0”

ENB ENB

Internal loopback

SCLK

SS

SDAT

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 3 of 40

Figure 2. SPI Bidirectional Mode (data transmission from Slave to Master)

SPI Master SPI Slave

Tx Shift Register

Rx Shift Register

Tx Shift Register

Rx Shift Register

Control Logic Control Logic

“1”“0”

ENB ENB

Internal loopback

SCLK

SS

SDAT

Initial component’s state in Bi-directional Mode is Rx mode or Data transmission from Master to
Slave, as shown in Figure 2. SPIS_TxEnable() and SPIS_Tx_Disable() API functions should be
used to switch between Rx and Tx mode.

sclk– Input
The sclk input carries the Serial Clock (SCLK) signal. It provides the slave synchronization clock
input to the device. This input is always visible and must be connected.
Note Some SPI Master devices (such as the TotalPhase Aardvark I2C/SPI host adapter) drive
the sclk output in a specific way. For the SPI Slave component to function properly with such
devices in modes where CPOL = 1, the sclk pin should be set to resistive pull-up drive mode.
Otherwise, it puts out corrupted data. See the Functional Description section for more
information about modes.

ss – Input
The ss input carries the Slave Select (SS) signal to the device. This input is always visible and
must be connected.
The following diagrams show the timing correlation between SCLK and SS signals
CPHA = 0:

SCLK
0.5 SCLK

period

1 SCLK period
SS

CPHA = 1:

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 4 of 40 Document Number: 001-94250 Rev. **

SCLK
0.5 SCLK

periodSS
1 SCLK period

Note The SS timing shown in these diagrams is valid for the PSoC Creator SPI Master.
Generally, 0.5 of the SCLK period is enough delay between the SS negative edge and the first
SCLK edge for the SPI Slave to work correctly in all supported bit-rate ranges.

reset – Input
The reset input resets the SPI Slave. It deletes any data that was currently being transmitted or
received, but does not clear data from the FIFO that has already been received or is ready to be
transmitted. PSoC 5 silicon do not support this reset functionality, so this input is ignored when
used with those devices. Use of the reset input results in an asynchronous clock crossing
warning being reported between the clock that generates the Reset input and the SCLK signal
when timing analysis is performed. The following is an example of such a message: “Path(s)
exist between clocks BUS_CLK and SCLK(0)_PAD, but the clocks are not synchronous to each
other.” This message applies to a path from the Reset signal to the operation of the SPI
component clocked by SCLK. SCLK should not be running when the Reset signal is changed. As
long as this rule is followed, there is no problem and you can ignore this message.
The reset input may be left floating with no external connection. If nothing is connected to the
reset line the component will assign it a constant logic 0.

clock – Input *
The clock input defines the sampling rate of the status register. All data clocking happens on the
sclk input, so the clock input does not handle the bit-rate of the SPI Slave.
The clock input is visible when the Clock Selection parameter is set to External. If visible, this
input must be connected.

miso – Output *
The miso output carries the Master In Slave Out (MISO) signal to the master device on the bus.
This output is visible when the Data Lines parameter is set to MOSI + MISO.

interrupt – Output
The interrupt output is the logical OR of the group of possible interrupt sources. This signal goes
high while any of the enabled interrupt sources are true.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 5 of 40

Schematic Macro Information
By default, the PSoC Creator Component Catalog contains Schematic Macro implementations
for the SPI Slave component. These macros contain already connected and adjusted input and
output pins and clock source. Schematic Macros are available for 4-wire (Full Duplex), 3-wire
(Bidirectional), and Full Duplex Multislave SPI interfacing.

Figure 3. 4-wire (Full Duplex) Interfacing Schematic Macro

Figure 4. 3-wire (Bidirectional) Interfacing Schematic Macro

Figure 5. Multislave Mode Schematic Macro

Note If you do not use a Schematic Macro, configure the Pins component to deselect the Input
Synchronized parameter for each of your assigned input pins (MOSI, SCLK and SS). The
parameter is located under the Pins > Input tab of the applicable Pins Configure dialog.

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 6 of 40 Document Number: 001-94250 Rev. **

Component Parameters
Drag an SPI Slave component onto the design. Double click the component symbol to open the
Configure dialog.
The following sections describe the SPI Slave parameters, and how they are configured using
the Configure dialog. They also indicate whether the options are hardware or software.

Hardware vs. Software Options
Hardware configuration options change the way the project is synthesized and placed in the
hardware. You must rebuild the hardware if you make changes to any of these options. Software
configuration options do not affect synthesis or placement. When setting these parameters
before build time you are setting their initial value, which may be modified at any time with the
provided APIs. Hardware-only parameters are marked with an asterisk (*).

Configure Tab
The Configure tab contains basic parameters required for every SPI component.

Note The sample signal in the waveform is not an input or output of the system; it simply indicates when
the data is sampled at the master and slave for the mode settings selected.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 7 of 40

Mode *
The Mode parameter defines the desired clock phase and clock polarity mode used in the
communication. These modes are defined in the following table. Refer also to the Functional
Description section of this datasheet.

CPHA CPOL

0 0

0 1

1 0

1 1

Data Lines
The Data Lines parameter defines which interface is used for SPI communication – 4-wire
(MOSI + MISO) or 3-wire (Bidirectional).

Data Bits *
The number of Data Bits defines the bit-width of a single transfer as transferred with the
SPIS_ReadRxData() and SPIS_WriteTxData() APIs. The default number of bits is a single byte
(8 bits). Any integer from 3 to 16 is a valid value.

Shift Direction *
The Shift Direction parameter defines the direction the serial data is transmitted. When set to
MSB First, the most significant bit is transmitted first. This is implemented by shifting the data
left. When set to LSB First, the least significant bit is transmitted first. This is implemented by
shifting the data right.

Bit Rate *
If the Clock Selection parameter (on the Advanced tab) is set to Internal Clock, the Bit Rate
parameter defines the SCLK speed in Hertz. The clock frequency of the internal clock is 2x the
SCLK rate. This parameter has no effect if the Clock Selection parameter is set to External
Clock.

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 8 of 40 Document Number: 001-94250 Rev. **

Advanced Tab

Clock Selection
The Clock Selection parameter specifies whether to use an internal clock or external clock.
Refer to the Clock Selection section later in this datasheet for more information.

Rx Buffer Size *
The Rx Buffer Size parameter defines the size (in bytes/words) of memory allocated for a
circular data buffer. If this parameter is set to 1 to 4, the fourth byte/word of the FIFO is
implemented in the hardware. Values 1 to 3 are available only for compatibility with previous
versions; using them causes an error message saying that the value is incorrect. All other values
up to 255 use the 4-byte/word FIFO and a memory array controlled by the supplied API.

Tx Buffer Size *
The Tx Buffer Size parameter defines the size (in bytes/words) of memory allocated for a
circular data buffer. If this parameter is set to 1 to 4, the fourth byte/word of FIFO is implemented
in the hardware. Values 1 to 3 are available only for compatibility with previous versions; setting
them causes an error message saying that the value is incorrect. All other values up to 255 use
the 4-byte/word FIFO and a memory array controlled by the supplied API.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 9 of 40

Using the Software Buffer
Selecting Rx/Tx Buffer Size values greater than 4 allows you to use the Rx/Tx circular software
buffers. The internal interrupt handler is used when you select the Tx/Rx software buffer option.
Its main purpose is to provide interaction between software and hardware Tx/Rx buffers. In the
initial state, the BufferRead and BufferWrite pointers point to the zero element of the software
buffer. After writing the first data, the BufferWrite pointer moves to the first element of the
software buffer and points to writing data; the BufferRead pointer stays on the zero element. As
the buffers work, the pointers move to the next buffer elements. The BufferWrite pointer points to
the last written data. The BufferRead pointer points to the oldest data that has not been read.
Software buffer overflow can happen without any overflow indication. You must handle any
software buffer overflow situation.
You should also consider that using the software buffer leads to greater timing intervals between
transmitted words because of the extra time the interrupt handler needs to execute (depending
on the selected bus clock value). When setting timing intervals between transmitted words, use
DMA along with a hardware buffer.

Enable Tx/Rx Internal Interrupt
The Enable Tx/Rx Internal Interrupt options allow you to use the predefined Tx and Rx ISRs of
the SPI Slave component, or supply your own custom ISRs. If these options are enabled, you
may add your own code to these predefined ISRs if small changes are required. If the internal
interrupt is deselected, you may supply an external interrupt component with custom code
connected to the interrupt outputs of the SPI Slave.
If the Rx or Tx buffer size is greater than 4, the component automatically sets the appropriate
parameters, as the internal ISR is needed to handle the transfer of data from the hardware FIFO
to the Rx or Tx buffer, or both. The interrupt output pins of the SPI Slave are always visible and
usable, outputting the same signal that goes to the internal interrupt. This output can then be
used as a DMA request source or as a digital signal to be used as required in the programmable
digital system.
Notes:

 When Rx buffer size is greater than 4 bytes/words, the ‘Rx FIFO NOT EMPTY’ interrupt is
always enabled and cannot be disabled, because it causes incorrect buffer functionality.

 When Tx buffer size is greater than 4 bytes/words, the ‘Tx FIFO NOT FULL’ interrupt is
always enabled and cannot be disabled, because it causes incorrect buffer functionality.

 For buffer sizes greater than 4 bytes/words, the global interrupt and component’s interrupt
must be enabled for proper buffer handling.

Interrupts
The Interrupts selection parameters allow you to configure the internal events that are enabled
to cause an interrupt. Interrupt generation is a masked OR of all of the enabled Tx and Rx status

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 10 of 40 Document Number: 001-94250 Rev. **

register bits. The bits chosen with these parameters define the mask implemented with the initial
component configuration.

Enable Multi-Slave mode
This setting is used when the current SPI Slave component is connected to the shared bus with
other SPI Slave devices. The MISO_OE output becomes visible on the component symbol. The
external BUF_OE component should be connected to the MISO output in this mode. This mode
allows you to turn MISO output to a high-impedance state when SS line is high. The multi-slave
mode macro can be used to provide all necessary connections quickly.

Enable Fixed Placement
This setting is used to improve SPI Slave component performance in comparison with
unconstrained placement. Fixed placement offers a single placement for a component. This
means that only one instance of a component can be used in a single design. Placement of the
pins connected to the component is not controlled, but it is preferable to use pins from P[0] to
achieve the best performance.
The fixed placement aspect of the component removes the variability that is accounted for with
the “Maximum with All Routing” case (see DC and AC Electrical Characteristics for details). It
also allows the fixed placement to continue to operate the same as a non-fixed placed design
would in a fairly empty design.

Clock Selection
When the internal clock configuration is selected, PSoC Creator calculates the required
frequency and clock source, and generates the clocking resource needed for implementation.
Otherwise, you must supply the clock component and calculate the required clock frequency.
That frequency is, at a minimum, 2x the maximum bit-rate and SCLK frequency.
Note When setting the bit-rate or external clock frequency value, make sure that this value can
be provided by PSoC Creator using the current system clock frequency. Otherwise, a warning
about the clock accuracy range will be generated while building the project. This warning
contains the real clock value set by PSoC Creator. Choose whether the system clock or
component clock should be changed to fit the clocking system requirements and achieve an
optimal value.

Placement
The SPI Slave component is placed into the UDB array and all placement information is provided
to the API through the cyfitter.h file.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 11 of 40

Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.
By default, PSoC Creator assigns the instance name “SPIS_1” to the first instance of a
component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “SPIS.”

Function Description

SPIS_Start() Calls both SPIS_Init() and SPIS_Enable(). Should be called the first time the
component is started.

SPIS_Stop() Disables SPIS operation.

SPIS_EnableTxInt() Enables the internal Tx interrupt irq.

SPIS_EnableRxInt() Enables the internal Rx interrupt irq.

SPIS_DisableTxInt() Disables the internal Tx interrupt irq.

SPIS_DisableRxInt() Disables the internal Rx interrupt irq.

SPIS_SetTxInterruptMode() Configures the Tx interrupt sources enabled.

SPIS_SetRxInterruptMode() Configures the Rx interrupt sources enabled.

SPIS_ReadTxStatus() Returns the current state of the Tx status register.

SPIS_ReadRxStatus() Returns the current state of the Rx status register.

SPIS_WriteTxData() Places a byte/word in the transmit buffer that will be sent at the next available bus
time.

SPIS_WriteTxDataZero() Places a byte/word in the shift register directly. This is required for SPI Modes
where CPHA = 0.

SPIS_ReadRxData() Returns the next byte/word of received data available in the receive buffer.

SPIS_GetRxBufferSize() Returns the size (in bytes/words) of received data in the Rx memory buffer.

SPIS_GetTxBufferSize() Returns the size (in bytes/words) of data waiting to transmit in the Tx memory
buffer.

SPIS_ClearRxBuffer() Clears the Rx buffer memory array and Rx FIFO of all received data.

SPIS_ClearTxBuffer() Clears the Tx buffer memory array and Tx FIFO of all transmit data. Note Tx FIFO
will be cleared only if software buffer is not used.

SPIS_TxEnable() If configured for bidirectional mode, sets the SDAT inout to transmit.

SPIS_TxDisable() If configured for bidirectional mode, sets the SDAT inout to receive.

SPIS_PutArray() Places an array of data into the transmit buffer.

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 12 of 40 Document Number: 001-94250 Rev. **

Function Description

SPIS_ClearFIFO() Clears any received data from the Rx hardware FIFO.

SPIS_Sleep() Prepares SPIS component for low-power modes by calling SPIS_SaveConfig() and
SPIS_Stop() functions.

SPIS_Wakeup() Restores and re-enables the SPIS component after waking from low-power mode.

SPIS_Init() Initializes and restores the default SPIS configuration.

SPIS_Enable() Enables the SPIS to start operation.

SPIS_SaveConfig() Saves SPIS hardware configuration.

SPIS_RestoreConfig() Restores SPIS hardware configuration.

Global Variables
Function Description

SPIS_initVar SPIS_initVar indicates whether the SPI Slave component has been initialized. The variable
is initialized to 0 and set to 1 the first time SPIS_Start() is called. This allows the component
to restart without reinitialization after the first call to the SPIS_Start() routine.
If reinitialization of the component is required, then the SPIS_Init() function can be called
before the SPIS_Start() or SPIS_Enable() function.

SPIS_txBufferWrite Transmit buffer location of the last data written into the buffer by the API.

SPIS_txBufferRead Transmit buffer location of the last data read from the buffer and transmitted by SPIS
hardware.

SPIS_rxBufferWrite Receive buffer location of the last data written into the buffer after received by SPIS
hardware.

SPIS_rxBufferRead Receive buffer location of the last data read from the buffer by the API.

SPIS_rxBufferFull Indicates the software buffer has overflowed.

SPIS_RXBUFFER[] Used to store received data.

SPIS_TXBUFFER[] Used to store data for sending.

void SPIS_Start(void)
Description: This is the preferred method to begin component operation. SPIS_Start() sets the initVar

variable, calls the SPIS_Init() function, and then calls the SPIS_Enable() function.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 13 of 40

void SPIS_Stop(void)
Description: Disables the SPI Slave component interrupts. Has no affect on the SPIS operation.

Parameters: None

Return Value: None

Side Effects: None

void SPIS_EnableTxInt(void)
Description: Enables the internal Tx interrupt irq.

Parameters: None

Return Value: None

Side Effects: None

void SPIS_EnableRxInt(void)
Description: Enables the internal Rx interrupt irq.

Parameters: None

Return Value: None

Side Effects: None

void SPIS_DisableTxInt(void)
Description: Disables the internal Tx interrupt irq

Parameters: None

Return Value: None

Side Effects: None

void SPIS_DisableRxInt(void)
Description: Disables the internal Rx interrupt irq

Parameters: None

Return Value: None

Side Effects: None

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 14 of 40 Document Number: 001-94250 Rev. **

void SPIS_SetTxInterruptMode(uint8 intSrc)
Description: Configures the Tx interrupt sources that are enabled.

Parameters: uint8 intSrc: Bit field containing the interrupts to enable.

Bit Description

SPIS_STS_SPI_DONE Enable interrupt due to SPI done

SPIS_STS_TX_FIFO_EMPTY Enable interrupt due to Tx FIFO empty

SPIS_STS_TX_FIFO_NOT_FULL Enable interrupt due to Tx FIFO not full

SPIS_STS_BYTE_COMPLETE Enable interrupt due to byte/word complete

Based on the bit-field arrangement of the Tx status register. This value must be a
combination of Tx status register bit-masks defined in the header file.
For more information, refer to the Defines section in this datasheet.

Return Value: None

Side Effects: None

void SPIS_SetRxInterruptMode(uint8 intSrc)
Description: Configures the Rx interrupt sources that are enabled.

Parameters: uint8 intSrc: Bit field containing the interrupts to enable.

Bit Description

SPIS_STS_RX_FIFO_EMPTY Enable interrupt due to Rx FIFO empty

SPIS_STS_RX_FIFO_NOT_EMPTY Enable interrupt due to Rx FIFO not empty

SPIS_STS_RX_FIFO_OVERRUN Enable interrupt due to Rx Buf overrun

SPIS_STS_RX_FIFO_FULL Enable interrupt due to Rx FIFO full

Based on the bit-field arrangement of the Rx status register. This value must be a
combination of Rx status register bit-masks defined in the header file.
For more information, refer to the Defines section in this datasheet.

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 15 of 40

uint8 SPIS_ReadTxStatus(void)
Description: Returns the current state of the Tx status register. For more information, see the Status

Register Bits section of this datasheet.

Parameters: None

Return Value: uint8: Current Tx status register value

Bit Description

SPIS_STS_SPI_DONE SPI done

SPIS_STS_TX_FIFO_EMPTY TX FIFO empty

SPIS_STS_TX_FIFO_NOT_FULL TX FIFO not full

SPIS_STS_BYTE_COMPLETE Byte/Word complete

Side Effects: Tx status register bits are clear on read.

uint8 SPIS_ReadRxStatus(void)
Description: Returns the current state of the Rx status register. For more information see the Status

Register Bits section of this datasheet.

Parameters: None

Return Value: uint8: Current Rx status register value

Bit Description

SPIS_STS_RX_FIFO_EMPTY Rx FIFO empty

SPIS_STS_RX_FIFO_NOT_EMPTY Rx FIFO not empty

SPIS_STS_RX_FIFO_OVERRUN Rx Buf overrun

SPIS_STS_RX_FIFO_FULL Rx FIFO full

Side Effects: Rx status register bits are clear on read.

void SPIS_WriteTxData(uint8/uint16 txData)
Description: Places a byte in the transmit buffer which will be sent at the next available bus time.

Parameters: uint8/uint16: txData: The data value to send across the SPI

Return Value: None

Side Effects: Data may be placed in the memory buffer and will not be transmitted until all other previous
data has been transmitted. This function blocks until there is space in the output memory
buffer.
Clears the Tx status register of the component.

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 16 of 40 Document Number: 001-94250 Rev. **

void SPIS_WriteTxDataZero(uint8/uint16 txData)
Description: Places a byte/word directly into the shift register for transmission. This byte/word will be sent

from the master device during the next clock phase.

Parameters: uint8/uint16: txData: The data value to send across the SPI

Return Value: None

Side Effects: Required for modes where CPHA == 0 where data must be in the shift register before the first
clock edge. Firmware must control this if there is already data being shifted out and if there is
more data in the FIFO. This routine should not to be used for modes where CPHA == 1.

uint8/uint16 SPIS_ReadRxData(void)
Description: Reads the next byte of data received across the SPI.

Parameters: None

Return Value: uint8/uint16: The next byte/word of data read from the FIFO

Side Effects: Will return invalid data if the FIFO is empty. Call SPIS_GetRxBufferSize() and if it returns a
nonzero value then it is safe to call the SPIS_ReadRxData() function.

uint8 SPIS_GetRxBufferSize(void)
Description: Returns the number of bytes/words of received data currently held in the Rx buffer.

 If the Rx software buffer is disabled, this function returns 0 = FIFO empty or 1 = FIFO not
empty.

 If the Rx software buffer is enabled, this function returns the size of data in the Rx
software buffer. FIFO data not included in this count.

Parameters: None

Return Value: uint8: Integer count of the number of bytes/words in the Rx buffer.

Side Effects: Clears the Rx status register of the component.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 17 of 40

uint8 SPIS_GetTxBufferSize(void)
Description: Returns the number of bytes/words of data ready to transmit currently held in the Tx buffer.

 If Tx software buffer is disabled, this function returns 0 = FIFO empty, 1 = FIFO not full,
or 4 = FIFO full.

 If the Tx software buffer is enabled, this function returns the size of data in the Tx
software buffer. FIFO data not included in this count.

Parameters: None

Return Value: uint8: Integer count of the number of bytes/words in the Tx buffer

Side Effects: Clears the Tx status register of the component.

void SPIS_ClearRxBuffer(void)
Description: Clears the Rx buffer memory array of data waiting to transmit. Clears the Rx RAM buffer by

setting both the read and write pointers to zero. Setting the pointers to zero indicates that
there is no data to transmit. Thus, writing will resume at address 0, overwriting any data that
may have remained in the RAM.

Parameters: None

Return Value: None

Side Effects: Any received data not read from the RAM buffer and FIFO will be lost when overwritten by
new data.

void SPIS_ClearTxBuffer(void)
Description: Clears the memory array of all transmit data. Clears the Tx RAM buffer by setting the read

and write pointers both to zero. Setting the pointers to zero makes the system believe there
is no data to read, Thus, writing will resume at address 0, overwriting any data that may have
remained in the RAM.

Parameters: None

Return Value: None

Side Effects: If the software buffer is used, it does not clear data already placed in the Tx FIFO. Any data
not yet transmitted from the RAM buffer will be lost when overwritten by new data.

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 18 of 40 Document Number: 001-94250 Rev. **

void SPIS_TxEnable(void)
Description: If the SPI Slave is configured to use a single bidirectional pin, this will set the bidirectional pin

to transmit.

Parameters: None

Return Value: None

Side Effects: None

void SPIS_TxDisable(void)
Description: If the SPI Slave is configured to use a single bidirectional pin, this will set the bidirectional pin

to receive.

Parameters: None

Return Value: None

Side Effects: None

void SPIS_PutArray(uint8/uint16 *buffer, uint8 byteCount)
Description: Writes available data from RAM/ROM to the Tx buffer while space is available. Keep trying

until all data is passed to the Tx buffer. If using modes where CPHA = 0, call the
SPIS_WriteTxDataZero() function before calling the SPIS_PutArray() function.

Parameters: uint8/uint16 *buffer: Pointer to the location in RAM containing the data to be sent

 uint8 byteCount: The number of bytes/words to move to the transmit buffer

Return Value: None

Side Effects: The system will stay in this function until all data has been transmitted to the buffer. This
function is blocking if there is not enough room in the Tx buffer. It may get locked in this loop
if data is not being transmitted by the Slave and the Tx buffer is full.

void SPIS_ClearFIFO(void)
Description: Clears any received data from the Rx FIFO.

Parameters: None

Return Value: None

Side Effects: Clears the status register of the component.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 19 of 40

void SPIS_Sleep(void)
Description: This is the preferred routine to prepare the component for low-power modes. The

SPIS_Sleep() routine saves the current component state. Then it calls the SPIS_Stop()
function and calls SPIS_SaveConfig() to save the hardware configuration.
Call the SPIS_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. Refer to the PSoC Creator System Reference Guide for more information about
power management functions.

Parameters: None

Return Value: None

Side Effects: None

void SPIS_Wakeup(void)
Description: This is the preferred routine to restore the component to the state when SPIS_Sleep() was

called. The SPIS_Wakeup() function calls the SPIS_RestoreConfig() function to restore the
configuration. If the component was enabled before the SPIS_Sleep() function was called,
the SPIS_Wakeup() function will also re-enable the component. Clears all data from Rx
buffer, Tx buffer, and hardware FIFOs.

Parameters: None

Return Value: None

Side Effects: Calling the SPIS_Wakeup() function without first calling the SPIS_Sleep() or
SPIS_SaveConfig() function may produce unexpected behavior.

void SPIS_Init(void)
Description: Initializes or restores the component according to the customizer Configure dialog settings. It

is not necessary to call SPIS_Init() because the SPIS_Start() routine calls this function and is
the preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: When this function is called, it initializes all of the necessary parameters for execution. These
include setting the initial interrupt mask, configuring the interrupt service routine, configuring
the bit-counter parameters and clearing the FIFO and Status Register.

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 20 of 40 Document Number: 001-94250 Rev. **

void SPIS_Enable(void)
Description: Enables SPIS to start operation. Starts the internal clock if so configured. If an external clock

is configured it must be started separately before calling this API. The SPIS_Enable()
function should be called before SPIS interrupts are enabled. This is because this function
configures the interrupt sources and clears any pending interrupts from device configuration,
and then enables the internal interrupts if so configured. A SPIS_Init() function must have
been previously called.

Parameters: None

Return Value: None

Side Effects: None

void SPIS_SaveConfig(void)
Description: This function saves the component configuration and nonretention registers. It also saves the

current component parameter values, as defined in the Configure dialog or as modified by
appropriate APIs. This function is called by the SPIS_Sleep() function.

Parameters: None

Return Value: None

Side Effects: None

void SPIS_RestoreConfig(void)
Description: Restores SPIS hardware configuration saved by the SPIS_SaveConfig() function after

waking from a lower-power mode.

Parameters: None

Return Value: None

Side Effects: If this function is called without first calling SPIS_SaveConfig() then in the following registers
will be default values from the Configure dialog:

SPIS_STATUS_MASK_REG
SPIS_COUNTER_PERIOD_REG

Defines

SPIS_TX_INIT_INTERRUPTS_MASK
Defines the initial configuration of the interrupt sources chosen in the Configure dialog. This is a
mask of the bits in the Tx status register that have been enabled at configuration as sources for
the interrupt. Refer to the Status Register Bits section for bit-field details.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 21 of 40

SPIS_RX_INIT_INTERRUPTS_MASK
Defines the initial configuration of the interrupt sources chosen in the Configure dialog. This is a
mask of the bits in the Rx status register that have been enabled at configuration as sources for
the interrupt. Refer to the Status Register Bits section for bit-field details.

Status Register Bits

SPIS_TXSTATUS
Bits 7 6 5 4 3 2 1 0

Value Interrupt Byte/Word
Complete

Unused Unused Unused Tx FIFO
Empty

Tx FIFO.
Not Full

SPI Done

SPIS_RXSTATUS
Bits 7 6 5 4 3 2 1 0

Value Interrupt Rx FIFO
Full

Rx Buf.
Overrun

Rx FIFO
Empty

Rx FIFO
Not Empty

Unused Unused Unused

 Byte/Word Complete: Set when a byte/word transmit has completed.

 Rx FIFO Overrun: Set when Rx Data has overrun the 4-byte/word FIFO without being moved
to the Rx buffer memory array (if one exists)

 Rx FIFO Full: Set when the Rx Data FIFO is full (does not indicate the Rx buffer RAM array
conditions).

 Rx FIFO Empty: Set when the Rx Data FIFO is empty (does not indicate the Rx buffer RAM
array conditions).

 Rx FIFO Not Empty: Set when the Rx Data FIFO is not empty. That is, at least one byte/word
is in the Rx FIFO (does not indicate the Rx buffer RAM array conditions).

 Tx FIFO Empty: Set when the Tx Data FIFO is empty (does not indicate the Tx buffer RAM
array conditions).

 Tx FIFO Not Full: Set when the Tx Data FIFO is not full (does not indicate the Tx buffer RAM
array conditions).

 SPI Done: Set when all of the data in the transmit FIFO has been sent. This may be used to
signal a transfer complete instead of using the byte/word complete status. (Set when
Byte/Word Complete has been set and Tx Data FIFO is empty.)

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 22 of 40 Document Number: 001-94250 Rev. **

SPIS_TXBUFFERSIZE
Defines the amount of memory to allocate for the Tx memory array buffer. This does not include
the four bytes/words included in the FIFO. If this value is greater than 4, interrupts are
implemented that automatically move data to the FIFO from the circular memory buffer.

SPIS_RXBUFFERSIZE
Defines the amount of memory to allocate for the Rx memory array buffer. This does not include
the four bytes/words included in the FIFO. If this value is greater than 4, interrupts are
implemented that automatically move data from the FIFO to the circular memory buffer.

SPIS_DATAWIDTH
Defines the number of bits per data transfer chosen in the Configure dialog.

Bootloader Support
The SPI Slave component can be used as a communication component for the Bootloader. Use
the following configuration to support communication protocol from an external system to the
Bootloader:

 Mode: Must match Host (boot device) data rate.

 Data Lines: MOSI + MISO

 Data bits: 8

 Shift Direction: Must match Host (boot device) data rate.

 Bit Rate: Must match Host (boot device) data rate.

 RX Buffer Size: 64

 TX Buffer Size: 64
For more information about the Bootloader, refer to the “Bootloader System” section of the
System Reference Guide.
The SPI Slave Component provides a set of API functions for Bootloader use.

Function Description

SPIS_CyBtldrCommStart Starts the SPIS component and enables its interrupt.

SPIS_CyBtldrCommStop Disables the SPIS component and disables its interrupt.

SPIS_CyBtldrCommReset Resets the receive and transmit communication buffers.

SPIS_CyBtldrCommRead Allows the caller to read data from the bootloader host. This function manages
polling to allow a block of data to be completely received from the host device.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 23 of 40

Function Description

SPIS_CyBtldrCommWrite Allows the caller to write data to the boot loader host. This function uses a
blocking write function for writing data using SPIS communication component.

void SPIS_CyBtldrCommStart(void)
Description: Starts the SPIS communication component.

Parameters: None

Return Value: None

Side Effects: This component automatically enables global interrupt.

void SPIS_CyBtldrCommStop(void)
Description: This function disables the SPIS component and disables its interrupt.

Parameters: None

Return Value: None

Side Effects: None

void SPIS_CyBtldrCommReset(void)
Description: Resets the receive and transmit communication Buffers.

Parameters: None

Return Value: None

Side Effects: None

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 24 of 40 Document Number: 001-94250 Rev. **

cystatus SPIS_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8
timeOut)

Description: This function allows the caller to read data from the bootloader host. The function
manages polling to allow a block of data to be completely received from the bootloader
host.

Parameters: uint8 pData[]: Pointer to storage for the block of data to be read from the bootloader
host
uint16 size: Number of bytes to be read
uint16 *count: Pointer to the variable to write the number of bytes actually read
uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the
value that best describes the problem. For more information, see the “Return Codes”
section of the System Reference Guide.

Side Effects: None

cystatus SPIS_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8
timeOut)

Description: Allows the caller to write data to the boot loader host. This function uses a blocking
write function for writing data using SPIS communication component.

Parameters: const uint8 pData[]: Pointer to the block of data to be written to the bootloader host
uint16 size: Number of bytes to be written
uint16 *count: Pointer to the variable to write the number of bytes actually written
uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the
value that best describes the problem. For more information see the “Return Codes”
section of the System Reference Guide.

Side Effects: None

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:
 project deviations – deviations that are applicable for all PSoC Creator components

 specific deviations – deviations that are applicable only for this component
This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 25 of 40

The SPI Slave component has not been verified for MISRA-C:2004 coding guidelines
compliance.

Sample Firmware Source Code
PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.
Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

Functional Description

Default Configuration
The default configuration for the SPIS is as an 8-bit SPIS with (CPHA = 0, CPOL = 0)
configuration.

Modes
Modes control the component’s status bits and the component signal values that are assumed
during data transmission. Four waveforms are shown. It is assumed that five data bytes are
transmitted (four bytes are written to the SPI Slave’s Tx buffer at the beginning of transmission
and a fifth is thrown after the first byte has been loaded into the A0 register). Numbers in circles
represent the following events (see the following waveforms):
1 – Tx FIFO Empty has being cleared when four bytes are written to the Tx buffer;
2 – Tx FIFO Not Full has been cleared because Tx FIFO is full after 4 bytes written;
3 – Tx FIFO Not Full status is set when the first byte has been loaded into the A0 register and is
cleared after the fifth byte has been written to the free place in the Tx buffer.
4 – The Slave Select line is set to Low, indicating the beginning of the transmission.
5 – Tx FIFO Not Full status is set when the second bit is loaded to the A0 register. Rx Not Empty
status is set when the first received byte has been loaded into the Rx buffer. Byte/Word
Complete is set as well.
6 – Tx FIFO Empty status is set at the moment when the last byte to be sent has been loaded
into the A0 register. This is not shown in the waveform details for simplification.
7 – The moment when the fourth byte has been received so Rx FIFO Full is set along with
Byte/Word Complete.
8 – Byte/Word Complete, SPI Done, and Rx Overrun are set because all bytes have been
transmitted and an attempt to load data into the full Rx buffer has been detected.

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 26 of 40 Document Number: 001-94250 Rev. **

9 – The SS line is set to High to indicate that transmission is complete.
10 – Rx FIFO Full is cleared when the first byte has been read from the Rx buffer and Rx FIFO
Empty is set when all of them have been read.
Note Because the same register is used to transmit and receive data, the diagram section
“Tx/Rx Data (A0)” contains two bit numbers in the following format: “Tx bit number (Rx bit
number).”

SPIS Mode: (CPHA == 0, CPOL == 0)
Mode 0 has the following characteristics:

SCLK

1(0) 2(1) 3(2) 4(3) 5(4) 6(5) 7(6) 8(8)Tx/Rx Data
(A0)

BYTE/WORD
COMPLETE

SPI DONE

TX FIFO EMPTY

TX FIFO NOT FULL

RX FIFO FULL

RX FIFO NOT
EMPTY
RX FIFO

OVERRUN

1

1-st byte transmission
End of 4-th byte

transmission
End of 5-th byte

 transmission

2x clock

1(0)

SS

2

1 6

9

10

8(7)
8(8)8(8) 2(1)

8

7

3

4

5

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 27 of 40

SPIS Mode: (CPHA == 0, CPOL == 1)
Mode 1 has the following characteristics:

SCLK

1(0) 2(1) 3(2) 4(3) 5(4) 6(5) 7(6) 8(8)Tx/Rx Data
(A0)

BYTE/WORD
COMPLETE

SPI DONE

TX FIFO EMPTY

TX FIFO NOT FULL

RX FIFO FULL

RX FIFO NOT
EMPTY
RX FIFO

OVERRUN

1

1-st byte transmission
End of 4-th byte

transmission
End of 5-th byte

 transmission

2x clock

1(0)

SS

2

1 6

9

10

8(7)
8(8)8(8) 2(1)

8

7

3

4

5

SPIS Mode: (CPHA == 1, CPOL == 0)
Mode 2 has the following characteristics:

SCLK

1(0) 2(1) 3(2) 4(3) 5(4) 6(5) 7(6) 8(8)Tx/Rx Data
(A0)

BYTE/WORD
COMPLETE

SPI DONE

TX FIFO EMPTY

TX FIFO NOT FULL

RX FIFO FULL

RX FIFO NOT
EMPTY
RX FIFO

OVERRUN

1

1-st byte transmission
End of 4-th byte

transmission
End of 5-th byte

 transmission

2x clock

1(0)

SS

2

1 6

9

10

8(7)
8(8)8(8)

8

7

3

4

5

8(7) 8(7)

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 28 of 40 Document Number: 001-94250 Rev. **

SPIS Mode: (CPHA == 1, CPOL == 1)
Mode 3 has the following characteristics:

SCLK

1(0) 2(1) 3(2) 4(3) 5(4) 6(5) 7(6) 8(8)Tx/Rx Data
(A0)

BYTE/WORD
COMPLETE

SPI DONE

TX FIFO EMPTY

TX FIFO NOT FULL

RX FIFO FULL

RX FIFO NOT
EMPTY
RX FIFO

OVERRUN

1

1-st byte transmission
End of 4-th byte

transmission
End of 5-th byte

 transmission

2x clock

1(0)

SS

2

1 6

9

10

8(7)
8(8)8(8)

8

7

3

4

5

8(7) 8(7)

Note Some SPI Master devices (such as the TotalPhase Aardvark I2C/SPI host adapter) drive
the sclk output in a specific way. For the SPI Slave component to function properly with such
devices in where CPOL = 1), the sclk pin should be set to resistive pull-up drive mode.
Otherwise, it gives out corrupted data.

Block Diagram and Configuration
The SPIS is only available as a UDB configuration of blocks. The API is described above and the
registers are described here to define the overall implementation of the SPIS.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 29 of 40

The implementation is described in the following block diagram.

CPU Access

TX/RX
Shift

Register

miso

Bit-
Counter

mosi

Control Logic

sclk

reset
ss
clock*

Registers

Tx Status
The Tx status register is a read-only register that contains the various status bits defined for a
given instance of the SPIS component. Assuming that an instance of the SPI Slave is named
“SPIS,” the value of these registers is available from the SPIS_ReadTxStatus() function call. The
interrupt output signal is generated from an ORing of the masked bit-fields within the Tx status
register. You can set the mask using the SPIS_SetTxInterruptMode() function call. Upon
receiving an interrupt you can retrieve the interrupt source by reading the Tx Status register with
the SPIS_ReadTxStatus() function call. The Tx Status register is cleared on reading so the
interrupt source is held until the SPIS_ReadTxStatus() function is called. All operations on the Tx
status register must use the following defines for the bit-fields, as these bit-fields may be moved
within the Tx status register at build time.
There are several bit-field masks defined for the Tx status register. Any of these bit-fields may be
included as an interrupt source. The bit fields indicated with an asterisk (*) are configured as
sticky bits in the TX status register; all other bits are configured as real-time indicators of status.
The #defines are available in the generated header file (.h) as follows:

 SPIS_STS_SPI_DONE * – Defined as the bit-mask of the Status register bit SPI Done.

 SPIS_STS_TX_FIFO_NOT_FULL – Defined as the bit-mask of the Status register bit
Transmit FIFO Empty.

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 30 of 40 Document Number: 001-94250 Rev. **

 SPIS_STS_TX_FIFO_EMPTY – Defined as the bit-mask of the Status register bit Transmit
FIFO Empty.

 SPIS_STS_BYTE_COMPLETE * – Defined as the bit-mask of the Status register bit Byte
Complete.

Rx Status
The Rx status register is a read-only register that contains the various status bits defined for the
SPIS. The value of these registers is available from the SPIS_ReadRxStatus() function call. The
interrupt output signal is generated from an ORing of the masked bit-fields within the Rx status
register. You can set the mask using the SPIS_SetRxInterruptMode() function call. Upon
receiving an interrupt you can retrieve the interrupt source by reading the Rx Status register with
the SPIS_ReadRxStatus() function call. The Rx Status register is cleared on read so the interrupt
source is held until the SPIS_ReadRxStatus() function is called. All operations on the Rx status
register must use the following defines for the bit-fields as these bit-fields may be moved within
the Rx status register at build time.
There are several bit-field masks defined for the Rx status register. Any of these bit-fields may
be included as an interrupt source. The bit-fields indicated with an asterisk (*) are configured as
sticky bits in the Rx status register; all other bits are configured as real-time indicators of status.
The #defines are available in the generated header file (.h) as follows:

 SPIS_STS_RX_FIFO_FULL – Defined as the bit-mask of the Status register bit Receive
FIFO Full.

 SPIS_STS_RX_FIFO_NOT_EMPTY – Defined as the bit-mask of the Status register bit
Receive FIFO Not Empty.

 SPIS_STS_RX_FIFO_OVERRUN * – Defined as the bit-mask of the Status register bit
Receive FIFO Overrun.

Tx Data
The Tx data register contains the transmit data value to send. This is implemented as a FIFO in
the SPIS. There is a software state machine to control data from the transmit memory buffer to
handle much larger portions of data to send. All APIs dealing with transmitting the data must go
through this register to place the data onto the bus. If there is data in this register and flow
control indicates that data can be sent, then the data will be transmitted on the bus. As soon as
this register (FIFO) is empty, no more data will be transmitted on the bus until it is added to the
FIFO. DMA may be set up to fill this FIFO when empty, using the TXDATA_REG address
defined in the header file.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 31 of 40

Rx Data
The Rx data register contains the received data. This is implemented as a FIFO in the SPIS.
There is a software state machine to control data movement from this receive FIFO into the
memory buffer. Typically, the Rx interrupt will indicate that data has been received, at which time
that data has several routes to the firmware. DMA may be set up from this register to the
memory array or the firmware may simply poll for the data at will. This uses the RXDATA_REG
address defined in the header file.

Conditional Compilation Information
The SPIS requires only one conditional compile definition to handle the 8- or 16-bit Datapath
configuration necessary to implement the expected NumberOfDataBits configuration it must
support. The API must conditionally compile Data Width defined in the parameter chosen. The
API should never use these parameters directly but should use the define listed below.

 SPIS_DATAWIDTH – This defines how many data bits will make up a single “byte” transfer.

Resources
The SPI Slave component is placed throughout the UDB array. The component utilizes the
following resources.

Configuration
Resource Type

Datapath
Cells Macrocells Status

Cells
Control

Cells
DMA

Channels Interrupts

8-bit (MOSI+MISO) 1 12 3 1 – 2

8-bit (Bidirectional) 1 12 3 2 – 2

16-bit
(MOSI+MISO)

2 12 3 1 – 2

16-bit (Bidirectional) 2 12 3 2 – 2

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 32 of 40 Document Number: 001-94250 Rev. **

API Memory Usage
The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.
The measurements have been done with associated compiler configured in Release mode with
optimization set for Size. For a specific design the map file generated by the compiler can be
analyzed to determine the memory usage.

Configuration
PSoC 3 (Keil_PK51) PSoC 5 (GCC) PSoC 5LP (GCC)

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

8-bit (MOSI+MISO) 423 3 616 5 528 5

8-bit (Bidirectional) 429 3 616 5 528 5

16-bit
(MOSI+MISO)

503 3 656 9 568 5

16-bit (Bidirectional) 503 3 656 9 568 5

DC and AC Electrical Characteristics
Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics
Parameter Description Min Typ[2] Max Units[3]

IDD(8-bit

(MOSI+MISO)
Component current consumption

Idle current[3] – 18 – µA/MHz

Operating current[4] – 27 – µA/MHz

IDD(8-bit

(Bidirectional)
Component current consumption

Idle current[3] – 20 – µA/MHz

Operating current[4] – 32 – µA/MHz

IDD(16-bit

(MOSI+MISO)
Component current consumption

Idle current[3] – 32 – µA/MHz

2. Device IO and clock distribution current not included. The values are at 25 °C.
3. Current consumption is specified with respect to the incoming component clock.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 33 of 40

Parameter Description Min Typ[2] Max Units[3]

Operating current[4] – 38 – µA/MHz

IDD(16-bit

(Bidirectional)
Component current consumption

Idle current[3] – 33 – µA/MHz

Operating current[4] – 40 – µA/MHz

AC Characteristics
Parameter Description Config Min Typ Max 4 Units

fSCLK SCLK frequency Config 1 5 – – 5 MHz

Config 2 6 – – 5 MHz

Config 3 7 – – 4 MHz

Config 4 8 – – 4 MHz

fCLOCK Component clock frequency 9 Config 1 5 2 * fSCLK – 10 MHz

Config 2 6 2 * fSCLK – 10 MHz

Config 3 7 2 * fSCLK – 8 MHz

Config 4 8 2 * fSCLK – 8 MHz

tCKH SCLK High time – 0.5 – 1/fSCLK

tCKL SCLK Low time – 0.5 – 1/fSCLK

4 The component maximum component clock frequency is derived from tSCLK_MISO in combination with the routing path delays of
the SCLK input and the MISO output (described later in this document). These “Nominal” numbers provide a maximum safe
operating frequency of the component under nominal routing conditions. It is possible to run the component at higher clock
frequencies, at which point you need to validate the timing requirements with STA results.
5 Config 1 options:
 Data Lines: MOSI+MISO
 Data Bits: 8
6 Config 2 options:
 Data Lines: MOSI+MISO
 Data Bits: 16
7 Config 3 options:
 Data Lines: Bidirectional
 Data Bits: 8
8 Config 4 options:
 Data Lines: Bidirectional
 Data Bits: 16
9 Component clock is for status register only; it does not affect base functionality or bit-rate. Routing may limit the maximum
frequency of this parameter; therefore, the maximum is listed with nominal routing results.

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 34 of 40 Document Number: 001-94250 Rev. **

Parameter Description Config Min Typ Max 4 Units

tSCLK_MISO SCLK to MISO output time – – 52 ns

tSCLK_SDAT

(Bidirectional
Mode only)

SCLK to SDAT output time – – 54 ns

tS_MOSI MOSI input setup time 25 – – ns

tH_MOSI MOSI input hold time – 0 ns

tSS_SCLK SS active to SCLK active 20 – – ns

tSCLK_SS SCLK inactive to SS inactive –20 – 20 ns

Figure 6. Mode CPHA = 0 Timing Diagram

tH_MOSI tSCLK_MISO

tS_MOSI

tCKL

tSCLK_SStCKHtSS_SCLK

SCLK
(CPOL=0)

SS

(SDAT)

tCKL

MOSI N
(0)

N-1
(1)

1
(N-1)

0
(N)

N
(0)

N-1
(1)

1
(N-1)

0
(N)

(SDAT)MISO N
(0)

N-1
(1)

1
(N-1)

0
(N)

N
(0)

N-1
(1)

1
(N-1)

0
(N)

Byte/Word #1 Byte/Word #2

tCKH

SCLK
(CPOL=1)

Figure 7. Mode CPHA = 1 Timing Diagram

tSCLK_MISO

tS_MOSI

tCKL

tSCLK_SStCKHtSS_SCLK

SCLK
(CPOL=0)

SS

(SDAT)

tCKL

MOSI N
(0)

N-1
(1)

1
(N-1)

0
(N)

N
(0)

N-1
(1)

1
(N-1)

0
(N)

(SDAT)MISO N
(0)

N-1
(1)

1
(N-1)

0
(N)

N
(0)

N-1
(1)

1
(N-1)

0
(N)

Byte/Word #1 Byte/Word #2

tCKH

SCLK
(CPOL=1)

tH_MOSI

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 35 of 40

How to Use STA Results for Characteristics Data
Nominal route maximums are gathered through multiple test passes with Static Timing Analysis
(STA). The maximums can be calculated for your designs using the STA results with the
following mechanisms
fSCLK The maximum frequency of SCLK (or the maximum bit-rate) is not provided directly in

the STA. However, the data provided in the STA results indicates some of the internal
logic timing constraints. To calculate the maximum bit-rate, you must take several
factors into account. Board layout and slave communication device specs are needed to
fully understand the maximum. The main limiting factor in this parameter is the round-
trip path delay from the falling edge of SCLK at the pin of the master, to the slave and
the path delay of the MISO output of the slave back to the master.

Figure 8. Calculating Maximum fSCLK Frequency

tPD_SCLK(slave)

tSCLK_MISO(slave)

tSCLK_MISO(slave)

@ Master Pin SCLK

@ Slave Internal MISO

tS_MISO(master)

SCLKPD_PCB

@ Slave Pin SCLK

@ Slave internal SCLK

@ Slave pin MISO
MISOPD_PCB

@ Master pin MISO

MISO
Sample at

Master

N-1
(1)

N-1
(1)

N-1
(1)

N
(0)

N
(0)

N
(0)

In this case, the component must meet the setup time of MISO at the Master using the
equation below:

tRT_PD < 1 ÷ { [½ × fSCLK] – tPD_SCLK(master) – tS_MISO(master)}

OR
fSCLK < 1 ÷ {2 × [TRT_PD + tPD_SCLK(master) + tS_MISO(master)] }

Where tPD_SCLK(master) + tS_MISO(Master) must come from the Master Device datasheet. tRT_PD
is defined as:

tRT_PD = [SCLKPD_PCB + tPD_SCLK(slave) + tSCLK_MISO(slave) + MISOPD_PCB]

and:

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 36 of 40 Document Number: 001-94250 Rev. **

SCLKPD_PCB is the PCB path delay of SCLK from the pin of the master component to the
pin of the slave component.
tPD_SCLK(Slave) is the path delay of the input SCLK to the internal logic; tSCLK_MISO(slave) is the
SCLK pin to internal logic path delay of the slave component; and tPD_MISO(slave) is the
path delay of the internal MISO to the pin. The easiest way to find the values for these
three parameters is to take the combined path as directly listed in the STA results,
shown in the figure below:

Where tPD_SCLK(Slave) is the first two numbers, tSCLK_MISO(slave) is the second two numbers,
and tPD_MISO(slave) is the last two numbers. The full path of the three parameters is
45.889 ns.
MISOPD_PCB is the PCB path delay of the MISO from the pin of the slave component to
the pin of the master component .
The final equation that will provide the maximum frequency of SCLK, and therefore the
maximum bit-rate is:

fSCLK (Max.) = 1 ÷ { 2 × [SCLKPD_PCB + tPD_SCLK(slave) + tSCLK_MISO(slave) + MISOPD_PCB +
tPD_SCLK(master) + tS_MISO(master)] }

fCLOCK Maximum component clock frequency is provided in the timing results in the clock
summary as the IntClock (if internal clock is selected) or the named external clock. An
example of the internal clock limitations from the STA report file is below:

tCKH The SPI Slave component requires a 50-percent duty cycle SCLK.
tCKL The SPI Slave component requires a 50-percent duty cycle SCLK.
tS_MOSI To meet the setup time of the internal logic, MOSI must be valid at the pin, before SCLK

is valid at the pin, by this amount of time.
tH_MOSI To meet the hold time of the internal logic, MOSI must be valid at the pin, after SCLK is

valid at the pin, by this amount of time.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 37 of 40

tSS_SCLK To meet the internal functionality of the block, Slave Select (SS) must be valid at the pin
before SCLK is valid at the pin by this parameter.

tSCLK_SS Maximum to meet the internal functionality of the block. Slave Select (SS) must be valid
at the pin after the last falling edge of SCLK at the pin by this parameter.

Component Errata
This section lists known problems with the component.

Cypress
ID

Component
Version Problem Workaround

191257 2.40 This component version was modified without a
version number change in PSoC Creator 3.0 SP1.
For more information, see Knowledge Base Article
KBA94159 (www.cypress.com/go/kba94159).

There is no workaround. You
must update to the latest version
of the component.

Component Changes
This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

2.41 Corrected the component changes made in PSoC
Creator 3.0 SP1.

Correction of the Component Errata item –
Cypress ID 191257.

2.40 Added MISRA Compliance section. The component was not verified for MISRA
compliance.

Integrated specific APIs to support the bootloader:
CyBtldrCommStart, CyBtldrCommStop,
CyBtldrCommReset, CyBtldrCommWrite,
CyBtldrCommRead.

SPI slave could be used as a communication
component for the Bootloader with this feature.

Changed tSS_SCLK timing parameter value. Min
value is set to 20 ns. Max value is removed as not
applicable.

Previous timing values were incorrect.

2.30 Added all component APIs with the CYREENTRANT
keyword when they are included in the .cyre file.

Not all APIs are truly reentrant. Comments in the
component API source files indicate which
functions are candidates.
This change is required to eliminate compiler
warnings for functions that are not reentrant
used in a safe way: protected from concurrent
calls by flags or Critical Sections.

http://www.cypress.com/go/kba94159

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 38 of 40 Document Number: 001-94250 Rev. **

Version Description of Changes Reason for Changes / Impact

Added PSoC 5LP support

Added DC characteristics section to datasheet

2.20.a Added fixed placement explanation to datasheet

2.20 The SPI slave now discards any partial word that
has been received and any partial word that has
been transferred, if during the transfer the SS pin
goes high. Defect appeared on ES3 silicon only.

Verilog defect fixed.

Added Enable Fixed Placement option to customizer

2.10 Data Bits range is changed from 2 to 16 bits to 3 to
16

Changes related to status synchronization
issues fixed in current version

“Byte transfer complete” checkbox name is changed
to the “Byte/Word transfer complete”

To fit the real meaning

Added characterization data to datasheet

Minor datasheet edits and updates

2.0.a Moved component into subfolders of the component
catalog.

Minor datasheet edits and updates

2.0 Added SPIS_Sleep()/SPIS_Wakeup() and
SPIS_Init()/SPIS_Enable() APIs.

To support low power modes, as well as to
provide common interfaces to separate control of
initialization and enabling of most components.

Number and positions of component outputs have
been changed:
 The reset input was added;

 The interrupt output was removed; rx_interrupt,
tx_interrupt outputs were added instead.

Production PSoC 3 reset functionality was
added. Two status interrupt registers (Tx and
Rx) are now presented instead of one shared.
The changes must be taken into account to
prevent binding errors when migrating from
previous SPI versions

Removed SPIS_EnableInt(), SPIS_DisableInt(),
SPIS_SetInterruptMode(), and SPIS_ReadStatus()
APIs.
Added SPIS_EnableTxInt(), SPIS_EnableRxInt(),
SPIS_DisableTxInt(), SPIS_DisableRxInt(),
SPIS_SetTxInterruptMode(),
SPIS_SetRxInterruptMode(), SPIS_ReadTxStatus(),
SPIS_ReadRxStatus() APIs.

The removed APIs are obsolete because the
component now contains Rx and TX interrupts
instead of one shared interrupt. Also updated the
interrupt handler implementation for TX and Rx
Buffer.

Renamed SPIS_ReadByte(), SPIS_WriteByte(), and
SPIS_WriteByteZero() APIs to SPIS_ReadRxData(),
SPIS_WriteTxData(), SPIS_WriteTxDataZero().

Clarifies the APIs and how they should be used.

PSoC® Creator™ Component Datasheet Serial Peripheral Interface (SPI) Slave

Document Number: 001-94250 Rev. ** Page 39 of 40

Version Description of Changes Reason for Changes / Impact

The following changes were made to the base SPI Slave component B_SPI_Slave_v2_0, which is implemented
using Verilog:

 B_SPI_Slave_v2_0 now contains two separate
implementations for ES2 and ES3 silicon.
One datapath is used for 8-bit SPI for Tx and Rx in
ES3 silicon instead of two in ES2.

Requirement that all components support ES2
and ES3 silicon. Use of ES3 feature updates is
a requirement and this helps optimize resource
usage in ES3. .

 Changes in ES2 support implementation:
Two status registers are now presented (status are
separate on Tx and Rx) instead of using one
common status register for both.

This provides correct software buffer
functionality.

 ‘BidirectMode’ boolean parameter is added to base
component (Verilog implementation).
Control Register with ‘clock’ input and SYNC mode
bit is now selected to drive 'tx_enable' output for ES3
silicon.
Control Register w/o clock input drives 'tx_enable'
when ES2 silicon is selected.
Bufoe component is used on component schematic
to support Bidirectional Mode. MOSI output of base
component is connected to bufoe ‘x’ input.
‘yfb’ is connected to ‘miso’ input. Bufoe ‘y’ output is
connected to 'sdat' output terminal.

Added Bidirectional Mode support to the
component

 Four udb_clock_enable components are added to
Verilog implementation with sync = ‘TRUE’
parameter. One of them has sync = ‘TRUE’ (status
register clock), other three have sync = ‘FALSE’

New requirements for all clocks used in Verilog
to indicate functionality so the tool can support
synchronization and Static Timing Analysis.

 Rx datapath configuration changed. ‘FIFO FAST’
option is set to ‘DP’' instead of ‘BUS’

Fixes a defect in previous versions of the
component where there was a timing window
affecting correct component capture of data.

 Additional logic to Verilog implementation to change
the moments when SPI DONE and BYTE
COMPLETE status are generated.

Fixes a defect in previous versions of the
component where SPI DONE is sometimes not
generated even after communication is
complete.

 Maximum Bit Rate value is changed to 10 Mbps Bit Rate value more than 10 Mbps is not
supported (verified during component
characterization)

 Description of the Bidirectional Mode is added Data sheet defect fixed

 Reset input description now contains the note about
ES2 silicon incompatibility

Data sheet defect fixed

 Timing correlation diagram between SS and SCLk
signals is changed

Data sheet defect fixed

Serial Peripheral Interface (SPI) Slave PSoC® Creator™ Component Datasheet

Page 40 of 40 Document Number: 001-94250 Rev. **

Version Description of Changes Reason for Changes / Impact

 Sample firmware source code is removed Reference to the component example project is
added instead

 SPI Modes diagrams were changed (Tx and Rx
FIFO status values were added)

Data sheet defect fixed

© Cypress Semiconductor Corporation, 2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	When to Use the SPI Slave

	Input/Output Connections
	mosi – Input *
	sdat – Inout *
	sclk– Input
	ss – Input
	reset – Input
	clock – Input *
	miso – Output *
	interrupt – Output

	Schematic Macro Information
	Component Parameters
	Hardware vs. Software Options
	Configure Tab
	Mode *
	Data Lines
	Data Bits *
	Shift Direction *
	Bit Rate *

	Advanced Tab
	Clock Selection
	Rx Buffer Size *
	Tx Buffer Size *
	Using the Software Buffer
	Enable Tx/Rx Internal Interrupt
	Interrupts
	Enable Multi-Slave mode
	Enable Fixed Placement

	Clock Selection
	Placement
	Application Programming Interface
	Global Variables
	void SPIS_Start(void)
	void SPIS_Stop(void)
	void SPIS_EnableTxInt(void)
	void SPIS_EnableRxInt(void)
	void SPIS_DisableTxInt(void)
	void SPIS_DisableRxInt(void)
	void SPIS_SetTxInterruptMode(uint8 intSrc)
	void SPIS_SetRxInterruptMode(uint8 intSrc)
	uint8 SPIS_ReadTxStatus(void)
	uint8 SPIS_ReadRxStatus(void)
	void SPIS_WriteTxData(uint8/uint16 txData)
	void SPIS_WriteTxDataZero(uint8/uint16 txData)
	uint8/uint16 SPIS_ReadRxData(void)
	uint8 SPIS_GetRxBufferSize(void)
	uint8 SPIS_GetTxBufferSize(void)
	void SPIS_ClearRxBuffer(void)
	void SPIS_ClearTxBuffer(void)
	void SPIS_TxEnable(void)
	void SPIS_TxDisable(void)
	void SPIS_PutArray(uint8/uint16 *buffer, uint8 byteCount)
	void SPIS_ClearFIFO(void)
	void SPIS_Sleep(void)
	void SPIS_Wakeup(void)
	void SPIS_Init(void)
	void SPIS_Enable(void)
	void SPIS_SaveConfig(void)
	void SPIS_RestoreConfig(void)
	Defines
	SPIS_TX_INIT_INTERRUPTS_MASK
	SPIS_RX_INIT_INTERRUPTS_MASK

	Status Register Bits
	SPIS_TXSTATUS
	SPIS_RXSTATUS
	SPIS_TXBUFFERSIZE
	SPIS_RXBUFFERSIZE
	SPIS_DATAWIDTH

	Bootloader Support
	void SPIS_CyBtldrCommStart(void)
	void SPIS_CyBtldrCommStop(void)
	void SPIS_CyBtldrCommReset(void)
	cystatus SPIS_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
	cystatus SPIS_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)

	MISRA Compliance
	Sample Firmware Source Code
	Functional Description
	Default Configuration
	Modes
	SPIS Mode: (CPHA == 0, CPOL == 0)
	SPIS Mode: (CPHA == 0, CPOL == 1)
	SPIS Mode: (CPHA == 1, CPOL == 0)
	SPIS Mode: (CPHA == 1, CPOL == 1)

	Block Diagram and Configuration
	Registers
	Tx Status
	Rx Status
	Tx Data
	Rx Data
	Conditional Compilation Information

	Resources
	API Memory Usage
	DC and AC Electrical Characteristics
	DC Characteristics
	AC Characteristics
	How to Use STA Results for Characteristics Data

	Component Errata
	Component Changes

