Features

- Up to 8-bit Control Register

General Description

The Control Register allows the firmware to output digital signals.

When to Use a Control Register

Use a Control Register when the firmware needs to interact with a digital system. You can also use the Control Register as a configuration register, allowing the firmware to specify the desired behavior of the digital system.

Input/Output Connections

This section describes the input and output connections for the Control Register. An asterisk (*) indicates that the I/O may be hidden on the symbol under the conditions listed in the description of that I/O.

clock – Input *

This optional pin is present if the *Mode* parameter is set to *SyncMode* or *PulseMode*. Otherwise, the clock input does not show.

reset – Input *

This optional input is used to reset Control Register bits. This input is shown on the symbol when you enable the *External Reset* parameter, and set the *BitMode* parameter to *SyncMode* or *PulseMode*. The reset input on the Control Register is optional if you use PSoC 3 Production silicon.

control_0 - control_7 – Output *

The Control Register contains up to eight outputs. The firmware sets the values of the output terminals by writing to the Control Register. The number of outputs depends on the setting for the *Outputs* parameter.
Component Parameters

Drag a control register onto your design and double-click it to open the Configure dialog.

Outputs
Number of output terminals (1 to 8). The default value is 8. bit0 is the LSB and corresponds to the control_0 terminal.

External Reset
This check box is used to enable the reset input on the symbol. This option is not selected by default. External Reset is not valid when all the bits in the Mode parameter are configured as DirectMode.

Set All DirectMode
This button sets all bits to DirectMode.
Clear All BitValue
This button sets all BitValue fields to 0.

ModeMask/BitValue

Mode
These parameters are used to set specific bits of the Control Register to one of three settings:

- **DirectMode** – In this mode, when the control register is written with bus clock, the data is driven directly into the routing.

- **SyncMode** – Resamples (single-synched) the control bit input from the bus clock to the selected SC clock before it is driven into the routing. This mode is only supported for PSoC 3 Production silicon or later.

- **PulseMode** – This mode is similar to SyncMode, in that the Control bit input is resampled from the bus clock to the selected SC clock and a single SC clock period pulse is generated. The output of the control bit into the routing is asserted for one full SC clock period. At the end of the pulse, the control bit is automatically reset. This mode is supported for PSoC 3 Production silicon or later.

BitValue
These parameters allow you to set the default value of 0 or 1 for each bit in the Control Register. By default, the initial value is 0.

Resources

<table>
<thead>
<tr>
<th>Analog Blocks</th>
<th>Digital Blocks</th>
<th>API Memory (Bytes)</th>
<th>Pins (per External I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Datapaths</td>
<td>Macro cells</td>
<td>Status Registers</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The control register requires one UDB Control Register.
Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using software. The following table lists and describes the interface to each function. The subsequent sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “Control_Reg_1” to the first instance of a control register in any given design. You can rename the component to any unique value that follows the syntactic rules for identifiers. The instance name becomes the prefix of every global function name, variable, and constant symbol. For readability, the instance names used in the following tables is “ControlReg.”

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ControlReg_Write()</td>
<td>Writes a byte to a control register</td>
</tr>
<tr>
<td>ControlReg_Read()</td>
<td>Reads the current value assigned to a control register</td>
</tr>
</tbody>
</table>

```c
void ControlReg_Write (uint8 control) {
    // Description: Writes a byte to a control register
    // Parameters: control: The value to be assigned to the control register
    // Return Value: None
    // Side Effects: Sets the state of the control register’s outputs
}
```

```c
uint8 ControlReg_Read (void) {
    // Description: Reads the current value assigned to a control register
    // Parameters: None
    // Return Value: Returns the current value assigned to the control register
    // Side Effects: None
}
```

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code in the Find Example Project dialog. For component-specific examples, open the dialog from the Component Catalog or an instance of the component in a schematic. For general examples, open the dialog from the Start Page or File menu. As needed, use the Filter Options in the dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.
Component Changes

This section lists the major changes in the component from the previous version.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description of Changes</th>
<th>Reason for Changes / Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>Updated the Configure dialog.</td>
<td>Created a customized interface. Added “Set All” and “Clear All” buttons and changed Number of Inputs field to allow keyboard entry. Updated the dialog to comply with corporate standards.</td>
</tr>
<tr>
<td></td>
<td>Added reset input and ExternalReset parameter to control visibility of reset input</td>
<td>This was added for PSoC 3 Production silicon to control the reset behavior of the control register.</td>
</tr>
<tr>
<td></td>
<td>Added BitValue parameter</td>
<td>To set control register Initial Value.</td>
</tr>
<tr>
<td></td>
<td>Added Bit mode parameter to pick different control register modes (Direct, Sync and Pulse Mode).</td>
<td>New modes (Sync, Pulse Mode) were added to give the possibility to select a mode that resamples necessary Control Register bits to the UDB clock. This new mode can be used for PSoC 3 Production or later.</td>
</tr>
<tr>
<td></td>
<td>Added Clock pin</td>
<td>Clock pin was added to support Sync and Pulse Mode which is exposed only when these modes are selected.</td>
</tr>
</tbody>
</table>

© Cypress Semiconductor Corporation, 2010-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, non-transferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.