Copyrights

© Cypress Semiconductor Corporation, 2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

All trademarks or registered trademarks referenced herein are property of the respective corporations.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress believes that its family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as ‘unbreakable’.

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.
Contents

Safety Information 5
Regulatory Compliance ...5
General Safety Instructions ...6
ESD Protection...6
Handling Boards ...6

1. Introduction 7
1.1 Kit Contents ..7
1.1.1 Software ...7
1.1.2 Tools Not Included..8
1.1.3 Other Suggested Tools...8
1.2 Additional Learning Resources ...8
1.3 Documentation Conventions ...9
1.4 Acronyms ..9
1.5 Document History ..10

2. Software Installation 11
2.1 FX3 SDK Installation on Windows OS ...11
2.2 Rolling Back to a Previous Version of FX3 SDK ...12
2.3 FX3 SDK Installation on Linux OS ..12
2.4 SuperSpeed Explorer Kit Installation ..13
2.5 Cypress Update Manager ...15
2.6 EZ USB Suite (Eclipse) IDE ..15
2.6.1 Starting the EZ USB Suite ..15
2.6.2 Importing a Project ...16
2.6.3 Automatically Saving Your Edits ...18
2.6.4 Building the Project ..19

3. Kit Operation 20
3.1 USB Connectors ...20
3.2 Jumpers ..21
3.3 Power Mode ..22
3.4 USB Control Center ..22
3.5 Boot Options ..23
3.5.1 Boot From Onboard I2C EEPROM ..23
3.5.2 Boot as a USB Loader ..26
3.5.3 Program the EEPROM ...28
3.6 Firmware Examples ..29
3.6.1 USBBulkSourceSink with LED Blink ...29
3.6.2 SRAM Example ...30
3.7 Integrated Debugger ..33
3.7.1 UART ...34
3.7.2 JTAG ..36

4. Hardware ..46
 4.1 Power Supply ..46
 4.2 USB 3.0 Receptacle Connector ...47
 4.3 FX3 Clock ..47
 4.4 GPIF II Connector ...48
 4.4.1 SuperSpeed Explorer Kit Interconnect Boards ...49
 4.5 Reset Circuit ..49
 4.6 Serial Interfaces ..50
 4.6.1 I2C ...50
 4.6.2 I2S ...50
 4.6.3 SPI and UART ...50
 4.6.4 JTAG ...51
 4.6.5 User Push Button (SW2) ...51
 4.6.6 User LED (LED2) ...51

Appendix ..52
 Troubleshooting ...52
 Manual Installation of a Cypress Driver ...52
 If You Have “Too Many” COM Ports ...54
Safety Information

Regulatory Compliance

The CYUSB3KIT-003 SuperSpeed Explorer kit is intended for use as a development platform for hardware or software in a laboratory environment. The board is an open-system design, which does not include a shielded enclosure. This kit may cause interference to other electrical or electronic devices in close proximity. In a domestic environment, this product may cause radio interference. In such cases, take adequate preventive measures. Also, do not use this board near any medical equipment or RF devices.

Attaching additional wiring to this product or modifying the product operation from the factory default may affect its performance and cause interference with other apparatus in the immediate vicinity. If such interference is detected, suitable mitigating measures must be taken.

The CYUSB3KIT-003 SuperSpeed Explorer contains electrostatic discharge (ESD) sensitive devices. Electrostatic charges readily accumulate on the human body and any equipment, and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Cypress recommends proper ESD precautions to avoid performance degradation or loss of functionality. Store unused CYUSB3KIT-003 SuperSpeed Explorer boards in the protective shipping package.

End-of-Life/Product Recycling

This kit has an end-of-life cycle five years from the year of manufacturing mentioned on the back of the box. Contact your nearest recycler to discard the kit.
Safety Information

General Safety Instructions

ESD Protection

ESD can damage boards and associated components. Cypress recommends that you perform procedures only at an ESD workstation. If an ESD workstation is not available, use appropriate ESD protection by wearing an antistatic wrist strap attached to the chassis ground (any unpainted metal surface) on the board when handling parts.

Handling Boards

CYUSB3KIT-003 boards are sensitive to ESD. Hold the board only by its edges. After removing the board from its box, place it on a grounded, static-free surface. Use a conductive foam pad if available. Do not slide the board over any surface.
1. Introduction

Cypress EZ-USB® FX3™ (FX3) is an ARM-based controller designed to implement USB 3.0 peripherals. USB 3.0 offers the SuperSpeed signaling rate of 5 gigabits per second, which is 10 times greater than the high-speed signaling rate of 480 megabits per second. Because FX3 is USB 3.0 compliant, in addition to operating at the new SuperSpeed data rate, it can also operate at the High-Speed and Full-Speed USB data rates.

FX3 has a fully configurable General Programmable Interface (GPIF™ II) that can interface with any processor, ASIC, image sensor, or field-programmable gate array (FPGA). It provides easy and glueless connectivity to popular industry interfaces such as synchronous slave FIFO, asynchronous SRAM, asynchronous and synchronous address data multiplexed interfaces, image sensor interfaces, and CompactFlash. Additionally, users can define proprietary interfaces using Cypress's GPIF II Designer tool, which is packaged with the FX3 Software Development Kit (SDK).

The SuperSpeed Explorer Kit combines hardware, software, and documentation that enable customers to evaluate the FX3 device. This user guide describes the steps to install the software required by the SuperSpeed Explorer Kit and to operate the development board provided with the kit. The guide also documents different types of firmware download and debug methods with detailed instructions. Two example projects (USBBulkSourceSinkLED and SRAM_FX3) explain the use of various features provided on the SuperSpeed Explorer Kit development board and the host applications provided with the FX3 SDK. This document also explains the hardware interfaces available on the development board.

Interconnect boards are available to interface the SuperSpeed Explorer Kit development board with Aptina image sensor boards, Xilinx FPGA boards, and Altera FPGA boards. See Section 4.4.1 on page 49 for more information on the interconnect boards.

1.1 Kit Contents

The SuperSpeed Explorer Kit contains the following:

- FX3 development board
- USB 3.0 A to B cable
- Quick start guide
- Jumpers

Visit the kit web page (www.cypress.com/go/SuperSpeedExplorerKit) for more information. Inspect the contents of the kit. If any parts are missing, contact your nearest Cypress sales office for further assistance.

1.1.1 Software

FX3 Software Development Kit (FX3 SDK):

The FX3 software development platform is based on the Eclipse integrated development environment (IDE). A prerequisite for using the SuperSpeed Explorer Kit is to download and install the FX3 Software Development Kit (www.cypress.com/go/FX3SDK). This package installs the EZ USB Suite
and ARM GCC toolchain, a firmware library with example projects, and the Cypress USB Suite, including a Windows driver and sample Microsoft Visual Studio applications. After installation, the Cypress Update Manager ensures that all modules are up to date.

SuperSpeed Explorer Kit Installer:
The SuperSpeed Explorer Kit (www.cypress.com/go/SuperSpeedExplorerKit) installer package installs documentation (such as user guide, quick start guide, and release notes), hardware files (such as schematic, PCB layout, and gerber), and firmware examples (USBBulkSourceSinkLED and SRAM_FX3). The SuperSpeed Explorer Kit installer also includes Windows drivers for FX3 and software for JTAG debugging, including an OpenOCD executable and configuration file to use the CY7C65215 - USB-Serial Dual Channel Bridge with CapSense® and BCD (www.cypress.com/go/CY7C65215) on the SuperSpeed Explorer Kit development board as an integrated debugger for FX3.

1.1.2 Tools Not Included
- Microsoft Visual C++ or C# software required for editing and building the USB PC application source code. Free Visual Studio Express editions are available on the Microsoft website.
- USB 3.0 capable PC host: The SuperSpeed Explorer Kit firmware examples can operate at either USB 2.0 or USB 3.0 speeds. To achieve maximum performance with the FX3 hardware, use a PC with a USB 3.0 host controller.
- Java Runtime Environment (JRE).

1.1.3 Other Suggested Tools
The following USB protocol analyzers can be used to analyze the traffic between the PC host and the FX3 device:
- Hardware analyzers
 - Ellisys USB Explorer 280
 - Lecroy USB Voyager M3i
 - Beagle USB 5000 SuperSpeed Protocol Analyzer
- Software protocol analyzers
 - SourceQuest SourceUSB
 - SysNucleus USBTrace
 - USBlyzer

1.2 Additional Learning Resources
Visit the EZ-USB FX3 web page (www.cypress.com/fx3/) for additional learning resources in the form of a datasheet, a technical reference manual, application notes, knowledge base articles, and training videos.
1.3 Documentation Conventions

Table 1-1. Document Conventions for Guides

<table>
<thead>
<tr>
<th>Convention</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courier New</td>
<td>Displays file locations, user entered text, and source code:</td>
</tr>
<tr>
<td></td>
<td>C:\ ...cd\icc\</td>
</tr>
<tr>
<td>Italics</td>
<td>Displays file names and reference documentation.</td>
</tr>
<tr>
<td></td>
<td>For example, CYUSB232UART.cyusb.</td>
</tr>
<tr>
<td>[Bracketed, Bold]</td>
<td>Displays keyboard commands in procedures:</td>
</tr>
<tr>
<td></td>
<td>[Enter] or [Ctrl][C]</td>
</tr>
<tr>
<td>File > Open</td>
<td>Represents menu paths:</td>
</tr>
<tr>
<td></td>
<td>File > Open > New Project</td>
</tr>
<tr>
<td>Bold</td>
<td>Displays commands, menu paths, and icon names in procedures:</td>
</tr>
<tr>
<td></td>
<td>Click the File icon and then click Open.</td>
</tr>
<tr>
<td>Times New Roman</td>
<td>Displays an equation:</td>
</tr>
<tr>
<td></td>
<td>2 + 2 = 4</td>
</tr>
<tr>
<td>Text in gray boxes</td>
<td>Describes cautions or unique functionality of the product.</td>
</tr>
</tbody>
</table>

1.4 Acronyms

The following table lists the acronyms used in this kit guide.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>ADMUX</td>
<td>Address data multiplexing</td>
</tr>
<tr>
<td>API</td>
<td>Application programming interface</td>
</tr>
<tr>
<td>ASIC</td>
<td>Application-specific integrated circuit</td>
</tr>
<tr>
<td>COM</td>
<td>Communication port</td>
</tr>
<tr>
<td>CTS</td>
<td>UART clear to send</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital signal processor</td>
</tr>
<tr>
<td>DVK</td>
<td>Development kit</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically erasable programmable read-only memory</td>
</tr>
<tr>
<td>EP</td>
<td>Endpoint</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic discharge</td>
</tr>
<tr>
<td>FMC</td>
<td>FPGA mezzanine card</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field-programmable gate array</td>
</tr>
<tr>
<td>Gbps</td>
<td>Gigabits per second</td>
</tr>
<tr>
<td>GCC</td>
<td>GNU compiler collection</td>
</tr>
<tr>
<td>GDB</td>
<td>GNU debugger</td>
</tr>
<tr>
<td>GPIF</td>
<td>General Programmable Interface</td>
</tr>
<tr>
<td>GPIO</td>
<td>General-purpose input/output</td>
</tr>
<tr>
<td>HSMC</td>
<td>High-speed mezzanine card</td>
</tr>
<tr>
<td>I2C</td>
<td>Inter-integrated circuit</td>
</tr>
<tr>
<td>I2S</td>
<td>Inter-IC sound</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated development environment</td>
</tr>
</tbody>
</table>
1.5 Document History

<table>
<thead>
<tr>
<th>Revision</th>
<th>PDF Creation Date</th>
<th>Origin of Change</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>07/10/2014</td>
<td>NIKL</td>
<td>Initial version of kit user guide.</td>
</tr>
<tr>
<td>*A</td>
<td>08/01/2014</td>
<td>NIKL</td>
<td>Updated links. Minor content edits throughout the document.</td>
</tr>
</tbody>
</table>
2. Software Installation

This chapter guides you through the installation of the FX3 SDK for the Windows and Linux environments and the SuperSpeed Explorer Kit setup for the Windows environment.

Note The SuperSpeed Explorer Kit Quick Start Guide, packaged with the kit box, specifies to download and install the SuperSpeed Explorer Kit Setup as the first step. If this step was followed, the FX3 SDK and SuperSpeed Explorer Kit Setup are already installed on your machine. You can jump to Section 2.5 on page 15 for steps to launch Cypress Update Manager. Cypress Update Manager helps ensure you have the latest FX3 SDK and the SuperSpeed Explorer Kit Setup installed on your machine.

2.1 FX3 SDK Installation on Windows OS

To install the latest version of the FX3 SDK, follow these steps:

1. Download the latest FX3 SDK from the EZ-USB FX3 Software Development Kit page (www.cypress.com/go/FX3SDK), which includes Windows and Linux downloads. If your browser does not ask to run the downloaded file, locate the FX3SDKSetup.exe file in the Downloads folder and double-click it to start the installer (Figure 2-1).

Figure 2-1. FX3 SDK Installer Screen
2. Click **Next** to start the Installation Wizard.
3. Accept the license agreements for the various software components and click **Next**. The installer indicates the completion progress (Figure 2-2).

Figure 2-2. Installation Progress Showing Individual Modules

2.2 Rolling Back to a Previous Version of FX3 SDK

Some features or application programming interfaces (APIs) of the SDK may not be supported in the latest version of the FX3 SDK. To use those features, you can roll back to any previous version of the FX3 SDK using the Cypress Update Manager. Follow the steps given in the knowledge base article, *How to Roll Back to a Previous Version of FX3 SDK - KBA89637* (www.cypress.com/go/KBA89637), to install any previous version.

2.3 FX3 SDK Installation on Linux OS

FX3 SDK version 1.2 and later revisions support firmware development with the EZ USB Suite on the Linux platform. The EZ-USB FX3 SDK (www.cypress.com/go/FX3SDK) for Linux is released in the form of a gzipped tar archive called "FX3_SDK.tar.gz". On extraction, this tar archive contains the following gzipped tar archives:

- **FX3_Firmware.tar.gz**: FX3 firmware library and examples
- **ARM_GCC.tgz**: Sourcery ARM GNU toolchain to compile firmware examples
- **eclipse_x86.tgz**: EZ USB Suite for 32-bit Linux OS
- **eclipse_x64.tgz**: EZ USB Suite for 64-bit Linux OS
- **cyusb_linux_<Build_no>.tar.gz**: The CyUSB Suite provides QT-based USB applications to communicate with the FX3 device
The installation procedure involves extracting these archives and setting environment variables. Refer to the FX3_SDK_Linux_Support.pdf file available in the following extracted folder of the FX3 SDK for Linux installation: fx3_sdk_v1.3_linux\FX3_Firmware\cyfx3sdk\doc.

2.4 SuperSpeed Explorer Kit Installation

To install the SuperSpeed Explorer Kit software, follow these steps:

1. Download the latest kit installer from www.cypress.com/go/SuperSpeedExplorerKit. Locate the SuperSpeedExplorerKitSetup.exe file in the Downloads folder and double-click it to run the Installer (Figure 2-3).

![Figure 2-3. SuperSpeed Explorer Kit Installer Screen](image)

2. Click **Next** and select the required **Installation Type**. When installing for the first time, it is best to select the **Typical** installation type (Figure 2-4).

![Welcome to the InstallShield Wizard for SuperSpeed Explorer Kit](image)
3. Click **Next** to start the Installation Wizard.

4. Accept the license agreements for the various software components and click **Next**. Wait until the installation is complete (Figure 2-5).

Figure 2-5. Installation Progress Showing Individual Modules
2.5 Cypress Update Manager

1. When the installation is complete, you have the option to run the Cypress Update Manager (Figure 2-6) to ensure you have the latest Explorer Kit revision installed. The Update Manager can be launched in Windows from the Start menu by choosing All Programs > Cypress > Cypress Update Manager. Click the Check for updates button at the bottom of the Cypress Update Manager window. If No Updates appear next to the FX3 SDK or SuperSpeed Explorer Kit, click the Exit button. If there are updates, click the Update button to download and install the latest software.

Figure 2-6. Cypress Update Manager

2. The installation creates the SuperSpeed Explorer Kit folder in the path <Install Directory>Cypress (note that for Windows 7 and above, the default install directory is C:\Program Files (x86) and for Windows XP, the default install directory is C:\Program Files). This folder contains documentation, drivers, hardware files, example firmware, and an OpenOCD executable for using the USB-Serial IC (www.cypress.com/go/CY7C65215) as a USB-JTAG debugger.

2.6 EZ USB Suite (Eclipse) IDE

2.6.1 Starting the EZ USB Suite

Note The EZ USB Suite is dependent on the Java Runtime Environment (JRE). As the JRE is not packaged with the FX3 SDK 1.3.1, you need to download and install it separately. You can get the current version of Java from the Java website (http://java.com/en/download/index.jsp) if it is not already installed on the system.

Navigate to the Windows Start menu and select All Programs; click the Cypress folder to expand it (Figure 2-7). Click the Eclipse entry to expand it and double-click the EZ USB Suite entry.
Software Installation

Figure 2-7. Launch the EZ USB Suite

This launches a first-time startup screen that sets up a Workspace folder for all your Cypress Eclipse projects. Accept the default path of `C:\Users\(username)\Cypress\Workspace`. You may want to select **Use this as the default and do not ask again** to skip this message every time you start the EZ USB Suite.

You can create more workspaces by choosing **File > Switch Workspace > Other**. In this way, you can define different workspaces for different projects.

An empty **EZ USB Suite Workbench** appears as shown in Figure 2-8.

Figure 2-8. Empty EZ USB Suite Workbench

2.6.2 Importing a Project

To import an Eclipse project from any path, follow these steps.

1. In the EZ USB Suite, choose **File > Import > General > Existing Projects into Workspace** (Figure 2-9). Click **Next**.
2. Click the **Browse…** button to **Select root directory**: and browse to the **Firmware** folder of the SuperSpeed Explorer Kit installation, as shown in **Figure 2-10**. The default path to the firmware folder is `<Install Directory>\Cypress\SuperSpeed Explorer Kit\1.0\Firmware` (for Windows 7 and above, the default install directory is `C:\Program Files (x86)` and for Windows XP, the default install directory is `C:\Program Files`). Select the **Copy projects into workspace** option so that the project folder will be copied to your Workspace folder. Select the firmware application in the **Projects**: box, and click **Finish**.

Figure 2-10. Browse to Project Folder
3. The added projects now appear in the **EZ USB Suite Project Explorer**. Double-click a project name to see the underlying components (Figure 2-11).

Figure 2-11. USBBulkSourceSinkLED and SRAM_FX3 Projects Added to Project Explorer

2.6.3 Automatically Saving Your Edits

It is recommended that you change one of the Eclipse default settings. To automatically save your edits before building the project, navigate to **Windows > Preferences > General > Workspace** and select **Save automatically before build** (Figure 2-12). Click **OK**.
2.6.4 Building the Project

To build an FX3 project, select the project in the Project Explorer window and click the Build icon (hammer) in the EZ USB Suite. You can choose to build a Debug version or a Release version of the firmware (Figure 2-13). The generated image file in the Release version is smaller than in the Debug version. See Section 3.5.2 on page 26 and Section 3.5.3 on page 28 to learn how to download the compiled code image into the SuperSpeed Explorer Kit development board.

Figure 2-13. Build Firmware Icon

Note You can go to www.cypress.com/go/GettingStartedwithEzUsbSuite for a video course on getting started with the Eclipse IDE for FX3.
3. Kit Operation

The SuperSpeed Explorer Kit includes the development board shown in Figure 3-1.

Figure 3-1. SuperSpeed Explorer Kit Development Board

The development board provides convenient access to FX3 interfaces, such as GPIF II, I²C, SPI, UART, and I²S. The two 40-pin headers (on the reverse PCB side in Figure 3-1) provide FX3 signals to connect to external boards using the GPIF II interface. Note that for convenience, the headers have long pins that extend above the top side of the PCB for use as test points or attachment to mating connectors. All GPIF II signals, which include a 32-bit data bus, 13 control lines, and a 100-MHz clock, are available to connect to external devices such as FPGAs, CPLDs, image sensors, or microcontrollers. The FX3 SDK examples help you program and evaluate these interfaces. The GPIF II interface supports 32-, 24-, 16-, and 8-bit data/modes; unused GPIF II pins can alternatively serve as GPIO pins if the GPIF II interface is not required.

3.1 USB Connectors

The SuperSpeed Explorer Kit development board provides two USB connectors. The USB 3.0 Type B receptacle brings out the FX3 USB signals. This receptacle accepts either a USB 3.0 or USB 2.0 cable; the other end of the cable connects to a USB host PC. A USB 3.0 cable is included in the kit.
Use this port to test FX3 applications that communicate with a host PC at SuperSpeed or High-Speed rates.

The USB 2.0 Micro-B receptacle connects to an onboard Cypress CY7C65215 USB-Serial Dual Channel (UART/I2C/SPI) Bridge (www.cypress.com/go/CY7C65215), which is configured as an integrated debugger operating at the USB Full-Speed rate. This chip provides a bridge between the FX3 debug interface and a PC's USB port, enabling two debug methods: serial terminal messages and JTAG debug. These debug methods are explained in Section 3.7 on page 33.

3.2 Jumpers

The SuperSpeed Explorer Kit development board contains four jumpers, labeled J2–J5. The jumper settings are as follows.

Jumper J2: This jumper sets the voltage levels of the FX3 power domains VIO1, VIO2, and VIO3. Inserting the jumper selects 3.3 V while removing the jumper selects 1.8 V. These domains set the operating voltage of the FX3 interface pins. The default is to have the J2 jumper in place, selecting the 3.3-V interface. This makes the interface compatible with the 3.3-V SRAM connected to the GPIF II interface.

Jumper J3: This jumper is connected in series with the VBUS signal of the USB 3.0 connector. This jumper must be inserted to power the development board. The J3 jumper is provided to measure the development board's power consumption by removing the J3 jumper and connecting an ammeter between the J3 pin headers.

Jumper J4: This jumper selects the FX3 boot method. Similar to all Cypress EZ-USB parts, the code is loaded ("booted") into high-speed internal RAM for execution. The SuperSpeed Explorer Kit supports USB boot and I2C boot. FX3 contains an internal ROM, where the boot code resides, and an internal RAM, where application firmware and data are stored. At power-on, depending on this jumper setting, FX3 boots from the internal ROM and then does one of the following:

- If J4 is removed, then FX3 copies the application firmware from the onboard 2-Mbit I2C EEPROM to FX3's internal RAM and then enumerates with the functionality defined in the application firmware. If there is no valid firmware in EEPROM or if the EEPROM is disabled or not present, then FX3 enumerates as a bootloader device and enables firmware download to internal RAM through USB. This method of booting is referred to as I2C boot, with fallback to USB. The USBulkSourceSinkLED firmware is stored in the onboard EEPROM when the SuperSpeed Explorer Kit development board leaves the Cypress factory. The steps to store new firmware in EEPROM and then boot from it are explained in Section 3.5.3 on page 28.

- If J4 is inserted, then FX3 enumerates as a bootloader device and allows the application firmware to be loaded to internal RAM through USB. This boot method is referred to as USB boot. In this boot method, you can download the application firmware to FX3's RAM using a host application. The steps to load firmware to FX3's RAM using this boot method are explained in a later section.

The J4 jumper is labeled "PMODE" to correspond to the FX3 PMODE0 pin.

Jumper J5: This jumper is connected in series with the CTL0 pin of the FX3. The CTL0 pin is used as a chip select signal for the onboard SRAM external to FX3. J5 must be inserted for applications that use the SRAM. It is recommended that you deselect the SRAM by removing J5 when the SRAM is not used. Note that the SRAM operates at 3.3 V and does not support 1.8-V signaling. Therefore, the SRAM must be deselected if the 1.8-V interface is selected (if J2 is removed, then J5 should also be removed). Table 3-1 summarizes the default jumper settings.

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Jumper State</th>
<th>Function</th>
</tr>
</thead>
</table>

Table 3-1. Default Jumper Settings
3.3 **Power Mode**

The development board operates only in USB bus-powered mode. Note that an FX3 design can also be self-powered but this feature is not supported in this kit.

3.4 **USB Control Center**

To explore various FX3 boot options, open Cypress’s USB Control Center application by choosing **Start** menu **All Programs > Cypress > Cypress USBSuite > Control Center** (see **Figure 3-2**).

Figure 3-2. USB Control Center Opening Screen
Alternatively, the USB Control Center application can be launched by clicking the icon (shown in the following figure) in the EZ USB Suite application.

![USB Control Center Icon](image)

Note If you see various non-Cypress devices in the left panel of the USB Control Center application, select the **Device Class Selection** tab and deselect all check boxes except the one that says **Devices served by the CyUSB3.sys driver** (or a derivative).

The following sections demonstrate how to use the USB Control Center to identify connected USB devices, download FX3 code, and test firmware by conducting USB transfers.

3.5 Boot Options

As described in Section 3.2 on page 21, the SuperSpeed Explorer Kit development board supports the USB and I2C boot options. When the J4 jumper is removed, FX3 boots from the onboard I2C EEPROM if a valid firmware image is available in the EEPROM; otherwise, FX3 falls back to USB boot. When the J4 jumper is inserted, FX3 allows firmware download through USB.

This section discusses how to execute three FX3 boot options:

- Boot from the onboard I2C EEPROM and run its code.
- Boot as a USB loader to load and run code from the PC.
- Program the onboard EEPROM with your own code and boot from it after a reset.

3.5.1 Boot From Onboard I2C EEPROM

Confirm that the J4 jumper is not inserted. This enables FX3 to boot from the onboard I2C EEPROM, which is loaded in the factory with the USBBulkSourceSinkLED example code.

1. Connect the development board to your computer using the USB 3.0 cable provided with the kit, as shown in Figure 3-3.

Figure 3-3. **USB Connection**
2. After connecting the development board to the host, wait for the Windows drivers to install. If the drivers do not install automatically, follow the steps in the “Appendix” on page 52 to manually install the drivers.

3. After the driver installation is complete, observe the blue LED (LED2). If the development board is connected to a USB 3.0 port, the blue LED (LED2) blinks. If the development board is connected to a USB 2.0 port, the blue LED (LED2) stays ON. If the development board is connected to a USB 1.1 port, the blue LED (LED2) stays OFF.

 Note This is a useful way to speed-test USB ports on a PC, where the USB operating speed is not always obvious. For example, some desktop PCs have the telltale blue plastic inserts (which are supposed to indicate USB 3.0) in both front and rear USB receptacles. Nevertheless, the front-panel receptacles often operate only at a USB 2.0 rate (480 Mbps).

4. Take a look at the **USB Control Center**. It should appear as shown in Figure 3-4. The **USB Control Center** detects the development board, which is named Cypress FX3 USB StreamerExample Device. This appears as the heading in a device tree in the left panel.

 Figure 3-4. FX3 Board Connected to a USB 2.0 Port

![USB Control Center](image.png)

With the **Descriptor Info** tab selected, expand the device tree nodes and click on the various components – Device, Configuration, Interface, and so on. Notice that the descriptor information changes according to what is highlighted in the device tree. This illustrates the context-sensitive nature of the USB Control Center – you should select an item in the device tree before conducting a particular USB operation.
In Figure 3-4, the development board is connected to a USB 2.0 receptacle. One way to determine this is to look at the BcdUSB entry "02 10", which indicates the USB specification version under which the device enumerated (USB 2.1). With this connection, the blue LED (LED2) on the board stays ON to indicate the USB 2.0 High-Speed connection.

Compare Figure 3-4 with Figure 3-5, where the same development board was unplugged from the front-panel USB 2.0 receptacle and plugged into a rear-panel USB 3.0 receptacle on the same PC. The blue LED now blinks and the BcdUSB Descriptor Info entry now reads "03 00", indicating a USB 3.0 device. SuperSpeed devices also uniquely contain Binary Device Object Store (BOS) descriptors, as shown in Figure 3-5.

The same development board is now operating with SuperSpeed capability. This demonstrates an important USB 3.0/FX3 feature: Firmware can be written to automatically detect and support SuperSpeed or legacy USB attachments. The example Cypress code shows how this can be done.

Another USB Control Center option is to conduct USB transfers to and from the FX3 board. The example firmware booted from the EEPROM contains code to respond to a custom USB request type called a 'vendor request'. To exercise this option, select the Control endpoint (0x00) item in the device tree and click the Data Transfers tab, as shown in Figure 3-6. Then select 'Vendor' from the Req type (USB request type) drop-down list. The example firmware responds to a vendor request code of 0xAA, which you enter in the Req code box. Your panel values should look similar to those in Figure 3-6. Enter a number between 0 and 9 in the Data to send (Hex) box and click the
Transfer Data button. The LED blinks with a 1-second period and the ON time corresponding to the data you enter times 100 milliseconds. Entries greater than nine (LED ON for 900 ms) blink at a fixed 500-ms ON time.

Note Make sure there are no spaces before the number you type into the **Data to send (Hex)** text box.

Figure 3-6. Using the USB Control Center to Set the FX3 LED Blink Rate

3.5.2 Boot as a USB Loader

To demonstrate the FX3 operation as a USB bootloader, follow these instructions:

1. Unplug the development board, insert the J4 jumper, and reattach the development board to the PC. In USB boot mode, FX3 enumerates as a high-speed bootloader using Vendor ID VID=04B4 and Product ID PID=0x00F3. FX3 identifies itself in the USB Control Center as the Cypress FX3 Bootloader Device, as shown in Figure 3-7. It may take several seconds for this device entry to appear.
Kit Operation

Figure 3-7. FX3 as a USB Bootloader

![USB Control Center](image)

Note The FX3 bootloader operates at high speed (USB 2.0) even if connected to a USB 3.0 port. Therefore, it appears as a USB 2.0 device, seen by BcdSUB = “02 00” and no BOS (SuperSpeed) descriptor.

2. When the FX3 enumerates as a bootloader device, it can be used to download code into internal RAM or to program the onboard EEPROM with custom code. To download and execute code from the FX3 internal RAM, choose **Program > FX3 > RAM**, as shown in Figure 3-8.

Figure 3-8. Programming FX3 RAM

![Programming FX3 RAM](image)

3. A pop-up window asks for a file to download. Navigate to the same example firmware application available in the path (this is the same firmware stored in the EEPROM when the SuperSpeed Explorer Kit development board leaves the Cypress factory) at:

 `<Install Directory>\Cypress\SuperSpeed Explorer Kit\1.0\Firmware\USBBulk SourceSinkLED\Debug`

Note For Windows 7 and above, the default install directory is C:\Program Files (x86). For Windows XP, the default install directory is C:\Program Files.
Notice that after loading the firmware from the PC, the FX3 automatically disconnects from USB and immediately reappears in the USB Control Center as the device created by the code it loaded, namely, the Cypress FX3 USB StreamerExample Device, as described previously. You can confirm operation of the code using the same steps as those used to change the blink rate. The only difference is that this code is loaded into the FX3 RAM from the PC instead of the EEPROM. This method can be used to download and test any code you develop using the FX3 SDK. Because loading into RAM is extremely fast, the load-and-test cycles can be very short.

3.5.3 Program the EEPROM

You may want to have the FX3 boot from the onboard EEPROM using the code you put into it.

1. To program your own code into the EEPROM and boot directly to it at power-on, start the FX3 bootloader by inserting the J4 jumper and then connecting the development board to the PC. Note that pressing the RESET button has the same effect as disconnecting-then-reconnecting to the USB. As long as the J4 jumper is in place, pressing the RESET button always brings the SuperSpeed Explorer Kit development board back as a code loader. This allows you to load new code builds during development without disconnecting the USB cable. This time, select **I²C EEPROM** as the target device instead of RAM in the USB Control Center application (Figure 3.6). This causes FX3 to invoke a secondary loader called Cypress FX3 USB BootProgrammer Device (Figure 3.6), as opposed to the “BootLoader” device used to program the FX3 RAM in the previous section.

 Note The BootProgrammer has different VID/PID values than the BootLoader, which may trigger driver installation the first time it is used. If the driver does not install automatically, follow the steps in Section A.1.1 on page 52 to manually install the driver.

2. After selecting **I²C EEPROM** as the programming target, navigate to the .img file to be loaded and click **Open**. After the BootProgrammer code erases and reprograms the EEPROM, a success message appears in the lower left corner of the USB Control Center. Note that erasing and programming EEPROM takes much longer than programming internal RAM, on the order of 20-30 seconds.
3. Disconnect the USB cable, remove the J4 jumper, reattach the cable, and the FX3 boots with the code from EEPROM.

3.6 Firmware Examples

Two firmware examples are provided with the SuperSpeed Explorer Kit installation in addition to those provided with the SDK. The SDK examples are available in the Firmware folder of the FX3 SDK. To import an SDK example, refer to the steps in Section 2.6.2 on page 16. For Windows 7 and above, the default location of the firmware folder is `C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\firmware`. For Windows XP, the default install directory is `C:\Program Files\Cypress\EZ-USB FX3 SDK\1.3\firmware`.

Note The SuperSpeed Explorer Kit development board does not support FX3 USB HS-OTG functionality. Therefore, the OTG/host-based example firmware projects provided with the FX3 SDK do not apply to this kit. In addition, SDK example firmware projects that are meant for FX3S and CX3 are not applicable to this development board.

3.6.1 USBBulkSourceSink with LED Blink

This is the default firmware stored in the kit’s onboard EEPROM. As described in the previous section, this firmware supports the following features:

- It implements endless data sources and sinks over a pair of USB bulk endpoints.
- The blue LED (LED2) blinks at connection, depending on the USB host controller capability. If the development board is connected to a USB 3.0 port, the blue LED (LED2) blinks and if it is connected to a USB 2.0 port, the blue LED (LED2) stays ON. If the development board is connected to a USB 1.1 port, the blue LED (LED2) stays OFF.
- The LED blink rate can be modified through a vendor command.

The firmware source (USBBulkSourceSinkLED) is located in the Firmware folder of the SuperSpeed Explorer Kit installation. To study and modify this example, import this project into the EZ USB Suite and build the firmware image (see Section 2.6 on page 15). The firmware will be copied to the EZ USB Suite Workspace folder and a newly built firmware image will be available in the same path after building the project.

In Section 3.5.1 on page 23, the Cypress USB Control Center was used to exercise the LED functionality of this example. A second Windows application, `streamer.exe`, can be used to exercise the data source and sink capabilities. This application is available at: `<Install Directory>\Cypress\EZ-USB FX3SDK\1.3\application\cpp\streamer\x86\Release`.

Note For Windows 7 and above, the default install directory is `C:\Program Files (x86)`. For Windows XP, the default install directory is `C:\Program Files`.

Before running `streamer.exe`, make sure the Cypress FX3 USB StreamerExample Device is loaded into FX3, as detailed in Section 3.5.1 on page 23.

As Figure 3-11 shows, select 256 as **Packets per Xfer** and 64 as **Xfers to Queue** from the drop-down list available in the Streamer application.

- **Packets per Xfer**: A transfer is a collection of packets for one data set. A greater number of packets for each transfer reduces the USB overhead and achieves higher data throughput.
- **Xfers to Queue**: This setting initiates multiple transfers and adds them to a task queue, which reduces the latency between successive transfers on the host application side. Therefore, queuing more transfers results in a higher data rate.
Figure 3-11. Streamer.exe

The SuperSpeed bulk throughput depends on the burst size, buffer size, and the number of buffers. This firmware is already optimized to achieve maximum throughput. Refer to AN86947 - Optimizing USB 3.0 Throughput with EZ-USB® FX3™ (www.cypress.com/go/AN86947) for more details about the parameters that affect the throughput in the bulk source/sink firmware.

AN86947 (www.cypress.com/go/AN86947) lists the USB 3.0 throughput numbers using internally provided FX3 data. The USB 3.0 throughput numbers will be slightly lower when the data originates from an external device into FX3 through GPIF II. Refer to AN65974 - Designing with the EZ-USB® FX3™ Slave FIFO Interface (www.cypress.com/go/AN65974) for the throughput numbers when an FPGA supplies data to FX3 via the GPIF II interface.

3.6.2 SRAM Example

This firmware supports reading and writing to the onboard SRAM. The LED blinking activity is maintained in this firmware as well. You can find the firmware source (SRAM_FX3) in the Firmware folder of the SuperSpeed Explorer Kit installation. Be sure to import this project into the EZ USB Suite and build the firmware image, if not already done. The firmware will be copied to the EZ USB Suite Workspace folder, and a newly built firmware image will be available in the same path.

To test the functionality of this firmware, follow these steps.

1. Disconnect the development board from the computer if it is already connected.
2. Insert the J5 jumper to enable SRAM.
3. Make sure that the J2 jumper is inserted so that 3.3 V is provided to the SRAM interface. The SRAM works only at 3.3 V.
4. Insert the J4 jumper to boot from USB.
5. Connect the development board to your computer using the USB 3.0 cable.
6. Open the USB Control Center application and load the newly built firmware image, `SRAM_FX3.img` (from the project folder in the workspace), to FX3 RAM, as described in Section 3.5.2 on page 26.
7. FX3 re-enumerates as Cypress FX3 Example device 1. Wait for the drivers to be installed automatically. If the drivers are not installed automatically, follow the steps listed in Section A.1.1 on page 52 to install the drivers manually.
8. In the USB Control Center application, expand the Cypress FX3 Example device 1 (in the left panel) and select the Bulk out endpoint; and in the Data Transfers tab (in the right panel), click Transfer File-OUT, as shown in Figure 3-12.

Figure 3-12. Sending Data Through Control Center to Write to SRAM

A dialog box opens, prompting you to select a file. A sample 1-KB file, `1024_Count.hex`, is provided in the File Transfer folder of the SuperSpeed Explorer Kit installation. Browse to the path `<Install Directory>\Cypress\SuperSpeed Explorer Kit\1.0\File Transfer` to select the file. This writes the 1-KB data available in the file to the SRAM starting from the address 0x00.
Note For Windows 7 and above, the default install directory is C:\Program Files (x86). For Windows XP, the default install directory is C:\Program Files.

9. Send a vendor command with the **Req code** 0xBB to the control endpoint, as shown in Figure 3-13. This step is necessary to switch the GPIF state machine from the SRAM Write cycle to SRAM read cycle.

![Figure 3-13. Sending Vendor Request to Read From SRAM](image)

10. Select the **Bulk in endpoint(0x81)** in the left panel. In the **Data Transfers** tab (in the right panel), enter ‘1024’ in the **Bytes to transfer** field and click **Transfer Data-IN** to read the 1024 bytes written to SRAM in the previous step. (See Figure 3-14).
3.7 Integrated Debugger

The CY7C65215 USB-Serial IC (www.cypress.com/go/CY7C65215) is a full-speed USB-Serial bridge controller that offers two configurable serial communications blocks (SCBs). The development board uses the first serial channel of the CY7C65215 as a UART and the second serial channel as a JTAG interface. Figure 3-15 shows the block diagram.

Figure 3-15. Block Diagram of CY7C65215
3.7.1 UART

To use the UART functionality on the SuperSpeed Explorer Kit, follow these instructions:

1. Use J1 to connect the development board to your computer. This powers the board and provides the USB 3.0 conduit to FX3. Then, use a micro USB 2.0 cable to connect J8 to your computer. This connection makes the integrated debugger enumerate with three interfaces. One of the interfaces will be COM port. You can verify the entry in the Device Manager (Figure 3-16).

Figure 3-16. USB Serial IC Enumerating as COM Port

You can use any standard UART communication terminal, such as Tera Term, to display the messages transmitted over the UART.

Note Some PC terminal applications put an upper limit on COM port choices, for example offering support only up to COM7. If your USB serial port has a COM number that is too high for your PC terminal app, see Section A.2 on page 54, for a method to remove inactive COM port assignments to free up the lower-numbered COM ports.

2. When the COM port entry is verified in the Windows Device Manager, open Tera Term (or any other standard UART communication terminal), select the USB Serial Port (COM#), and click OK, as shown in Figure 3-18.

Note The Tera Term application is known to have problems of data loss at very low baud rates (1200 and below) with the integrated debugger, when larger blocks of data are received or transmitted over UART. You can use other standard COM port terminals, such as HyperTerminal or TestView, if you encounter such data loss issue with the Tera Term application.
3. In the Tera Term application, choose Setup > Serial Port to change the COM port settings, as shown in Figure 3-18 and click OK.

 Note In all the SDK firmware projects and the firmware projects provided with the SuperSpeed Explorer Kit, the UART block of the FX3 device is initialized to work at 115200 baud rate. Therefore, in the Tera Term application, you should select the 115200 baud rate while setting up the COM port, unless you have changed the baud rate setting for the UART block in the FX3 firmware project.

![Figure 3-17. Selecting USB-Serial COM Port in Tera Term](image)

![Figure 3-18. Setting Up the COM Port in Tera Term](image)

 Note Though the UART hardware flow control is supported by the FX3 SDK, it is not supported by the SuperSpeed Explorer Kit. Therefore, the Flow Control field should be set to “none” in the UART communication terminal. When the UART interface is used while debugging through JTAG, the UART baud rate should not be more than 115200.

4. The debug prints in Figure 3-19 can be observed when running the USBBulkSourceSinkLED firmware on the FX3 device. To obtain the debug prints available in the USBBulkSourceSinkLED project over UART, follow the steps mentioned above and then perform one of the following actions:

 a. The USBBulkSourceSinkLED firmware is stored in the onboard EEPROM by default. If the EEPROM still has the same firmware, then remove the J4 jumper and press the FX3 reset button so the USBBulkSourceSinkLED firmware from EEPROM is loaded to the FX3 RAM.
 b. Insert the J4 jumper and follow the steps in **Section 3.5.2 on page 26** to load the USBBulkSourceSinkLED firmware to the FX3 RAM using the USB boot option.
3.7.2 JTAG

The JTAG interface provided by the integrated debugger supports the OpenJTAG protocol and uses the OpenOCD demon tool on the host to conduct a debugging session. All the required files for JTAG debugging are provided with the SuperSpeed Explorer Kit installation and are available in the following default path after installation: `<Install Directory>\Cypress\SuperSpeed Explorer Kit\1.0\USBSerialOpenOCD`.

Note For Windows 7 and above, the default install directory is `C:\Program Files (x86)`. For Windows XP, the default install directory is `C:\Program Files`.

The OpenOCD demon tool is tailored to work with the integrated debugger. The OpenOCD executable provided with the SuperSpeed Explorer Kit setup is generated by patching OpenOCD 0.7.0 (http://openocd.sourceforge.net/) and then compiling to make it work with the integrated debugger provided on the development board. The configuration file, `arm926ejs_FX3.cfg`, is also provided as required by OpenOCD to identify the USB-Serial IC as a JTAG debugger and FX3 as a target.

Follow these steps to debug the FX3 firmware using the onboard USB-Serial IC as a JTAG debugger.

Hardware Setup
1. Insert the J4 jumper and connect the development board (USB 3.0 connector J1) to your computer using the USB 3.0 cable.
2. Connect the development board to your computer using a micro USB cable through the USB 2.0 microconnector J8. Here, the USB-Serial IC (CY7C65215) acts as a USB-JTAG device.
3. Wait for the USB-Serial IC to enumerate and install the Cypress driver automatically. If the driver does not install automatically, follow the steps in Section A.1.1 on page 52 to manually install the driver.

After driver installation, the USB-Serial interfaces can be identified as:
- USB Serial Port (COMx): This interface acts as an UART interface.
- USB-Serial (Dual Channel) Vendor MFG: This interface is used to configure the USB-Serial IC.
- USB-Serial (Dual Channel) Vendor 1: This interface acts as a JTAG interface.

Software Setup:
1. Open the EZ USB Suite, and highlight the USBBulkSourceSinkLED project you loaded and compiled in Section 3.6.1 on page 29.
2. Create an external tool configuration for the debugger. In the EZ USB Suite, choose Run > External Tools > External Tools Configurations. Double-click Program. A new run configuration opens. Give the configuration a name, and fill in the fields as follows and as shown in Figure 3-20.
Kit Operation

Figure 3-20. External Tool Configuration in EZ USB Suite

Location:
This field specifies the location for the OpenOCD executable (openOCD.exe), available in the USBSerialOpenOCD folder of the SuperSpeed Explorer Kit installation. For a SuperSpeed Explorer Kit installation using the default installation path, copy and paste the following path in this field:
C:\Program Files (x86)\Cypress\SuperSpeed Explorer Kit\1.0\USBSerialOpenOCD\openOCD.exe

Working Directory:
This field specifies the OpenOCD working directory. Use the same directory that contains the executable. For a SuperSpeed Explorer Kit installation using the default installation path, copy and paste the following path in this field:
C:\Program Files (x86)\Cypress\SuperSpeed Explorer Kit\1.0\USBSerialOpenOCD

Arguments:
This field specifies the arguments supplied to the OpenOCD executable. The file, arm926ejs_FX3.cfg, provided in the USBSerialOpenOCD folder of the SuperSpeed Explorer Kit installation contains the JTAG debugger and the target (FX3) details as required by OpenOCD. Copy and paste the following argument:
-f arm926ejs_FX3.cfg

Note When you click Run, the EZ USB Suite will build the entire workspace before launching the External Tool configuration. To eliminate this step, you can uncheck the Build before launch option in the Build tab.
When you click **Run**, OpenOCD is invoked and the messages shown in Figure 3-21 appear in the EZ USB Suite **Console** window, indicating that OpenOCD has accepted the integrated debugger as a JTAG adapter, has recognized FX3 as a target device, and is now running in the background as a debug server.

Note You need to create the external tool configuration only once for each JTAG debugger per Workspace. The configuration you just entered is saved in the EZ USB Suite.

Figure 3-21. Console Window in EZ USB Suite

Follow these steps to create a debug configuration for the project. Because individual projects require individual debug configurations, this procedure must be done once for every project. To create a debug configuration for a project, make sure to import the firmware project into the workspace and build the project, if not already done. Then, follow these steps:

1. Select the desired project in the Project Explorer; then, go to **Run > Debug Configurations**, as shown in Figure 3-22.
2. Double-click **Zylin Embedded debug (Native)**. A new debug configuration opens with the firmware name as the **Project** name. Confirm that EZ USB Suite has filled in the fields as shown in Figure 3-23. If the **C/C++ Application** field is empty, click **Search Project** and select the Debug or Release build of the .elf file, which was built previously.

Figure 3-23. Debug Configuration in EZ USB Suite
3. In the **Debugger** tab, browse to the path shown in Figure 3-24 for the GDB debugger. Leave the GDB command file field blank.

![Figure 3-24. Debugger Tab of Debug Configurations Window in EZ USB Suite](image)

4. In the **Commands** tab (Figure 3-25), copy and paste the following text into the 'Initialize' commands section:

   ```
   set prompt (arm-gdb)
   # This connects to a target via netsiliconLibRemote
   # listening for commands on this PC's tcp port 3333
   target remote localhost:3333
   monitor reset halt
   # Set the processor to SVC mode monitor reg cpsr 0xd3
   # Disable all interrupts
   monitor mww 0xFFFFF014 0xFFFFFFFF
   # Enable the TCMs
   monitor mww 0x40000000 0xE3A00015
   monitor mww 0x40000004 0xEE090F31
   monitor mww 0x40000008 0xE240024F
   monitor mww 0x4000000C 0xEE090F11
   # Set the PC to 0x40000000
   monitor reg pc 0x40000000
   si
   si
   si
   si
   In the 'Run' commands section, enter:
   ```
   ```
   load
   ```
 The 'Initialize' and 'Run' commands are the GDB commands to initialize and run the JTAG target device, in this case, FX3.
5. Click **Debug**. Accept the option to switch to the “Debug Perspective”. An Eclipse perspective is a screen layout optimized for various activities. In the upper right corner of the Eclipse screen, you can select **Debug** for debugging or **C/C++** for code development. The executable firmware launches, and the debug perspective (view) opens, as shown in Figure 3-26.

"Figure 3-25. Commands Tab of Debug Configurations Window in EZ USB Suite"

"Figure 3-26. Launching Debug Session"
The firmware launch status is shown in the bottom right corner of the EZ USB Suite debug perspective. After the firmware is launched completely, a second window opens with the message *No source available for***, as shown in Figure 3-27.

Figure 3-27. Launching Debug Session Complete

6. Ignore this message and click **Resume**. The debug point stops at "main" as shown in Figure 3-28.

Figure 3-28. Debugger Stops at Main
7. Apply breakpoints wherever necessary and click **Resume**. For example, apply breakpoints in the function `BulkSrcSinkAppThread_Entry`, as shown in Figure 3-29. To apply a breakpoint, double-click on the blue bar to the left of the line. This part of the firmware toggles the GPIO to which the blue LED (LED2) is connected.

Note Do not add breakpoints in the sections of code where USB requests are handled (CyFx-BulkSrcSinkApplnUSBSetupCB, CyFxBulkSrcSinkApplnUSBEventCB functions in the USBBulkSourceSinkLED firmware project), because they affect the USB enumeration process or any other control request handling. Similarly, avoid placing breakpoints in the GPIF callback or DMA callback sections of the firmware project, as these functions are called inside the FX3 SDK libraries. Applying a breakpoint inside these functions may affect how the firmware works in applications where FX3 is receiving continuous data over GPIF II and is streaming that data to the host.

Figure 3-29. Applying Breakpoints in the Firmware

8. After the debugger stops at "main", click **Resume**. The debugger stops at the first breakpoint, as shown in Figure 3-30. This line of the firmware switches the blue LED (LED2) ON. The second breakpoint is applied at the line of firmware that switches the blue LED (LED2) OFF.
9. Click the **Step Over** icon until you reach the second breakpoint. Note that if the development board is connected to the SuperSpeed host, the debugger will reach the second breakpoint. If the development board is connected to the high-speed host, the debugger will not reach the second breakpoint, because the initial state of the blue LED (LED2) is that it will stay on. This part of the code is in an infinite loop and clicking **Resume** will make the debugger stop at the first and second breakpoints one after the other. Use the **Step Into** or **Step Over** icons when required.

Note All FX3 SDK APIs should be "stepped over". "Stepping into" FX3 SDK APIs (APIs are the function calls that start with "CyU3P" in the firmware) will result in a warning message of "source not available at...". If you encounter this message, click the **Step Return** icon.

10. To stop the debug session, click the **Terminate** icon (see Figure 3-28). When the debug session is terminated, it can be launched again with the Debug Configurations icon shown in Figure 3-31. Be sure to reset FX3 before loading the debug configuration again. Clicking the drop-down arrow of the **Debug Configurations** icon will display all the debug configurations available. You can select the desired debug configuration from the drop-down list.

11. To completely stop the debug session, drop the GDB connection, and terminate the OpenOCD tool (running in the background), click the **Drop GDB Session** icon twice, instead of clicking the...
Terminate icon as explained in the previous step. Clicking the **Drop GDP** Session icon the first time stops the GDB session, and then clicking it again terminates the OpenOCD application.

Note It is recommended that you drop the GDB session and terminate the OpenOCD application before unplugging the USB cable of the integrated debugger, because the OpenOCD tool keeps polling for the availability of the integrated debugger. If the integrated debugger is unplugged without dropping the GDB session, continuous "CyJTAGRead failed" and "CyJTAGWrite failed" messages will be flashed in the Console window of the EZ USB Suite. Terminating the OpenOCD application will stop this activity.

If the GDB session is dropped and the OpenOCD application is terminated, then you should run the external tool configuration before starting the debug session again. Figure 3-32 shows the icon for **External Tools Configurations**. The drop-down list associated with this icon identifies all the external tools configurations saved with the EZ USB Suite. When the external tool configuration is run, you can launch the debug session to debug the firmware.

Figure 3-32. External Tools Configurations Icon

The **Debug** perspective (view) is the best one to use for debug sessions. To return to the code development perspective, click the **Open Perspective** icon and select **C/C++**, as shown in Figure 3-33.

Figure 3-33. Icon to Switch to C/C++ Perspective
This chapter describes the hardware interfaces and circuits available on the SuperSpeed Explorer Kit development board. It covers the following topics:

- Power supply
- USB 3.0 receptacle connector
- FX3 clocking mechanism using onboard crystal
- User push button
- User LED
- GPIF II connector
- Reset circuit
- Serial interfaces: I²S, I²C, SPI, UART, and JTAG

4.1 Power Supply

The SuperSpeed Explorer Kit development board is powered from the USB 3.0 connector J1. This development board does not support self-powered mode, although the FX3 device does support it.

Select voltage levels for FX3 I/O power domains through the J2 jumper, as shown in Table 4.1.

Table 4.1. Power Supply Domain

<table>
<thead>
<tr>
<th>Power Domains</th>
<th>Jumper</th>
<th>Position</th>
<th>Voltage Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIO1, VIO2, VIO3</td>
<td>J2</td>
<td>Short (default)</td>
<td>3.3 V</td>
</tr>
<tr>
<td>VIO1, VIO2, VIO3</td>
<td>J2</td>
<td>Open</td>
<td>1.8 V</td>
</tr>
</tbody>
</table>

FX3 I/O voltage domains VIO4 and VIO5 are fixed to 3.3 V. If you are using the onboard SRAM, you must select the 3.3 V option.

The FX3 device has additional power domains (U3TXVDDQ, U3RXVDDQ, AVDD, and VDD), which are fixed at 1.2 V on the development board.

Refer to the "Pin Description" section of the EZ-USB FX3: SuperSpeed USB Controller datasheet (www.cypress.com/go/CYUSB301X) for details on configuring the I/O in each power domain.

Figure 4-1 shows the circuit used to switch the voltage level using the J2 jumper.
4.2 USB 3.0 Receptacle Connector

A standard B-type USB 3.0 connector is on the development board. Figure 4-2 shows the USB 3.0 pins (SS_TX_M, SS_TX_P, SS_RX_P, and SS_RX_M) and USB 2.0 pins (D+ and D–) that are available on the J1 USB connector. The USB 3.0 and USB 2.0 lines go through an ESD protection device. This connector accepts either the newer USB 3.0 plug or an older USB 1.1/2.0 plug.

Figure 4-2. USB 3.0 Type B Connector and ESD Device

4.3 FX3 Clock

On the development board, the clock for the FX3 is provided by an onboard 19.2-MHz crystal connected to the FX3 XTALIN and XTALOUT pins, as shown in Figure 4-3. The FSLC[0:2] lines of FX3 are tied to ground to select the 19.2-MHz crystal for clocking, as shown in Figure 4-4.
4.4 GPIF II Connector

The General Programmable Interface, Gen 2 (GPIF II) enables functionality similar to, but more advanced than that of the FX2LP™ GPIF. It is a programmable state machine that enables a flexible interface, functioning either as a master or a slave using industry-standard or proprietary interfaces. You can implement both parallel and serial interfaces with GPIF II. The development board provides two rectangular connectors to interface with external processors, ASICs, DSPs, or FPGAs, as Figure 4-5 shows.

If the GPIF II is not used as the FX3 firmware, these pins become the FX3 GPIO pins.

Figure 4-5. GPIF II Lines on Rectangular Connectors
4.4.1 SuperSpeed Explorer Kit Interconnect Boards

Two popular applications of FX3 are the following:

- Use FX3 as a USB controller for an image sensor to stream uncompressed data
- Implement the synchronous slave FIFO configuration of FX3 to interface to an FPGA

The application note, AN75779 - How to Implement an Image Sensor Interface with EZ-USB® FX3™ in a USB Video Class (UVC) Framework (www.cypress.com/go/AN75779) explains how to implement an image sensor interface with FX3 in a USB video class (UVC) framework. The project provided with this application note interfaces FX3 with an Aptina MT9M114 Image Sensor (www.aptina.com/products/soc/mt9m114/).

The application note, AN65974 - Designing with the EZ-USB® FX3™ Slave FIFO Interface (www.cypress.com/go/AN65974), explains how to use FX3 in a slave FIFO configuration to interface to both Xilinx and Altera FPGAs. This application note uses the Xilinx Spartan 6 SP601 Evaluation Kit (www.xilinx.com/products/boards-and-kits/EK-S6-SP601-G.htm) and the Altera Cyclone III Starter Board (www.altera.com/products/devkits/altera/kit-cyc3-starter.html) to explain the application. FPGA codes and an FX3 firmware project are available with the application note.

Table 4-2 shows the interconnect boards that are available for the SuperSpeed Explorer Kit to interface with Aptina image sensors and Xilinx and Altera FPGA boards.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Name</th>
<th>Interface for</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYUSB3ACC-004</td>
<td>Aptina Interconnect</td>
<td>Aptina image sensor</td>
<td>www.cypress.com/go/CYUSB3ACC-004</td>
</tr>
<tr>
<td>CYUSB3ACC-005</td>
<td>FMC Interconnect</td>
<td>Xilinx FPGA board</td>
<td>www.cypress.com/go/CYUSB3ACC-005</td>
</tr>
<tr>
<td>CYUSB3ACC-006</td>
<td>HSMC Interconnect</td>
<td>Altera FPGA board</td>
<td>www.cypress.com/go/CYUSB3ACC-006</td>
</tr>
</tbody>
</table>

For more information on the interconnect boards, visit the web pages provided in the table.

4.5 Reset Circuit

You can reset the FX3 device from an onboard push button, SW1. The reset circuit used for FX3 on the SuperSpeed Explorer Kit is shown in Figure 4-6.

Figure 4-6. Reset Circuit
4.6 Serial Interfaces

4.6.1 I²C

The I²C interface lines on the FX3 device are available on the rectangular connector, J6, for probing and expansion. These lines also connect to the onboard EEPROM device and USB-Serial IC as shown in Figure 4-7 and Figure 4-8. Figure 4-7 shows the SuperSpeed Explorer Kit EEPROM circuit. To avoid contention with the EEPROM, anything you connect to the I2C bus should avoid I2C addresses that start with 1010 or 1011.

For more details on I²C EEPROM boot, including I²C boot image format, refer to the application note, AN76405 - EZ-USB FX3 Boot Options (www.cypress.com/go/AN76405).

4.6.2 I²S

FX3 includes an I²S port to support external audio codec devices. FX3 functions as an I²S master (transmitter only). The I²S interface comprises four signals: clock (I2S_CLK), serial data (I2S_SD), word select (I2S_WS), and master system clock (I2S_MCLK). FX3 can generate the system clock as an output on the I2S_MCLK line or accept an external system clock input on the same line. All four I²S lines come out on the rectangular connector J7.

4.6.3 SPI and UART

FX3 supports an SPI master interface on the serial peripheral port. The SPI I/O lines are shared with the UART I/O lines on the FX3 device.

The FX3 SPI/UART lines are brought out to the pins of a rectangular connector. The same lines are also connected to the USB-Serial IC (Figure 4-8) on the SuperSpeed Explorer Kit. The USB-Serial IC enumerates with one interface as a virtual COM port.
4.6.4 JTAG
FX3 debug is available using the FX3 JTAG port and the Cypress USB-Serial IC as a dedicated JTAG master. The USB-Serial IC implements a JTAG TAP controller so no additional hardware is required for JTAG operation. The Eclipse development software includes an OpenOCD driver for this JTAG port. Figure 4-8 shows the circuit for the JTAG interface using the USB-Serial IC.

4.6.5 User Push Button (SW2)
As shown in Figure 4-9, a push button is connected to GPIO45 of the FX3, which can be used by the user application.

Figure 4-9. User Push Button - SW2

4.6.6 User LED (LED2)
As shown in Figure 4-10, the blue LED (LED2) is connected to GPIO54(SPI-SSN) of FX3. The LED glows when GPIO is driven low.

Figure 4-10. User LED- LED2
A. Appendix

A.1 Troubleshooting

A.1.1 Manual Installation of a Cypress Driver

1. In Windows, invoke **Start**; right-click **Computer** and choose **Properties > Select Device Manager**.

 Note In Windows XP, invoke **Start**; right-click **My Computer** and choose **Properties > Hardware tab > Select Device Manager**.

2. Locate the FX3 or USB-Serial device entry with a yellow symbol in the **Other devices** list.

 Note FX3 enumerates as **WestBridge®** (see Figure A-1) when the J4 jumper is inserted before connecting the board to the computer. The FX3 device belongs to the WestBridge family of Cypress’s USB 3.0 controllers. Therefore, when there are no drivers installed and there is no valid firmware running, the FX3 device displays the entry **WestBridge** in the Device Manager. When the J4 jumper is not inserted, that is, when FX3 boots from I2C and there is a valid firmware running in FX3’s RAM, FX3 enumerates with the string descriptors provided in the firmware. In the USBBulkSourceSinkLED firmware, which is provided in the EEPROM by default, FX3 enumerates with the string descriptor **FX3** when no drivers are installed.

 The USB-Serial device enumerates with the entry **USB-Serial (Dual Channel)**.

Figure A-1. FX3 Device Entry in Windows Device Manager
3. Right-click on the FX3 or USB-Serial device entry to verify the VID/PID of the device. Choose Properties > Details. Select Hardware Ids and observe if the VID/PID for the WestBridge entry is 0x04B4/0x00F3, as shown in Figure A-2.

Figure A-2. Default FX3 Bootloader VID/PID

4. Right-click on the FX3 or USB-Serial device entry and select Browse my computer for driver software. Provide the location of drivers in the field Search for driver software in the location.

 Note The drivers are located in the path <Install Directory>\Cypress\SuperSpeed Explorer Kit\1.0\Driver\bin. Provide the complete path, depending on the version of Windows OS. For Windows 7 and above, the default install directory is C:\Program Files (x86). For Windows XP, the default install directory is C:\Program Files. For example, on a 64-bit Windows 7 machine, the default location of driver is C:\Program Files (x86)\Cypress\SuperSpeed Explorer Kit\1.0\Driver\bin\Win7\x64.

5. The Device Manager window should remove the device entry and identify the same entry with the friendly name provided in the .inf file for the particular VID/PID combination. For example, when the J4 jumper is inserted, the SuperSpeed Explorer Kit development board enumerates with the string WestBridge and VID/ PID 0x04B4/0x00F3 and after driver installation, this entry appears as Cypress FX3 USB BootLoader Device, as shown in Figure A-3.

 Note After driver installation, the USB-Serial interfaces can be identified as:
 ❑ USB Serial Port (COM#): Acts as a UART interface
 ❑ USB-Serial (Dual Channel) Vendor MFG: Used to configure the USB-Serial IC
 ❑ USB-Serial (Dual Channel) Vendor 1: Acts as a JTAG interface

Figure A-3. FX3 Entry in Device Manager After Driver Binding
A.2 If You Have "Too Many" COM Ports

Some terminal programs do not allow high COM port numbers, for example COM17. The reason Windows assigns such high numbers is that many applications that create COM ports do not remove the port when the application is no longer running. To clear these unused COM ports, follow these steps:

1. Select Start > All Programs > Accessories and right-click Command Prompt to start a Command Prompt window.
2. Choose Run As Administrator.
3. In the DOS window, type (without quotes) 'set devmgr_show_nonpresent_devices=1?'.
4. In the DOS window, type (without quotes) 'start devmgmt.msc'. This brings up the Device Manager window.
5. In the View menu, select Show hidden devices.

Notice that the Ports (COM & LPT) entry may have many old COM ports; those that are not actually present are greyed out. To eliminate the ports you are no longer using, right-click it and select Uninstall. This will give Windows a chance to select lower COM numbers for the application.