AN2405

PSoC® 1 I/O Power Structure - Determining V_{OH} and V_{OL} at Partial Load

Author: Dennis Seguine
Associated Project: No
Associated Part Family: CY8C20x34, CY8C21x34, CY8C24x23A, CY8C24x94, CY8C27x43, CY8C28x45, CY8C29x66
Software Version: PSoC® Designer™ 5.x
Related Application Notes: None

To get the latest version of this application note, or the associated project file, please visit http://www.cypress.com/go/AN2405.

AN2405 outlines a means to calculate the output voltages of the PSoC® device digital GPIO, when loaded at less than the rated maximum current. The internal routing resistances are presented for each of the listed PSoC 1 devices.

Contents

- Introduction ... 1
- Bonding Wires ... 1
- Lead Frame ... 2
- Power (V_{SS} and V_{DD}) Rails 2
- Output Devices ... 3
- Ohm's Law Manipulation ... 3
- Voltage at Unloaded Pin .. 4
- Summary ... 5
- Author's Note ... 5
- Appendix A ... 6
- Worldwide Sales and Design Support 14

Introduction

Most PSoC applications use GPIO connections to drive resistive loads. Worst case logic level outputs at maximum rated current are clearly specified in the target device datasheet. This may be insufficient information when the absolute value of the output level is important to the performance of the user's circuit. Examples include using a PWM as a source to a BPF2 User Module, using a PWM to implement a DAC, or when the loading device has V_{IL} or V_{IH} thresholds that are more restrictive than the specified maximum values for PSoC outputs.

The logic output levels (high and low) are functions of the output devices and the power routing on the device. A power distribution model of the PSoC is outlined that includes the geometric, voltage and temperature characteristics of the output devices, and routing.

There are four components of the resistance that limit output current delivery: lead frame, bonding wire, output devices, and power rail routing.

Bonding Wires

Bonding wires connect the device pads to the lead frame and have a typical resistance of 100 mΩ. V_{SS} and V_{DD} connections have multiple pads in some devices and multiple bonding wires in others.
Lead Frame

The lead-frame resistance varies with the package selected and each specific pin. Compared to the bonding wire, the output device, and the on-chip power rail routing, these values are very small. Smaller packages (QFN and BGA) have lead resistances in the range of 3 to 15 mΩ. Larger packages (SSOP, TQFP, SOIC, and PDIP) have lead resistances in the range of 10 to 70 mΩ. Longer leads have higher resistance, so pins in the corners have higher resistance than pins in the center of the part.

Power (VSS and VDD) Rails

The VSS and VDD power rails on the PSoC are concentric rings. Analog power and digital power are routed separately. An outline of typical PSoC power routing is shown in Figure 1.

The buses for digital, analog and I/O power systems come together at the VSS and VDD pad connections. This on-chip connection method has clear advantages. The interaction between load, digital, and analog signal currents is only at the power connection pads. This means that internal (logic, CPU, analog) currents have minimal effect on the GPIO output voltages. Correspondingly, the load currents have a minimal effect on the performance of the precision analog sections. The PSoC power distribution on-chip consists of three pairs of power rails for analog, digital, and I/O structures. The VDD power rails are tied together at the bonding pad. The bonding pad is connected to the device’s lead frame using a bonding wire.

Some devices (generally larger ones) and packages have multiple VSS connections. This enables lower resistance VSS connections, reducing noise in the analog section. Some connections are direct to individual pins. Other devices have VSS wire-bonded to the main part of the lead frame (called the “paddle”) to reduce the resistance of the ground connection. This is seen in the CY8C24x23A example of Figure 11 in the Appendix A.

The resistance of the power rails is identical for both VSS and VDD. The bonding pads on the device are not uniformly spaced; other features share the outer ring of the device with the bonding pads. The metallization on the device is aluminum, which has a resistance of the form:

\[R = R_{REF} \left(1 + \alpha(T - 20^\circ)\right) \]

- \(\alpha \) is the temperature coefficient of resistivity, equal to 0.004308.
- \(R_{REF} \) is the resistance at 20 °C

The routing resistance of the VSS and VDD rails shown in Figure 2 and Figure 3 is the worst case value at 25 °C, calculated from the design and layout detail, and confirmed by measurements taken during the device characterization process. The routing resistance at 100 °C will be about 33 percent higher than the values listed.

The details of the VDD and VSS output rail routing resistance for PSoC 1 devices is included in the Appendix A.
Output Devices

The output devices on each GPIO port are N-channel FETs driving (sinking) current to V_{SS} and P-channel FETs driving (sourcing) current from V_{DD}. Separation of the threshold voltages of these devices guarantees that they are never on at the same time.

FETs operating in the linear region (i.e., not turned fully on) source (or sink) a current that is dependent on the gate-to-source voltage (V_{GS}) and the device’s threshold voltage (V_{TH}):

$$I_D = I_{DD} \times (V_{GS} - V_{TH})^2$$

The internal logic levels swing from rail-to-rail, thus the V_{GS} is equal to V_{DD} for the N-FET and $-V_{DD}$ for the P-FET. V_{DD} is considerably higher than the V_{TH}, so for the operating range of V_{DD} for the PSoC and the purposes of this model, the on-resistance is modeled as a first order equation with a negative coefficient on the supply voltage term.

The threshold voltage of a FET has a positive temperature coefficient. As temperature increases, the difference between V_{GS} and V_{TH} drops. At a fixed $V_{GS} (\approx V_{DD})$ then, the device conducts less current as the temperature increases. Thus the output resistance increases with the temperature.

Based on characterization data for the CY8C24x23A, the output resistance of the N-channel devices (sinking current) and the P-channel devices can be modeled as:

$$R_{DS-N} = 33.2 - 1.8V_{dd} + 0.04(T - 25)$$

$$R_{DS-P} = 63.8 - 6.6V_{dd} + 0.066(T - 25)$$

At room temperature, the voltage dependence of the FET’s resistance can be seen in Figure 2.

Figure 2. FET Resistance vs V_{DD} at Room Temperature

The temperature dependence of the FET’s resistance can be seen in Figure 3. Again, these values are estimates based on the design and the characterization data.

Figure 3. FET Resistance vs Temperature

Ohm’s Law Manipulation

Calculating the output voltage for a given pin with a given load is a matter of applying Ohm’s law, Kirchhoff’s law, and simple algebra to a large, simple network. The output voltage on unloaded pins may be of importance. An example is an LED on one pin and unloaded logic levels on other pins. You could enter the network into a SPICE simulation, or have that summer intern build it into a spreadsheet.

Let us do rough numerical calculation for an example at the room temperature:

Example: CY8C24423 PDIP 28

$V_{DD} = 5.0 \text{ V}$, $T = 25 ^\circ \text{C}$

20 mA load into P1[6]

Find V_{OL} at P1[6]

V_{OL} at P2[0] unloaded

V_{OL} at P1[0] unloaded
We will start with a simplified schematic, reduced from Figure 11 to summed resistances in Figure 4. The resistance from the pin to \(\text{V}_{\text{SS}} \) is split, clockwise around the chip from the pin to \(\text{V}_{\text{SS}} \) (\(R_{\text{CW}} \)) and counter-clockwise around the chip from the pin to \(\text{V}_{\text{SS}} \) (\(R_{\text{CCW}} \)). These values will vary as a result of the pin location.

Let us go back and check the accuracy of the assumption that we could neglect the resistance of the route between the two \(\text{V}_{\text{SS}} \) connections.

The voltage at the top end of short-side bond wire is

\[
V_{B\text{Wshort}} = \frac{0.1}{0.1 + 4.89} (0.547 - 0.02A \times 24) = 1.34\text{mV}
\]

The voltage at the top end of long-side bond wire is

\[
V_{B\text{Wlong}} = \frac{0.1}{0.1 + 1.05} (0.547 - 0.02A \times 24) = 0.66\text{mV}
\]

The voltage drop between these two points is

\[
= (1.34\text{ mV} - 0.66\text{ mV}) = 0.68\text{ mV}
\]

So, the current between them is

\[
= 0.68\text{ mV}/4.89\text{ }\Omega
\]

\[
= 0.139\text{ mA}
\]

This is small compared to the total current (20 mA) and means that the earlier estimate that this part of the routing loop could be neglected is correct.

Voltage at Unloaded Pin

The \(\text{V}_{\text{SS}} \) rail at the source of P1[6]'s output FET is at 3.36\(\Omega \) * 20 mA = 67.2 mV. Thus, other output pins in question, P1[0] and P2[0] will not be at zero volts. We will use a slightly more complex version of the \(\text{V}_{\text{SS}} \) routing resistance, shown in Figure 5.

Let us start with a simplified schematic, reduced from Figure 11 to summed resistances in Figure 4. The resistance from the pin to \(\text{V}_{\text{SS}} \) is split, clockwise around the chip from the pin to \(\text{V}_{\text{SS}} \) (\(R_{\text{CW}} \)) and counter-clockwise around the chip from the pin to \(\text{V}_{\text{SS}} \) (\(R_{\text{CCW}} \)). These values will vary as a result of the pin location.

Figure 4. Simplified Routing Resistance

![Simplified Routing Resistance Diagram](image)

Resistance from P1[6] to \(\text{V}_{\text{SS}} \) pad (the short way - clockwise) is summed from the listed values in Figure 11 in the appendix, routing resistance for CY8C24x23.

\[
R_{\text{CW}} = 1.35 + 0.27 + 0.27 + 3.0 = 4.89\Omega
\]

Resistance from P1[6] to \(\text{V}_{\text{SS}} \) pad (the long way - counter clockwise), accounted in the same manner, is

\[
R_{\text{CCW}} = 0.27 + 0.27 + ... + 0.81 = 10.05\Omega
\]

Bond wire resistance (\(R_{\text{BW}} \)) = 0.1\(\Omega \) each path

Lead frame resistance = 0.018\(\Omega \)

P1[6] N-FET output resistance = 24.0\(\Omega \)

Initially let us neglect the resistance between the \(\text{V}_{\text{SS}} \) pads (\(R_{\text{GG}} \)), which amounts to about 5.0 ohms.

The \(\text{V}_{\text{SS}} \) resistance from P1[6] N-FET source to PCB is the resistance clockwise around the short side of the loop in parallel with the resistance counter-clockwise around the long side of the loop.

\[
R_{\text{OUT}} = (R_{\text{CW}} + R_{\text{BW}}) || (R_{\text{CCW}} + R_{\text{BW}}) + R_{\text{LF}}
\]

\[
R_{\text{OUT}} = \frac{1}{\frac{1}{4.89 + 0.1} + \frac{1}{10.05 + 0.1}} + 0.018
\]

\[
R_{\text{OUT}} = 3.36\Omega
\]

\[
V_{\text{OL, P1.6}} = 0.02A(24 + 3.36) = 0.547V
\]
P1[0] is between P1[6] and VSS. The voltage at P1[0] for no load current is the voltage at the source of P1[0]'s N-FET.

\[V_{OL_{P1,0}} = \frac{(1.35+0.1)}{(3.54+1.35+0.1)} \times 67.2 \text{ mV} = 19.5 \text{ mV} \]

P2[0] is very close to P1[6] (... it is a long way around to loop the VSS terminal next to P2[1]). The voltage at P2[0] for no load current is the voltage at the source of P2[0]'s N-FET.

\[V_{OL_{P2,0}} = \frac{(9.78+0.1)}{(9.78+0.27+0.1)} \times 67.2 \text{ mV} = 65.4 \text{ mV} \]

VOL at both P1[0] and P2[0] is not at zero volts even when there is no load current into these pins because the voltage on the bus is non-zero and distributed. More load currents raise the bus voltage even more. Since there is no load current on these pins, the 24-Ω N-FET resistance does not affect the output voltage.

This was obviously a trivial example; distributed loads beget more complex calculations. This is a simple exercise for SPICE; it is strictly a matter of data entry.

1. Most of the drop comes from the FET output resistance... NOT the metal routing resistance. For high current applications, use the multiple pins in parallel.
2. It is clear that to deliver high currents without degrading the VOH and VOL of unloaded outputs, these unloaded outputs must be placed as close to the VSS pins as possible.
3. Calculate your outputs at the full range of temperature and voltage expected in your product. Add some margin. While the estimates on routing and output FET resistance were made in good faith, they are still estimates.

Author’s Note

After years of study and practice, the author is still messing around with Ohm’s law. It is still fundamental; software has not completely taken over the world.

Summary

Calculation of PSoC logic output voltage under load is a straight-forward but tedious exercise. The VOH and VOL values on any pin can be calculated to assure that logic level and other requirements of external loads can be met. From the structure of the power routing, we can infer obvious design steps to drive the unloaded outputs closer to the rails if this is an issue in the user’s application.

About the Author

Name: Dennis Seguine.
Title: Applications Engrg MTS
Appendix A

Figure 6. CY8C20x34 V_{DD} Routing

Figure 7. CY8C20434 V_{SS} Routing
Figure 10. CY8C24x23A V_{DD} Routing

Figure 11. CY8C24x23A V_{SS} Routing
Figure 14. CY8C27x43 VDD Routing

Figure 15. CY8C27x43 VSS Routing
Figure 18. CY8C29x66 VDD Routing

Figure 19. CY8C29x66 VSS Routing
Document History

Document Title: PSoC® 1 I/O Power Structure - Determining VOH and VOL at Partial Load - AN2405

Document Number: 001-41447

<table>
<thead>
<tr>
<th>Revision</th>
<th>ECN</th>
<th>Orig. of Change</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>1541089</td>
<td>SEG</td>
<td>10/03/2007</td>
<td>New Spec.</td>
</tr>
<tr>
<td>*A</td>
<td>3247371</td>
<td>SEG</td>
<td>05/03/2011</td>
<td>Update text on lead frame, reformat graphics, add appendix for more chips.</td>
</tr>
<tr>
<td>*B</td>
<td>3432728</td>
<td>SEG</td>
<td>11/08/2011</td>
<td>Updated text for clarification and updated template.</td>
</tr>
<tr>
<td>*C</td>
<td>4390198</td>
<td>SEG</td>
<td>05/26/2014</td>
<td>Updated in new template. Completing Sunset Review.</td>
</tr>
</tbody>
</table>
Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

<table>
<thead>
<tr>
<th>Category</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive</td>
<td>cypress.com/go/automotive</td>
</tr>
<tr>
<td>Clocks & Buffers</td>
<td>cypress.com/go/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>cypress.com/go/interface</td>
</tr>
<tr>
<td>Lighting & Power Control</td>
<td>cypress.com/go/powerpsoc</td>
</tr>
<tr>
<td></td>
<td>cypress.com/go/plc</td>
</tr>
<tr>
<td>Memory</td>
<td>cypress.com/go/memory</td>
</tr>
<tr>
<td>PSOC</td>
<td>cypress.com/go/psoc</td>
</tr>
<tr>
<td>Touch Sensing</td>
<td>cypress.com/go/touch</td>
</tr>
<tr>
<td>USB Controllers</td>
<td>cypress.com/go/usb</td>
</tr>
<tr>
<td>Wireless/RF</td>
<td>cypress.com/go/wireless</td>
</tr>
</tbody>
</table>

PSOC® Solutions

<table>
<thead>
<tr>
<th>Category</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSOC 1</td>
<td>psoc.cypress.com/solutions</td>
</tr>
<tr>
<td>PSOC 3</td>
<td></td>
</tr>
<tr>
<td>PSOC 4</td>
<td></td>
</tr>
<tr>
<td>PSOC 5LP</td>
<td></td>
</tr>
</tbody>
</table>

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

PSOC® is a registered trademark of Cypress Semiconductor Corp. *Programmable System-on-Chip,* and PSOC Designer are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2007-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement.