

 PSoC® Creator™ Component Datasheet

Document Number: 001-79359 Rev. ** Revised May 17, 2012

Features

 Support for up to 16 PWM controlled, 4-wire brushless DC fans

 Individual or banked PWM outputs with tachometer inputs

 Supports 25 kHz, 50 kHz or user-specified PWM frequencies

 Supports fan speeds up to 25,000 RPM

 Supports 4-pole and 6-pole motors

 Supports fan stall / rotor lock detection on all fans

 Supports firmware controlled or hardware controlled fan speed regulation

 Customizable alert pin for fan fault reporting

General Description

The Fan Controller component enables designers to quickly and easily develop fan controller
solutions using PSoC. The component is a system-level solution that encapsulates all necessary
hardware blocks including PWMs, tachometer input capture timer, control registers, status
registers and a DMA controller reducing development time and effort.

The component is customizable through a graphical user interface enabling designers to enter
fan electromechanical parameters such as duty cycle-to-RPM mapping and physical fan bank
organization. Performance parameters including PWM frequency and resolution as well as open
or closed loop control methodology can be configured through the same user interface. Once the
system parameters are entered, the component delivers the most optimal implementation saving
resources within PSoC to enable integration of other thermal management and system
management functionality. Easy-to-use APIs are provided to enable firmware developers to get
up and running quickly.

NOTE: Designs using the Fan Controller component should not use PSoC’s low power sleep or
hibernate modes. Entering those modes prevents the Fan Controller component from controlling
and monitoring the fans.

Fan Controller
2.10

Fan Controller PSoC® Creator™ Component Datasheet

Page 2 of 27 Document Number: 001-79359 Rev. **

When to Use a Fan Controller

The Fan Controller component should be used in any thermal management application that
needs to drive and monitor 4-wire, PWM based DC cooling fans. If the application requires more
than 16 fans, the Fan Controller component can be instantiated multiple times. Similarly, if the
fans in the application are organized into banks, designers have the option of instantiating one
Fan Controller component per bank or instantiating one component that handles all the banks.

Input/Output Connections

This section describes the various input and output connections for the Fan Controller. An
asterisk (*) in the list of I/Os states that the I/O may be hidden on the symbol under the
conditions listed in the description of that I/O.

clock – Input *

An input for a user-defined clock source for the fan control PWMs. It is present only when the
External Clock option is selected in the component customizer.

tach1..16 – Input *

Tachometer signal from each fan that enables the Fan Controller to measure fan rotational
speeds. The component is designed to work with 4-pole DC fans that produce 2 high-low pulse
trains per rotation on their tachometer output or 6-pole DC fans that produce 3 high-low pulse
trains. tach2..16 inputs are optional.

fan1..16 – Output *

PWM output with variable duty cycle to control the speed of the fans. These output terminals are
replaced by the bank1..8 outputs if fan banking is enabled. fan2..16 are optional.

Note that for Hardware UDB mode, the maximum number of fan outputs (and associated tach
inputs) is limited to 12 to minimize digital resource utilization.

bank1..8 – Output *

PWM output with variable duty cycle to control the speed of the fan banks. These outputs appear
only when banking is enabled.

alert – Output *

Active high output terminal asserted when fan faults are detected (if enabled).

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 3 of 27

eoc – Output *

End-of-Cycle output is pulsed high each time the tachometer block has measured the speed of
all fans in the system. This can be used to synchronize firmware algorithms to the Fan Controller
hardware by connecting the terminal to a Status Register component or to an Interrupt
component.

Component Parameters

Drag a Fan Controller onto your design and double click it to open the Configure dialog. This tab
is used to configure the fundamental operating parameters of the component.

Figure 1 shows the Configure dialog.

Basic Tab Options

This tab is used to configure the fundamental operating parameters of the component.

Figure 1. Basic Configuration Dialog

Fan Controller PSoC® Creator™ Component Datasheet

Page 4 of 27 Document Number: 001-79359 Rev. **

Fan Control Method – Firmware/Hardware

This parameter determines how the fan speeds are controlled. Firmware (CPU) setting is used
when user firmware controls fan speed regulation. Firmware can set PWM duty cycles and read
back fan speeds to determine the appropriate action.

Hardware (UDB) setting dictates that hardware blocks inside PSoC control fan speed regulation
automatically without any CPU intervention. Firmware sets the desired speed for each fan and
the hardware automatically adjusts the PWM duty cycle to achieve and maintain the desired
speed within specified tolerance limits. Default setting is Firmware (CPU).

Firmware (CPU) setting should be selected in cases where:

1. The designer has a complex or custom fan control algorithm to be implemented in
firmware within PSoC.

2. Anexternal host controller is responsible formanaging the fan speed algorithm and the
Fan Controller component is simply being used as the hardware interface to the fans.

3. Multiple fans areorganized into banks sharing a common PWM drive signal.

Hardware (UDB) setting should be selected in cases where the designer wants to control
multiple fans independently and wants to do so with minimal firmware development.

Hardware Control Mode – Damping Factor

In hardware controlled fan mode, this parameter controls the dynamic response time of the
hardware control loop. This parameter controls how frequently the hardware adjusts the PWM
duty cycles for each fan.

In situations where there are only a few fans, a higher damping factor ensures that the control
loop can regulate to the desired speed without oscillating around the desired speed target. In
situations where many fans are being controlled, a lower damping factor ensures adequate
response time to changes in fan speed. This parameter enables fine tuning of the hardware
control logic to match the selected fan’s electromechanical characteristics. The valid range for
this parameter is 0..1.27 (specified in seconds). Default setting is 0.64.

Hardware Control Mode – Tolerance

In hardware controlled fan mode, this parameter sets the acceptable tolerance when specifying
desired fan speed targets. The tolerance is specified as a percentage relative to the desired
speed setting. This parameter enables fine tuning of the hardware control logic to match the
selected fans electromechanical characteristics.

The valid range for this parameter is 1..10%. Default setting is 1%. If 8-bit PWM resolution is
selected in the Fan Controller Fans tab as shown in Figure 2, a Tolerance parameter setting of
5% is recommended.

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 5 of 27

Hardware Control Mode – Acoustic Noise Reduction

In hardware controlled fan mode, this parameter limits audible noise from fans by limiting the
positive rate of change of speed. If enabled, and firmware requests an increase in desired fan
speed, the PWM duty cycle applied to the fan increases gradually to the new setting rather than
applying a sudden step change. This eliminates noisy fan whir from sudden speed increases.
Default setting is checked.

Alerts – FanStall / RotorLock

The Fan Controller can be configured to generate an active-high alert signal when a fan stalls or
stops rotating due to a mechanical obstruction. Default setting is checked.

Alerts – UDB SpeedRegulationFailure

The Fan Controller can be configured to generate an active-high alert signal in hardware
controlled fan mode when the hardware control loop is not able to achieve the desired speed.
Default setting is un-checked.

Connections – Display as Bus

If checked, the tach inputs and fan/bank outputs will be displayed as buses. Otherwise, they are
displayed as individual terminals.

Connections – External Clock

If checked, it allows the user to connect an external clock source to the component clock input. If
unchecked, then an internal clock source will be used.

Fan Controller PSoC® Creator™ Component Datasheet

Page 6 of 27 Document Number: 001-79359 Rev. **

Fans Tab Options

This tab is used to configure fan-specific parameters.

Figure 2. Fans Configuration Dialog

Motor Support

This parameter specifies the number of high – low pulses that appear on the fan’s tachometer
output per revolution. The 4-pole option means there are 2 high and 2 low pulses per fan
revolution, while the 6-pole option means that there are 3 high and 3 low pulses per fan
revolution.

PWM Output Configuration – Number of Fans

This parameter specifies how many fans are in the system. The valid range for this parameter is
1..16. Default setting is 4.

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 7 of 27

PWM Output Configuration – Number of Banks

This parameter is only visible in firmware control mode and specifies how many fan banks are in
the system. It is assumed that when fans are organized into banks, each bank has the same
number of fans. Therefore, the number of fans must be divisible by the number of banks. The
value 0 indicates that the fans are not banked. For banked operation, the valid range for this
parameter is from 1to (Number of Fans/2). Default setting is 0.

PWM Output Configuration – PWM Resolution

This parameter specifies the resolution of the duty cycle for the modulated PWM signal that
drives the fans to control rotational speed. Valid options for this parameter are 8-bit or 10-bit.
Default setting is 8-bit.

PWM Output Configuration – PWM Frequency

This parameter specifies the frequency of the modulated PWM signal that drives the fans. Valid
options for this parameter are 25 kHz or 50 kHz when internal clock is used. Default setting is 25
kHz. When an external clock is used, this parameter is grayed out since the PWM frequency
depends on the input clock source. See the Functional Description section for more details.

Fan Specifications – Duty A (%), RPM A

These parameters together specify one data point on the duty cycle-to-RPM transfer function for
the selected fan or bank of fans. The RPM A parameter specifies the speed the fan nominally
runs at when driven by a PWM with a duty cycle of Duty A (%). This information is available from
the fan manufacturer’s datasheet. It should be noted that the Fan Controller component may
drive PWM duty cycles down to 0% even if Duty A (%) is set to a non-zero value.

The valid range for the Duty A (%) parameter is 0-99. Default setting is 25.

The valid range for the RPM A parameter is 500..24,999. Default setting is 1,000.

Fan Specifications – Duty B (%), RPM B

These parameters together specify a 2nd data point on the duty cycle-to-RPM transfer function
for the selected fan or bank of fans. The RPM B parameter specifies the speed the fan nominally
runs at when driven by a PWM with a duty cycle of Duty B (%). This information is available from
the fan manufacturer’s datasheet. It should be noted that the Fan Controller component may
drive PWM duty cycles up to 100% even if Duty B (%) is set below 100%.

The valid range for the Duty B (%) parameter is 1-100. Default setting is 100.

The valid range for the RPM B parameter is 501..25,000. Default setting is 10,000.

Fan Controller PSoC® Creator™ Component Datasheet

Page 8 of 27 Document Number: 001-79359 Rev. **

Fan Specifications – Initial RPM

This parameter specifies the initial RPM of an individual fan. The value of Initial RPM is
converted into a duty cycle and set as the initial duty cycle for an individual fan. The Initial RPM
parameter may be set lower than the RPM A parameter.

Clock Selection

The component uses clock tree sources for its operation. These clocks are: Bus Clock,
Tachometer Clock (500 kHz) and PWM Clock (6, 12 or 24 MHz depending on the configuration).
The component has an option to connect an external clock source instead of the PWM Clock.

Application Programming Interface

Application Programming Interface (API) routines allow you to interact with the component using
firmware. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name FanController_1 to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
FanController.

Functions

Function Description

FanController_Start() Start the component

FanController_Stop() Stop the component and disable hardware blocks

FanController_Init() Initializes the component

FanController_Enable() Enables hardware blocks inside the component

FanController_EnableAlert() Enables alerts from the component

FanController_DisableAlert() Disables alerts from the component

FanController_SetAlertMode() Configures alert sources

FanController_GetAlertMode() Returns currently enabled alert sources

FanController_SetAlertMask() Enables masking of alerts from each fan

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 9 of 27

Function Description

FanController_GetAlertMask() Returns alert masking status of each fan

FanController_GetAlertSource() Returns pending alert source(s)

FanController_GetFanStallStatus() Returns a bit mask representing the stall status of each fan

FanController_GetFanSpeedStatus() Returns a bit mask representing the speed regulation status of
each fan in hardware control mode

FanController_SetDutyCycle() Sets the PWM duty cycle for the specified fan or fan bank

FanController_GetDutyCycle() Returns the PWM duty cycle for the specified fan or fan bank

FanController_SetDesiredSpeed() Sets the desired fans speed for the specified fan in hardware
control mode

FanController_GetDesiredSpeed() Returns the desired fans speed for the specified fan in hardware
control mode

FanController_GetActualSpeed() Returns the actual speed for the specified fan

FanController_OverrideHardwareControl() Enables firmware to override hardware (UDB) fan control

Global Variables

Variable Description

FanController_initVar(static) The initVar variable is used to indicate initial configuration of this component.
This variable is pre-pended with the component name. The variable is
initialized to zero and set to 1 the first time FanController_Start() is called. This
allows for component initialization without re-initialization in all subsequent calls
to the FanController_Start() routine.

If re-initialization of the component is required the FanController_Stop() routine
should be called followed by the FanController_Init() and
FanController_Enable().

Fan Controller PSoC® Creator™ Component Datasheet

Page 10 of 27 Document Number: 001-79359 Rev. **

voidFanController_Start(void)

Description: Enables the component. Calls the Init() API if the component has not been initialized
before. Calls the Enable() API.

Parameters: None

Return Value: None

Side Effects: None

voidFanController_Stop(void)

Description: Disables the component. All PWM outputs will be driven to 100% duty cycle to ensure
cooling continues while the component is not operational.

Parameters: None

Return Value: None

Side Effects: Alert pin is deasserted.

voidFanController_Init(void)

Description: Initializes the component.

Parameters: None

Return Value: None

Side Effects: None

voidFanController_Enable(void)

Description: Enables hardware blocks within the component.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 11 of 27

voidFanController_EnableAlert(void)

Description: Enables generation of the alert signal. Specifically which alert sources are enabled is
configured using the FanController_SetAlertMode() and the FanController_SetAlertMask()
APIs.

Parameters: None

Return Value: None

Side Effects: None

voidFanController_DisableAlert(void)

Description: Disables generation of the alert signal.

Parameters: None

Return Value: None

Side Effects: Alert pin is deasserted.

voidFanController_SetAlertMode(uint8 alertMode)

Description: Configures alert sources from the component. Two alert sources are available: 1) Fan Stall
or Rotor Lock, 2) Hardware control mode speed regulation failure.

Parameters: uint8 alertMode

Bit Field Enabled Alert Source

FanController_STALL_ALERT 1=Enable fanstall / rotorlockalert

FanController_SPEED_ALERT 1=Enable ClosedLoopspeedregulationfailurealert

Return Value: None

Side Effects: None

Fan Controller PSoC® Creator™ Component Datasheet

Page 12 of 27 Document Number: 001-79359 Rev. **

uint8FanController_GetAlertMode(void)

Description: Returns the alert sources that are enabled.

Parameters: None

Return Value: uint8 alertMode

Bit Field Enabled Alert Source

FanController_STALL_ALERT 1=Enable fanstall / rotorlockalert

FanController_SPEED_ALERT 1=Enable ClosedLoopspeedregulationfailurealert

Side Effects: None

voidFanController_SetAlertMask(uint16 alertMask)

Description: Enables or disables alerts from each fan through a mask. Masking applies to both fan stall
alerts and speed regulation failure alerts.

Parameters: uint16 alertMask

Bit Field Enabled Alert Source

bit0 1=Enable alerts for Fan1

bit1 1=Enable alerts for Fan2

… …

bit15 1=Enable alerts for Fan16

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 13 of 27

uint16FanController_GetAlertMask(void)

Description: Returns alert mask status from each fan. Masking applies to both fan stall alerts and
speed regulation failure alerts.

Parameters: None

Return Value: uint16 alertMask

Bit Field Enabled Alert Source

bit0 1=Enable alerts for Fan1

bit1 1=Enable alerts for Fan2

… …

bit15 1=Enable alerts for Fan16

Side Effects: None

uint8FanController_GetAlertSource(void)

Description: Returns pending alert sources from the component. This API can be used to poll the alert
status of the component. Alternatively, if the alert pin is used to generate interrupts to
PSoC’s CPU core, the interrupt service routine can use this API to determine the source
of the alert. In either case, when this API returns a non-zero value, the
FanController_GetFanStallStatus() and FanController_GetFanSpeedStatus() APIs can
provide further information on which fan(s) has(have) a fault.

Parameters: uint8 alertMode

Bit Field Pending Alert

FanController_STALL_ALERT 1=Fanstall / rotorlockalert pending

FanController_SPEED_ALERT 1=Closed Loopspeedregulationfailurealert
pending

Return Value: None

Side Effects: None

Fan Controller PSoC® Creator™ Component Datasheet

Page 14 of 27 Document Number: 001-79359 Rev. **

uint16FanController_GetFanStallStatus(void)

Description: Returns the stall / rotor lock status of all fans.

Parameters: None

Return Value: uint16 stallStatus

Bit Field Status

bit0 Fan1 stall status (1=stall, 0=OK)

bit1 Fan2 stall status

… …

bit15 Fan16 stall status

Side Effects:

Calling this API clears all pending fan stall alerts and de-asserts the alert pin. If stall
alerts are pending, the alert pin is re-asserted synchronous to the next end-of-cycle (eoc)
pulse.

uint16FanController_GetFanSpeedStatus(void)

Description: Returns the hardware fan control mode speed regulation status of all fans. Speed
regulation failures occur in two cases: 1) if the desired fan speed exceeds the current
actual fan speed but the fan’s duty cycle is already at 100%, 2) if the desired fan speed is
below the current actual fan speed, but the fan’s duty cycle is already at 0%.

Parameters: None

Return Value: uint16 speedStatus

Bit Field Status

bit0 Fan1 speed regulation status (1=failure, 0=OK)

bit1 Fan2 speed regulation status

… …

bit15 Fan16 speed regulation status

Side Effects: Calling this API clears all pending speed regulation alerts and de-asserts the alert pin. If
speed regulation alerts are pending, the alert pin is re-asserted synchronous to the next
end-of-cycle (eoc) pulse.

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 15 of 27

voidFanController_SetDutyCycle(uint8 fanOrBankNumber, uint16 dutyCycle)

Description: Sets the PWM duty cycle of the selected fan or fan bank in hundredths of a percent. In
hardware fan control mode, if manual duty cycle control is desirable, call the
FanController_OverrideHardwareControl() API prior to calling this API.

Parameters: uint8 fanOrBankNumber

Valid range is 1..16 but should not exceed the number of fans or banks in the system.

 uint16 dutyCycle

Duty cycle in hundredths of a percent. For example, 50% duty cycle = 5000. Valid range is
0..10000.

Return Value: None

Side Effects: None

uint16FanController_GetDutyCycle(uint8 fanOrBankNumber)

Description: Returns the current PWM duty cycle of the selected fan or fan bank in hundredths of a
percent.

Parameters: uint8 fanOrBankNumber

Valid range is 1..16 but should not exceed the number of fans or banks in the system.

Return Value: Duty cycle in hundredths of a percent. For example, 50% duty cycle = 5000.

Side Effects: None

Fan Controller PSoC® Creator™ Component Datasheet

Page 16 of 27 Document Number: 001-79359 Rev. **

voidFanController_SetDesiredSpeed(uint8 fanNumber, uint16 rpm)

Description: Sets the desired speed of the specified fan in revolutions per minute (RPM). In hardware
fan control mode, the RPM parameter is passed to the control loop hardware as the new
target fan speed for regulation. In firmware fan control mode, the RPM parameter is
converted to a duty cycle based on the fan parameters entered into the Fans tab of the
customizer and written to the appropriate PWM. This provides firmware with a method for
initiating coarse level speed control. Fine level firmware speed control can then be
achieved using the FanController_SetDutyCycle() API.

Parameters: uint8 fanNumber

Valid range is 1..16 but should not exceed the number of fans in the system.

 uint16 rpm

Valid range is 500..25,000 but should not exceed the maximum RPM that the fan is
capable of running at. Doing so will cause a speed regulation failure.

Return Value: None

Side Effects: None

uint16FanController_GetDesiredSpeed(uint8 fanNumber)

Description: Returns the currently desired speed for the selected fan.

Parameters: uint8 fanNumber

Valid range is 1..16 but should not exceed the number of fans in the system.

Return Value: Currently desired speed for the selected fan in RPM

Side Effects: None

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 17 of 27

uint16 FanController_GetActualSpeed(uint8 fanNumber)

Description: Returns the current actual speed for the selected fan.

Parameters: uint8 fanNumber

Valid range is 1..16 but should not exceed the number of fans in the system.

Return Value: Current actual speed for the selected fan in RPM

Side Effects: None

Note On PSoC3 devices, when operating in Hardware mode,
FanController_GetActualSpeed() should be called within a specific time window. Refer to
Functional description section for more details.

voidFanController_OverrideHardwareControl(uint8 override)

Description: Allows firmware to take over fan control in hardware fan control mode. Note that this API
cannot be called in firmware fan control mode.

Parameters: uint8 override

0 = hardware assumes control of fans

1 = firmware assumes control of fans

Valid range is 0..1. Default is 0

Return Value: None

Side Effects: None

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the "Find Example Project" topic in the PSoC Creator Help for more information.

Fan Controller PSoC® Creator™ Component Datasheet

Page 18 of 27 Document Number: 001-79359 Rev. **

Interrupt Service Routine

The Fan Controller component does not provide any interrupt service routine APIs automatically.
To use interrupts for this component add an interrupt component from the Cypress standard
catalog in PSoC Creator.

Functional Description

Custom Clock

The component has a feature that allows the connection of an external clock. The frequency of
the clock source determines the PWM output frequency, and the relation between the input clock
frequency(fCLK) and output PWM frequency(fPWM) is shown in the following equations:

fPWM = fCLK / 240, for 8 bit resolution;

fPWM = fCLK / 960, for 10 bit resolution.

(where the 240 and 960 constants are Maximum periods for the 8-bit and 10-bit resolution
modes, respectively).

Actual Speed

When this component is used in a PSoC 3 design, there is a requirement that this API be called
within a specific time frame (tACT) after the "eoc" pulse is generated to ensure reliable capture of
the 16-bit speed value. This restriction is due to the 8051 CPU core reading the 16-bit value 8-
bits at a time. Outside of this region the possibility exists that the actual speed MSB and actual
speed LSB read could contain data from two different fan speed measurements (previous and
current).

To guarantee that this does not happen, the GetActualSpeed() API must be called within this
time period after the "eoc" pulse has been generated:

tACT = 2 * 60/RPMnMAX

Note RPMnMAX is the maximum rotation speed of fanN – the last fan that is used in the
configuration.

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 19 of 27

Block Diagram and Configuration

The schematic shown in Figure 3 shows high level block diagrams of the two fundamental
operating modes of the component: 1) open loop control mode (firmware regulates fan speeds)
and 2) closed loop control mode (hardware regulates fan speeds).

Figure 3. Fan Controller Block Diagram

Registers

The Fan Controller has several control and status registers that are used by the firmware APIs to
control operation and monitor status. None of these registers are directly accessible by user
firmware.

Fan Controller PSoC® Creator™ Component Datasheet

Page 20 of 27 Document Number: 001-79359 Rev. **

Resources

The Fan Controller component is placed throughout the UDB array. The component utilizes the
following resources:

Configuration
[1]

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

DMA
Channels

Interrupts

Firmware mode, 8-bit, 4 Fans 4 28 3 4 1 –

Firmware mode, 8-bit, 8 Fans 6 36 3 4 1 –

Firmware mode, 8-bit, 12 Fans 8 46 4 5 1 –

Firmware mode, 8-bit, 16 Fans 10 56 4 5 1 –

Firmware mode, 10-bit, 4 Fans 6 28 3 4 1 –

Firmware mode, 10-bit, 8 Fans 10 36 3 4 1 –

Firmware mode, 10-bit, 12 Fans 14 46 4 5 1 –

Firmware mode, 10-bit, 16 Fans 18 56 4 5 1 –

Hardware mode, 8-bit, 4 Fans 6 57 4 8 2 –

Hardware mode, 8-bit, 8 Fans 10 93 4 12 2 –

Hardware mode, 8-bit, 12 Fans 14 132 6 17 2 –

Hardware mode, 10-bit, 4 Fans 10 57 4 8 2 –

Hardware mode, 10-bit, 8 Fans 18 93 4 12 2 –

API Memory Usage

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.

The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design, the map file generated by the compiler can
be analyzed to determine the memory usage.

1. For the Hardware mode, resources used by the Damping Factor feature are not included.

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 21 of 27

Configuration
[2]

PSoC 3 (Keil_PK51) PSoC 5 (GCC) PSoC 5LP (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Firmware mode, 8-bit, 4 Fans 1396 87 856 106 856 106

Firmware mode, 8-bit, 8 Fans 1396 171 840 206 840 206

Firmware mode, 8-bit, 12 Fans 1413 255 872 306 872 306

Firmware mode, 8-bit, 16 Fans 1413 339 876 406 880 406

Firmware mode, 10-bit, 4 Fans 1425 87 872 106 868 106

Firmware mode, 10-bit, 8 Fans 1425 171 852 206 852 206

Firmware mode, 10-bit, 12 Fans 1442 255 884 306 888 306

Firmware mode, 10-bit, 16 Fans 1442 339 888 406 892 406

Hardware mode, 8-bit, 4 Fans 2222 129 1380 163 1380 163

Hardware mode, 8-bit, 8 Fans 2222 253 1380 319 1380 319

Hardware mode, 8-bit, 12 Fans 2243 377 1428 475 1424 475

Hardware mode, 10-bit, 4 Fans 2239 129 1388 163 1388 163

Hardware mode, 10-bit, 8 Fans 2239 253 1388 319 1388 319

2. For the Hardware mode, resources used by the Damping Factor feature are not included.

Fan Controller PSoC® Creator™ Component Datasheet

Page 22 of 27 Document Number: 001-79359 Rev. **

DC and AC Electrical Characteristics

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics (PWM clock – 6 MHz)

Parameter Description Min Typ
[3]

Max Unit

Idd Component current consumption(Firmware mode, 4 Fans)

8-bit resolution – 108 – μA

10-bit resolution – 139 – μA

Component current consumption(Firmware mode, 8 Fans)

8-bit resolution – 194 – μA

10-bit resolution – 260 – μA

Component current consumption(Firmware mode, 12 Fans)

8-bit resolution – 307 – μA

10-bit resolution – 395 – μA

Component current consumption(Firmware mode, 16 Fans)

8-bit resolution – 392 – μA

10-bit resolution – 505 – μA

Component current consumption(Hardware mode, 4 Fans)

8-bit resolution – 225 – μA

10-bit resolution – 269 – μA

Component current consumption(Hardware mode, 8 Fans)

8-bit resolution – 417 – μA

10-bit resolution – 518 – μA

Component current consumption(Hardware mode, 12 Fans)

8-bit resolution – 636 – μA

3. Device I/O and clock distribution current not included. Other factors such as routing conditions, frequency of tach
inputs and temperature also have an impact on the current consumption. The values are at 25 °C.

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 23 of 27

DC Characteristics (PWM clock – 12 MHz)

Parameter Description Min Typ Max Unit

Idd Component current consumption(Firmware mode, 4 Fans)

8-bit resolution – 169 – μA

10-bit resolution – 233 – μA

Component current consumption(Firmware mode, 8 Fans)

8-bit resolution – 310 – μA

10-bit resolution – 439 – μA

Component current consumption(Firmware mode, 12 Fans)

8-bit resolution – 498 – μA

10-bit resolution – 677 – μA

Component current consumption(Firmware mode, 16 Fans)

8-bit resolution – 641 – μA

10-bit resolution – 871 – μA

Component current consumption(Hardware mode, 4 Fans)

8-bit resolution – 403 – μA

10-bit resolution – 492 – μA

Component current consumption(Hardware mode, 8 Fans)

8-bit resolution – 756 – μA

10-bit resolution – 951 – μA

Component current consumption(Hardware mode, 12 Fans)

8-bit resolution – 1162 – μA

Fan Controller PSoC® Creator™ Component Datasheet

Page 24 of 27 Document Number: 001-79359 Rev. **

DC Characteristics (PWM clock – 24 MHz)

Parameter Description Min Typ Max Unit

Idd Component current consumption(Firmware mode, 4 Fans)

8-bit resolution – 290 – μA

10-bit resolution – 417 – μA

Component current consumption(Firmware mode, 8 Fans)

8-bit resolution – 545 – μA

10-bit resolution – 798 – μA

Component current consumption(Firmware mode, 12 Fans)

8-bit resolution – 887 – μA

10-bit resolution – 1243 – μA

Component current consumption(Firmware mode, 16 Fans)

8-bit resolution – 1150 – μA

10-bit resolution – 1607 – μA

Component current consumption(Hardware mode, 4 Fans)

8-bit resolution – 753 – μA

10-bit resolution – 938 – μA

Component current consumption(Hardware mode, 8 Fans)

8-bit resolution – 1446 – μA

10-bit resolution – 1826 – μA

Component current consumption(Hardware mode, 12 Fans)

8-bit resolution – 2220 – μA

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 25 of 27

AC Specifications

Parameter Description Min Typ Max Unit

fpwm_clk Input clock frequency
[4]

Firmware mode, 8-bit, 4 Fans – – 54 MHz

Firmware mode, 8-bit, 8 Fans – – 46 MHz

Firmware mode, 8-bit, 12 Fans – – 39 MHz

Firmware mode, 8-bit, 16 Fans – – 28 MHz

Firmware mode, 10-bit, 4 Fans – – 42 MHz

Firmware mode, 10-bit, 8 Fans – – 42 MHz

Firmware mode, 10-bit, 12 Fans – – 41 MHz

Firmware mode, 10-bit, 16 Fans – – 37 MHz

Hardware mode, 8-bit, 4 Fans – – 57 MHz

Hardware mode, 8-bit, 8 Fans – – 57 MHz

Hardware mode, 8-bit, 12 Fans – – 40 MHz

Hardware mode, 10-bit, 4 Fans – – 50 MHz

Hardware mode, 10-bit, 8 Fans – – 47 MHz

ftach_clk Tachometer clock frequency – 500 – kHz

Tach
Resolution

Tachometer counter resolution – 16 –
Bits

ftach Tachometer Speed 500
[5]

 – 2500
0

RP
M

4. The values provide a maximum safe operating PWM frequency for the Fans. The component may run at higher
clock frequencies, at which point you will need to validate the timing requirements with Static Timing Analysis
results.

5.Speed less than the minimum will be interpreted as halted.

Fan Controller PSoC® Creator™ Component Datasheet

Page 26 of 27 Document Number: 001-79359 Rev. **

Component Changes

This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

2.10 Updated component characterization data.

Added PSoC 5LP support

2.0 Added component characterization data.

Changed Damping Factor behavior. In previous versions Damping Factor specified a
delay between speed measurements of each fan
and the value of delay wasn’t specified in any units.
In this version, Damping Factor specifies a delay

between start-to-start of speed measurements of all
fans. In addition, this delay is now specified in
seconds.

Added new parameter Initial RPM to every fan
in the configuration.

This parameter specifies approximate speed of
rotation of the specific fan at component start. In
previous versions all fans were initialized with
maximum speed.

Added new feature of selecting the type of
motors that are supported by the component.

This parameter specifies the number of high – low
pulses per fan revolution. 2 high-low pulses for4
pole motors, 3 high-low pulses - 6 pole motors.

Component symbol was extended with a
functionality of adding external clock source to
drive internal PWMs. This option is accessible
in customizer's GUI.

New component feature. Allows connection to an
external clock. Based on the value of the source
clock and the resolution of PWMs in the
configuration it is possible to regulate the PWM
Output Frequency.

Added new feature, that is selectable in the
customizer's GUI and used to display
components inputs and output as a bus.

Now the sets of tach1-tachN, fan1-fanN and bank1-
bankN connections can be shown as buses. This
allows space to be saved on the schematic as this
option reduces the size of component symbol.

Added Keil function reentrancy support to the
APIs.

Add the capability for customers to specify any
individual generated functions as reentrant.

Removed obsolete function name -
FanController_OverrideClosedLoop(), which
was a simple #define of
FanController_OverrideHardwareControl().

As this was marked obsolete in previous versions, it
is removed in this version.

PSoC® Creator™ Component Datasheet Fan Controller

Document Number: 001-79359 Rev. ** Page 27 of 27

Version Description of Changes Reason for Changes / Impact

1.20 1. Updated for compatibility with PSoC
Creator v2.0

2. Re-classified as “Concept” component

3. SetDesiredSpeed() API modified for
improved accuracy

1.10 1. SetDesiredSpeed() API corrected

2. Glitch filter added to tachometer inputs

3. Fan control terminology changed from
Open/Closed loop to Firmware/Hardware
control method

4. Symbol colors and size updated

5. Resource utilization updated (reduced)

6. References to power management APIs
removed (not supported)

1.0 First release

© Cypress Semiconductor Corporation, 2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control, or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	When to Use a Fan Controller

	Fan Controller
	Input/Output Connections
	clock – Input *
	tach1..16 – Input *
	fan1..16 – Output *
	bank1..8 – Output *
	alert – Output *
	eoc – Output *

	Component Parameters
	Basic Tab Options
	Fan Control Method – Firmware/Hardware
	Hardware Control Mode – Damping Factor
	Hardware Control Mode – Tolerance
	Hardware Control Mode – Acoustic Noise Reduction
	Alerts – FanStall / RotorLock
	Alerts – UDB SpeedRegulationFailure
	Connections – Display as Bus
	Connections – External Clock

	Fans Tab Options
	Motor Support
	PWM Output Configuration – Number of Fans
	PWM Output Configuration – Number of Banks
	PWM Output Configuration – PWM Resolution
	PWM Output Configuration – PWM Frequency
	Fan Specifications – Duty A (%), RPM A
	Fan Specifications – Duty B (%), RPM B
	Fan Specifications – Initial RPM

	Clock Selection
	Application Programming Interface
	Functions
	Global Variables
	voidFanController_Start(void)
	voidFanController_Stop(void)
	voidFanController_Init(void)
	voidFanController_Enable(void)
	voidFanController_EnableAlert(void)
	voidFanController_DisableAlert(void)
	voidFanController_SetAlertMode(uint8 alertMode)
	uint8FanController_GetAlertMode(void)
	voidFanController_SetAlertMask(uint16 alertMask)
	uint16FanController_GetAlertMask(void)
	uint8FanController_GetAlertSource(void)
	uint16FanController_GetFanStallStatus(void)
	uint16FanController_GetFanSpeedStatus(void)
	voidFanController_SetDutyCycle(uint8 fanOrBankNumber, uint16 dutyCycle)
	uint16FanController_GetDutyCycle(uint8 fanOrBankNumber)
	voidFanController_SetDesiredSpeed(uint8 fanNumber, uint16 rpm)
	uint16FanController_GetDesiredSpeed(uint8 fanNumber)
	uint16 FanController_GetActualSpeed(uint8 fanNumber)
	voidFanController_OverrideHardwareControl(uint8 override)

	Sample Firmware Source Code
	Interrupt Service Routine
	Functional Description
	Custom Clock
	Actual Speed

	Block Diagram and Configuration
	Registers
	Resources
	API Memory Usage
	DC and AC Electrical Characteristics
	DC Characteristics (PWM clock – 6 MHz)
	DC Characteristics (PWM clock – 12 MHz)
	DC Characteristics (PWM clock – 24 MHz)
	AC Specifications

	Component Changes

