

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 13

Step 4: Configure the DVK to Run in USB Host Mode

Figure 3 shows the required jumper and switch settings.

Figure 3. Required Jumper and Switch Settings

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 14

Step 5: Connect the JTAG debugger and start the GDB Hardware Debugging software

Connect the JTAG debugger to the 20-pin ARM JTAG connector (J51) on the FX3 DVK and power up the FX3 DVK
board. After connecting the power supply to J49, move the power switch (labeled DC INPUT) to the down position.
You should see five power LEDs illuminate.

This application note assumes that the software and driver for the JTAG debugger have been installed properly on
the PC.

For Segger J-Link, you can obtain the software package from Segger’s website: http://www.segger.com/jlink-
software.html. Extract and install the package according to the J-Link User Guide available from the same link.

Plug the J-Link JTAG debugger to a USB port and start the Segger J-Link GDB Server by choosing Start > All
Programs > SEGGER > J-Link ARM Vx.xxx > J-Link GDB Server via JTAG.

The SEGGER J-Link GDB Server Vx.xxx window pops up. Then, the “ARM9 Core Id: 0x07926069” shows up in the
Target field. Change the initial JTAG speed to 1000 kHz and select Little endian.

For Olimex ARM-USB-OCD-H, the Olimex ARM Development Package V1.1 is needed from the Olimex’s website:
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-OCD-H/. Simply extract this package under a working

directory. The example in this application note places the package in C:\Cypress\OpenOCD_Olimex\.

OpenOCD can be executed from Eclipse IDE directly as an external tool. Follow these steps:

1. Copy and paste the following text into a text file named “arm926ejs.cfg” and save the file in the same directory as

the OpenOCD executable openocd-libftdi.exe, which is in C:\Cypress\OpenOCD_Olimex\OpenOCD\.

Start of arm926ejs.cfg

Olimex ARM-USB-OCD-H

http://www.olimex.com/dev/arm-usb-ocd.html

#interface

interface ft2232

http://www.segger.com/jlink-software.html
http://www.segger.com/jlink-software.html
http://www.segger.com/admin/uploads/productDocs/UM08001_JLinkARM.pdf
https://www.olimex.com/Products/ARM/JTAG/_resources/OpenOCD_OnlinePackage_v1.1.zip
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-OCD-H/

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 15

ft2232_device_desc "Olimex OpenOCD JTAG ARM-USB-OCD-H"

ft2232_layout olimex-jtag

ft2232_vid_pid 0x15ba 0x002b

######################################

Target: CY FX3 ARM926ejs

######################################

if { [info exists CHIPNAME] } {

 set _CHIPNAME $CHIPNAME

} else {

 set _CHIPNAME fx3

}

if { [info exists ENDIAN] } {

 set _ENDIAN $ENDIAN

} else {

 set _ENDIAN little

}

if { [info exists CPUTAPID] } {

 set _CPUTAPID $CPUTAPID

} else {

 set _CPUTAPID 0x07926069

}

#delays on reset lines

jtag_nsrst_delay 200

jtag_ntrst_delay 200

jtag_khz 1000

reset_config trst_and_srst srst_pulls_trst

jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID

######################

Target configuration

######################

set _TARGETNAME $_CHIPNAME.cpu

target create $_TARGETNAME arm926ejs -endian $_ENDIAN -chain-position $_TARGETNAME -variant

arm926ejs

End of arm926ejs.cfg

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 16

2. From the Eclipse IDE, select

Run > External Tools > External Tools Configurations…

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 17

3. From the External Tools Configurations window, double-click Program from the left pane to add a new
configuration entry. Fill in the configurations on the right pane as follows and then select Run.

Name: ARM-USB-OCD-H

Location: C:\Cypress\OpenOCD_Olimex\OpenOCD\openocd-libftdi.exe

Working Directory: C:\Cypress\OpenOCD_Olimex\OpenOCD\

Arguments: C:\Cypress\OpenOCD_Olimex\OpenOCD\openocd-libftdi.exe –f arm926ejs.cfg

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 18

Step 6: Download and Execute the USBHost Project on the FX3 DVK

In the Eclipse Debug Configurations window, click Debug. Remember to use the correct port number for the “target
remote localhost:<port number>” command. The port number for J-Link is 2331, and for Olimex it is 3333.

1. After the Debug session starts, the Eclipse changes to Debug perspective, and firmware execution stops at the
breakpoint in the main() function.

2. On top of the Debug pane, click the Resume button (). If the FX3 USB host controller is running, a line that
says “OTG Event: 2, Input: 1” shows up in the UART terminal set to 1152008N1N.

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 19

3. Plug in either the USB flash drive or mouse to the DVK’s USB port using the micro-B-to-A adapter. The
respective output shows in the UART terminal.

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 20

7 Using the FX3 USB Host with Host Mode API

The previous section demonstrated how to run the USBHost example project on the FX3 DVK. Using this example,
this section presents details on how to work with the FX3’s embedded USB host firmware using the host API provided
by Cypress. The FX3 application firmware has the same basic structure as the one illustrated in Figure 4.

Figure 4. FX3 Application Firmware Structure

The FX3 firmware application runs on top of a real-time operating system (RTOS) called ThreadX. The RTOS
efficiently manages FX3 device internal resources.

The FX3 firmware application communicates with the FX3 hardware peripherals through a set of APIs that abstracts
the details of the device physical interfaces and simplifies the application code.

FX3 Application Framework

FX3 Driver Libraries
IS

R
 H

o
o

k
s

R

T
O

S

A
b

s
tr

a
c
ti

o
n

R
T

O
S

F
X

3
 A

p
p

E
x
a
m

p
le

s

Application Code

FXAppInit() // called by the

kernel

{

 // Creates the default

application thread

 createFXThread(myApp);

}

myApp (args)

{

 // FX3 blocks are initialized

and configured here

 // DMA/Flow setup done

 doNotExit();

}

Channel
APIs

GPIF II

APIs

USB
Devic
e APIs

LPP

APIs

USB
Host
APIs

FX3
Devic
e APIs DMA APIs

FX3 Framework (source)

FX3 Libraries (binary)
FX3 APIs (source)

RTOS Libraries (binary)

ISR Code
interruptHandler_DMA(chan

nel)
{

 // Default operations
 // call inlined user

handler
 myDMAIntHandler(cid);

}
inline

myDMAIntHandler(cid)
{

 // interrupt handling
}

Cypress provided framework code
Customer code

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 21

7.1 USBHost Example Application Framework

Using the USBHost project as an example, the firmware framework consists of the following source files:

 cyfx_gcc_startup.S: Startup code for the ARM-9 core on the FX3 device. This assembly source file follows the
syntax for the GNU assembler. You should never need to modify this code.

 cyfxmousedrv.c: USB HID mouse driver implementation, which works with a single interface USB HID mouse.
The driver enumerates the mouse when connected and reports the current position offset via the UART debug
terminal.

 cyfxmscdrv.c: USB mass-storage class device (MSC) driver implementation, which works with a simple single
interface USB BOT (BULK-only Transport) MSC device. The driver enumerates and queries the storage
parameters when the device is connected. It performs read/write tests to fixed sectors, repeating the tests every
one minute. The write operation is disabled by default. It can be enabled by changing the value of
CY_FX_MSC_ENABLE_WRITE_TEST to 1 in the cyfxusbhost.h file.

 cyfxusbhost.h: Constant definitions for the host application.

 cyfxtx.c: ThreadX RTOS wrappers and utility functions required by the FX3 API library.

 cyfxusbhost.c: Main C source file that implements the host mode example.

7.2 USBHost Example Walk-Through

When the USBHost firmware execution starts, it performs an initialization sequence for the FX3 device and the

compiler tool chain library, followed by the RTOS initialization. The RTOS begins by calling CyU3PKernelEntry()

from the main() function. Before the RTOS starts its thread scheduling, at least one thread is created to perform the

application task. For the USBHost example project, the application thread is ApplnThread_Entry(), which ends

up in an infinite for-loop executing the appropriate task based on the value of the global variable

glIsPeripheralPresent.

 for (;;)

 {

 CyU3PThreadSleep (100);

 if (isPresent != glIsPeripheralPresent)

 {

 /* Stop previously started application. */

 if (glIsApplnActive)

 {

 CyFxApplnStop ();

 }

 /* If a peripheral got connected, then enumerate and start the application. */

 if (glIsPeripheralPresent)

 {

 status = CyU3PUsbHostPortEnable ();

 if (status == CY_U3P_SUCCESS)

 {

 CyFxApplnStart ();

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 22

 }

 }

 /* Update the state variable. */

 isPresent = glIsPeripheralPresent;

 }

 /* Since the test needs to be done from a thread, this function is called at

fixed interval. */

 if (glHostOwner == CY_FX_HOST_OWNER_MSC_DRIVER)

 {

 CyFxMscDriverDoWork ();

 }

 }

The glIsPeripheralPresent variable is updated whenever there is a peripheral connect or disconnect event

from the FX3 USB host controller. All host events are handled within a callback function CyFxHostEventCb()

registered during the host controller initialization within CyFxUsbHostStart().

void

CyFxHostEventCb (CyU3PUsbHostEventType_t evType, uint32_t evData)

{

 /* This is connect / disconnect event. Log it so that the application thread can

handle it. */

 if (evType == CY_U3P_USB_HOST_EVENT_CONNECT)

 {

 glIsPeripheralPresent = CyTrue;

 }

 else

 {

 glIsPeripheralPresent = CyFalse;

 }

}

Host events are messages from the FX3 library to the application layer indicating that something has happened; in
this case, when a device is connected or disconnected to the FX3 host. Host events are predefined in the API. The
current API version supports two host events: connect and disconnect.

typedef enum CyU3PUsbHostEventType_t

{

 CY_U3P_USB_HOST_EVENT_CONNECT = 0, /* USB Connect event. */

 CY_U3P_USB_HOST_EVENT_DISCONNECT /* USB Disconnect event. */

} CyU3PUsbHostEventType_t;

7.2.1 Connect Event

After the USBHost firmware detects that a USB mouse or flash drive is connected to the host, the

CY_U3P_USB_HOST_EVENT_CONNECT event triggers the CyFxHostEventCb() callback, which updates the

glIsPeripheralPresent to CyTrue. The application thread ApplnThread_Entry() then enables the host by

calling the CyU3PUsbHostPortEnable(), followed by starting the application task in CyFxApplnStart().

The device enumeration occurs inside the CyFxApplnStart() function. Enumeration begins with initializing the

endpoint data structure epCfg for the EP0 control endpoint, and then adding the EP0 to the host schedule with

CyU3PUsbHostEpAdd().When FX3 operates as a host, data traffic is initiated by configuring the appropriate entries

in the scheduler memory areas inside the FX3's USB 2.0 host controller. The FX3's USB 2.0 host controller hardware
scans scheduler memory for valid entries that contains the active endpoint configurations and schedule data on the
bus accordingly.

The firmware application should identify the active set of endpoints on the downstream peripheral, and add the
corresponding endpoints to the execution schedule.

The schedule parameters that are passed to CyU3PUsbHostEpAdd () depend on the values reported by the

peripheral in the endpoint descriptors.

 CyU3PMemSet ((uint8_t *)&epCfg, 0, sizeof(epCfg));

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 23

 epCfg.type = CY_U3P_USB_EP_CONTROL;

 epCfg.mult = 1;

 epCfg.maxPktSize = 8;

 epCfg.pollingRate = 0;

 epCfg.fullPktSize = 8;

 epCfg.isStreamMode = CyFalse;

 status = CyU3PUsbHostEpAdd (0, &epCfg);

When the EP0 is in the host schedule, the firmware starts to send standard USB requests to the attached USB

mouse or flash drive using CyFxSendSetupRqt(). The enumeration process consists of a series of standard USB

requests; the host obtains the device information and configuration from the USB descriptors. From the device
descriptor firmware, the host determines the device type (only mouse and flash drive are supported by USBHost

example), and then calls the appropriate driver initialization function: CyFxMouseDriverInit() for mouse or

CyFxMscDriverInit() for flash drive.

In either of the two driver initialization functions, firmware continues the enumeration process by reading the
configuration descriptor from the device. Then, the firmware sets the supported configuration. Before the firmware
can communicate with the device, the FX3 drivers also do the following:

 initializes the endpoint data structures for matching endpoints of the device

 adds the matching endpoints to host schedule

 initializes and create DMA channels for each endpoint

After initialization, the HID driver sets up an infinite loop to the interrupt IN endpoint that constantly sends out IN
tokens to request update of mouse data.

For the MSC driver, it continues the MSC initialization with CyFxMscTestUnitReady() and CyFxMscReadCapacity(),

and then exits the CyFxMscDriverInit() function. After the MSC driver fully initializes, the application main thread

ApplnThread_Entry() starts the MSC task by calling the CyFxMscDriverDoWork()periodically, which it

generates reads (and writes if enabled) to the flash disk.

Unlike control endpoint, all endpoint transfers from host are initiated by CyU3PUsbHostEpSetXfer() if the endpoint

is in the host schedule. The function submits the transfer request to the host scheduler. The following two functions

from the MSC driver, CyFxMscSendBuffer() and CyFxMscRecvBuffer(), demonstrate simple ways to do OUT

and IN bulk transfers respectively. Other endpoint types besides the control endpoint can use the same sequence to
submit transfer request to the host scheduler.

CyU3PReturnStatus_t

CyFxMscSendBuffer (

 uint8_t *buffer,

 uint16_t count)

{

 CyU3PDmaBuffer_t buf_p;

 CyU3PUsbHostEpStatus_t epStatus;

 CyU3PReturnStatus_t status = CY_U3P_SUCCESS;

 /* Setup the DMA for transfer. */

 buf_p.buffer = buffer;

 buf_p.count = count;

 buf_p.size = ((count + 0x0F) & ~0x0F);

 buf_p.status = 0;

 status = CyU3PDmaChannelSetupSendBuffer (&glMscOutCh, &buf_p);

 if (status == CY_U3P_SUCCESS)

 {

 status = CyU3PUsbHostEpSetXfer (glMscOutEp,

 CY_U3P_USB_HOST_EPXFER_NORMAL, count);

 }

 if (status == CY_U3P_SUCCESS)

 {

 status = CyU3PUsbHostEpWaitForCompletion (glMscOutEp, &epStatus,

 CY_FX_MSC_WAIT_TIMEOUT);

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 24

 }

 if (status == CY_U3P_SUCCESS)

 {

 status = CyU3PDmaChannelWaitForCompletion (&glMscOutCh, CYU3P_NO_WAIT);

 }

 if (status != CY_U3P_SUCCESS)

 {

 CyFxMscErrorRecovery ();

 }

 return status;

}

CyU3PReturnStatus_t

CyFxMscRecvBuffer (

 uint8_t *buffer,

 uint16_t count)

{

 CyU3PDmaBuffer_t buf_p;

 CyU3PUsbHostEpStatus_t epStatus;

 CyU3PReturnStatus_t status = CY_U3P_SUCCESS;

 /* Setup the DMA for transfer. */

 buf_p.buffer = buffer;

 buf_p.count = 0;

 buf_p.size = ((count + 0x0F) & ~0x0F);

 buf_p.status = 0;

 status = CyU3PDmaChannelSetupRecvBuffer (&glMscInCh, &buf_p);

 if (status == CY_U3P_SUCCESS)

 {

 status = CyU3PUsbHostEpSetXfer (glMscInEp,

 CY_U3P_USB_HOST_EPXFER_NORMAL, count);

 }

 if (status == CY_U3P_SUCCESS)

 {

 status = CyU3PUsbHostEpWaitForCompletion (glMscInEp, &epStatus,

 CY_FX_MSC_WAIT_TIMEOUT);

 }

 if (status == CY_U3P_SUCCESS)

 {

 status = CyU3PDmaChannelWaitForCompletion (&glMscInCh, CYU3P_NO_WAIT);

 }

 if (status != CY_U3P_SUCCESS)

 {

 CyFxMscErrorRecovery ();

 }

 return status;

}

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 25

7.2.2 Disconnect Event

When the USB mouse or flash drive is disconnected from the host, it follows the same logic as the connect event.

The CY_U3P_USB_HOST_EVENT_DISCONNECT event triggers the CyFxHostEventCb() callback, which updates

the glIsPeripheralPresent to CyFalse. The application thread ApplnThread_Entry() then calls

CyFxApplnStop() to stop the application task. Within CyFxApplnStop() firmware disables the active driver with

CyFxMouseDriverDeInit() or CyFxMscDriverDeInit(), which removes all active endpoints from the host

schedule and the associated DMA channels. Before returning to the application main thread, CyFxApplnStop()

removes the control endpoint from the host schedule and then disables the host port. When CyFxApplnStop()

exits, the firmware returns to the same state as it initially comes up and waits for a connect event.

7.3 Other Useful Host API Functions

The USBHost example shown in this application note did not use every available FX3 USB host API function. Below
is a list of some of the commonly used ones while working with the FX3 USB host. For a full list of these API functions
and detailed usage of each, refer to the FX3 API Guide from the SDK document.

CyU3PUsbHostStart()

CyU3PUsbHostStop()

CyU3PUsbHostGetPortStatus()

CyU3PUsbHostPortEnable()

CyU3PUsbHostPortDisable()

CyU3PUsbHostPortReset()

CyU3PUsbHostPortSuspend()

CyU3PUsbHostPortResume()

CyU3PUsbHostEpAdd()

CyU3PUsbHostEpRemove()

CyU3PUsbHostEpReset()

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 26

8 Summary

This introduction of the EZ-USB FX3 high-speed USB host controller showed you a simple way to bring USB host
capability to embedded applications. Included in the document were associated library and firmware examples in the
SDK.

About the Author
Name: Hingkwan Huen.

Title: Systems Engineer Senior Staff

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 27

Document History

Document Title: AN77960 - Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

Document Number: 001-77960

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3606545 HKH 05/02/2012 New Application Note.

*A 3786154 HKH 10/29/2012 Added external link for USB primer

Updated to support SDK v1.2

Updated the running procedure for example project from SDK v1.2

Added details how to work with the FX3 embedded host with API

*B 3822643 CFT 11/27/2012 Minor ECN to match document title with the title in the spec system

*C 4049586 HKH 07/03/2013 Removed the SDK v1.2 reference in the title summary

Added settings for Olimex ARM-USB-OCD-H in the instruction

Minor edits and cleanup for clarity and grammar.

*D 4503121 RSKV 09/15/2014 Modified the steps for importing a project and compiling it according to the latest
FX3 SDK v1.3.1.

Updated Figure 3.

Updated the steps to run OpenOCD from the Eclipse IDE.

*E 4774138 DBIR 06/03/2015 Obsolete document.

Completing Sunset Review.

Introduction to EZ-USB
®
 FX3™ High-Speed USB Host Controller

 www.cypress.com Document No. 001-77960 Rev.*E 28

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc

Memory cypress.com/go/memory

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

EZ-USB® and FX3 are registered trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the
property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2012-2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/?id=1062&source=anxxxxx
http://www.cypress.com/?id=1936&source=anxxxxx
http://www.cypress.com/?id=24&source=anxxxxx
http://www.cypress.com/?id=1933&source=anxxxxx
http://www.cypress.com/?id=2308&source=anxxxxx
http://www.cypress.com/?id=64
http://www.cypress.com/psoc/&source=anxxxxx
http://www.cypress.com/?id=1932&source=anxxxxx
http://www.cypress.com/?id=167&source=anxxxxx
http://www.cypress.com/?id=10&source=anxxxxx
http://www.cypress.com/psoc/&source=anxxxxx
http://www.cypress.com/?id=1573&source=anxxxxx
http://www.cypress.com/?id=2232&source=anxxxxx
http://www.cypress.com/?id=4749&source=anxxxxx
http://www.cypress.com/?id=4562&source=anxxxxx
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203&source=anxxxxx
http://www.cypress.com/?app=forum&source=anxxxxx
http://www.cypress.com/?id=2200&source=anxxxxx
http://video.cypress.com/video-library/video/PSoC
http://www.cypress.com/?id=1162&source=anxxxxx
http://www.cypress.com/?id=4&source=anxxxxx
http://www.cypress.com/

	THIS SPEC IS OBSOLETE

