
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

THIS SPEC IS OBSOLETE

Spec No: 001-68914

Spec Title: EZ-USB(R) FX3 I2C BOOT OPTION - AN68914

Sunset Owner: SONIA GANDHI (OSG)

Replaced by: 001-76405

EZ-USB® FX3 I2C Boot Option

April 24, 2013 Document No. 001-68914 Rev. *C 1

AN68914
Author: Shruti Maheshwari

Associated Project: No
Associated Part Family: EZ-USB

®
 FX3

Software Version: None
Associated Application Notes: None

Application Note Abstract
AN68914 describes the features of the Cypress EZ-USB

®
 FX3 I

2
C boot option. It covers the details of selecting I2C boot

option, devices supported by the bootloader, and the format of boot image to be loaded on the EEPROM.

Introduction
Cypress EZ-USB FX3 is the next generation USB 3.0
peripheral controller, which provides highly integrated and
flexible features that enable developers to add USB 3.0
functionality to any system.

EZ-USB FX3 has a fully configurable, parallel, general
programmable interface called GPIF II, which can connect to
an external processor, ASIC, or FPGA. The GPIF II is an
enhanced version of the GPIF in FX2LP, Cypress’s flagship
USB 2.0 product. It provides easy and glue less connectivity
to popular interfaces such as asynchronous SRAM,
asynchronous and synchronous address data multiplexed
interface, and many others.

FX3 supports many boot options including booting over I2C,
SPI, and USB interfaces. This application note discusses
booting from I2C memories.

FX3 Boot Options
FX3 comes with a bootloader, which is the startup code for
the ARM9 CPU that resides in masked ROM. The function
of the bootloader is to download the FX3 firmware image

from various interfaces such as I
2
C EEPROM, SPI

EEPROM, GPIF II asynchronous SRAM and
asynchronous/synchronous ADMUX interfaces, and USB.

The boot options supported by the bootloader in EZ-USB
FX3 are listed in Table 1.

Table 1. Boot Option Selection for FX3

PMODE Pins Boot Option USB Fallback

F00 Sync ADMUX (16-bit) No

F01 Async ADMUX (16-bit) No

F11 USB Boot Yes

F0F SRAM (16-bit) No

1FF I
2
C No

F1F I
2
C => USB Yes

0F1 SPI => USB Yes

Note: The shaded rows indicate pins that are relevant to this
application note.

Other combinations are reserved.

Figure 1. High-Level Interface for FX3 Bootloader

I2C EEPROM
A0
A1
A2

USB

Host USB 3.0/2.0

EZ- FX3

Boot
Loader
ROM

μP/

FPGA /
Image
Sensor

SRAM/
ADMUX

Protocol Bus

 SCL SDA
Boot

Option

PMODE

javascript:getDocDetailsonconfirm('001-68914','')

AN68914

April 24, 2013 Document No. 001-68914 Rev. *C 2

PMODE Pins: The FX3 bootloader uses three FX3 pins to
determine the booting options.

As shown in Table 1 on page 1, the three pins available
can be driven high (1) or low (0) or no connection
(F - Float).

The float detection capability of the bootloader provides
3^3 = 27 possible combinations that can be used as boot
options.

This application note discusses the boot options
highlighted in Table 1.

I2C EEPROM Boot
PMODE Pins: 1FF

Features

 FX3 boots from I
2
C EEPROM devices through a two-

wire I
2
C interface.

 EEPROM
1
 device sizes supported are:

 32 Kilobit (Kb) or 4 Kilobyte (KB)
 64 Kb or 8 KB
 128 Kb or 16 KB
 256 Kb or 32 KB
 512 Kb or 64 KB
 1024 Kb or 128 KB

 Manufacturers supported are ATMEL and Microchip

 Supported boot frequencies are 100 kHz, 400 kHz,
and 1 MHz. Note that when VIO5 is 1.2 V, the
maximum operating frequency supported is 100 kHz.
When VIO5 is 1.8 V, 2.5 V, or 3.3 V, the operating
frequencies supported are 400 kHz and 1 MHz. (VIO5
is the I/O voltage for I

2
C interface)

 Supports boot from multiple I
2
C EEPROM devices of

the same size. When I
2
C EEPROM is smaller than the

firmware image; multiple I
2
C EEPROM devices must

be used. The bootloader supports loading the image
across multiple I

2
C EEPROM chips. The bootloader

can support up to eight I
2
C EEPROM devices smaller

than 128 Kbytes. The bootloader can support up to
four I

2
C EEPROM devices for a 128-Kbyte device.

 Only one firmware image is stored on I
2
C EEPROM.

No redundant images are allowed.

 Bootloader does not support the multimaster I
2
C

feature of FX3. Therefore, during the FX3 I
2
C booting

process, other I
2
C masters should not show any

activity on the I
2
C bus.

1 Only support 2-byte I2C address. Single byte address is not

supported for any I2C EEPROM size less than 32 Kbit

Storing Image on EEPROM

The FX3 bootloader supports a master I
2
C interface for

external serial I
2
C EPROM devices. The serial I

2
C

EEPROM can be used to store application specific code
and data. The following diagram shows the pinout of a
typical I

2
C EEPROM.

Figure 2. Pinout of a Typical I
2
C EEPROM

The I
2
C EEPROM interface consists of two active wires:

serial clock line (SCL) and serial data line (SDA).

WP is Write Protect and should be pulled low while writing
the image on to EEPROM.

The A0, A1, and A2 pins are the address lines. They set
the slave device address 000–111. This makes it possible
to address eight I

2
C EEPROMs of the same size. These

lines should be pulled high or low based on the address
required. Table 2 shows how eight 24LC256 EEPROM
devices can be connected.

Table 2. 24LC256 EEPROM Device Connections

Device
No.

Address Range A2 A1 A0 Size

1 0x0000-0x7FFF 0 0 0 32 Kbytes

2 0x7FFF-0xFFFF 0 0 1 32 Kbytes

3 0xFFFF-0x17FFF 0 1 0 32 Kbytes

4 0x17FFF-0x1FFFF 0 1 1 32 Kbytes

5 0x1FFFF-0x27FFF 1 0 1 32 Kbytes

6 0x27FFF-0x2FFFF 1 1 0 32 Kbytes

7 0x2FFFF-0x37FFF 1 0 1 32 Kbytes

8 0x37FFF-0x3FFFF 1 1 1 32 Kbytes

For example, if the firmware code is 60 Kbyte, you must
use two I

2
C EEPROMs, with the first EEPROM having

A<2:0> = 000 and second having A<2:0> = b001. The
firmware image should be stored across the EEPROMs as
a contiguous image as in a single I

2
C EEPROM.

Important Points to Note on 128 KByte

In the case of a 128-Kbyte I
2
C EEPROM, the addressing

style is not standard. For example, Microchip uses pins A1
and A0 for chip select and pin A2 is unused. However,
Atmel uses A2 and A1 for chip select whereas A0 is
unused. Both these cases are handled by the bootloader.
The addressing style can be indicated in the firmware
header.

AN68914

April 24, 2013 Document No. 001-68914 Rev. *C 3

Table 3 shows how four Microchip 24LC1024 EEPROM
devices can be connected.

Table 3. Microchip 24LC1024 EEPROM Device
Connections

Device
No.

Address Range A2 A1 A0 Size

1 0x00000-0x1FFFF Vcc 0 0 128 Kbytes

2 0x20000-0x3FFFF Vcc 0 1 128 Kbytes

3 0x40000-0x5FFFF Vcc 1 0 128 Kbytes

4 0x60000-0x7FFFF Vcc 1 1 128 Kbytes

Table 4 shows how four Atmel 24C1024 EEPROM
devices can be connected.

Table 4. ATMEL 24C1024 EEPROM Device Connections

Device
No.

Address Range A2 A1 A0 Size

1 0x00000-0x1FFFF 0 0 NC 128 Kbytes

2 0x20000-0x3FFFF 0 1 NC 128 Kbytes

3 0x40000-0x5FFFF 1 0 NC 128 Kbytes

4 0x60000-0x7FFFF 1 1 NC 128 Kbytes

Note: NC indicates No Connection

Boot Image Format

The firmware image should be stored on the EEPROM as follows:

Table 5. Firmware Image Storage Format

Binary Image

Header

Length

(16-bit)

Description

wSignature 1 Signature 2 bytes initialize with “CY” ASCII text

bImageCTL; ½ Bit0 = 0: execution binary file; 1: data file type

Bit3:1 (I2C size)

7: 128KB (Micro chip)

6: 64KB (128K ATMEL)

5: 32KB

4: 16KB

3: 8KB

2: 4KB

Note

Options 1 and 0 are reserved for future usage. Unpredicted result will occurred when booting in these
modes.

Bit5:4(I2C speed):

00: 100KHz

01: 400KHz

10: 1MHz

11: 3.4MHz (reserved)

Note

Bootloader power-up default will be set at 100KHz and it will adjust the I2C speed if needed.

Bit7:6: Reserved should be set to zero

bImageType; ½ bImageType=0xB0: normal FW binary image with checksum

bImageType=0xB1: Reserved for security image type

bImageType=0xB2: I2C boot with new VID and PID

dLength 0 2 1st section length, in long words (32-bit)

When bImageType=0xB2, the dLength 0 will contain PID and VID. Boot Loader will ignore the rest of the
any following data.

dAddress 0 2 1st sections address of Program Code not the I2C address.

Note

Internal ARM address is byte addressable, so the address for each section should be 32-bit align

dData[dLength 0] dLength
0*2

All Image Code/Data also must be 32-bit align

… More sections

dLength N 2 0x00000000 (Last record: termination section)

dAddress N 2 Should contain valid Program Entry (Normally, it should be the Start up code i.e. the RESET Vector)

AN68914

April 24, 2013 Document No. 001-68914 Rev. *C 4

Binary Image

Header

Length

(16-bit)

Description

Note

if bImageCTL.bit0 = 1, the Boot Loader will not transfer the execution to this Program Entry.

If bImageCTL.bit0 = 0, the Boot Loader will transfer the execution to this Program Entry: This address
should be in ITCM area or SYSTEM RAM area

Boot Loader does not validate the Program Entry

dCheckSum 2 32-bit unsigned little endian checksum data will start from the 1
st
 sections to termination section. The

checksum will not include the dLength , dAddress and Image Header

Example: The binary image file is stored in the I
2
C

EEPROM in the following order:

Byte0: “C”
Byte1: “Y”
Byte2: bImageCTL
Byte3: bImageType
…..

Byte N: Checksum of Image

Important Notes

 Bootloader default boot speed = 100 KHz; to change
the speed from 100 KHz to 1 MHz, the
bImageCTL<5:4> should be set to 10.

 To select I
2
C EEPROM size, the bImageCTL<3:1>

should be used.

Checksum Calculation

The bootloader computes the checksum when loading the
binary image I

2
C EEPROM. If the checksum does not

match the one in the image, the bootloader does not
transfer execution to the program entry.

The bootloader operates in little endian mode; for this
reason, the checksum must also be computed in little
endian mode.

The 32-bit unsigned little endian checksum data starts
from the first sections to the termination section. The
checksum does not include the dLength, dAddress and
Image Header.

First Example Boot Image

The following image is stored only at one section in the system RAM of FX3 at the location 0x40008000:

Location1: 0xB0 0x1A ’Y’ ’C’ //CY Signature, 32KB EEPROM,400Khz,0xB0 Image

Location2: 0x00000004 //Image length =4

Location3: 0x40008000 // 1st section stored in SYSMEM RAM at 0x40008000

Location4: 0x12345678 //Image starts

Location5: 0x9ABCDEF1

Location6: 0x23456789

Location7: 0xABCDEF12

Location8: 0x00000000 //Termination of Image

Location9: 0x40008000 //Jump to 0x40008000 on FX3 System RAM

Location 10: 0x7C048C04 //Check sum (0x12345678 + 0x9ABCDEF1 + 0x23456789 + 0xABCDEF12)

Second Example Boot Image

The following image is stored at two sections in the system RAM of FX3 at the location 0x40008000 and 0x40009000:

Location1: 0xB0 0x1A ’Y’ ’C’ //CY Signature, 32KB EEPROM,400Khz,0xB0 Image

Location2: 0x00000004 //Image length of section 1 =4

Location3: 0x40008000 // 1st section stored in SYSMEM RAM at 0x40008000

Location4: 0x12345678 //Image starts (Section1)

Location5: 0x9ABCDEF1

Location6: 0x23456789

Location7: 0xABCDEF12 //Section 1 ends

Location8: 0x00000002 //Image length of section 2 =2

AN68914

April 24, 2013 Document No. 001-68914 Rev. *C 5

Location9: 0x40009000 // 2nd section stored in SYSMEM RAM at 0x40009000

Location10: 0xDDCCBBAA //Section 2 starts

Location11: 0x11223344

Location12: 0x00000000 //Termination of Image

Location13 0x40008000 //Jump to 0x40008000 on FX3 System RAM

Location 14: 0x6AF37AF2 //Check sum (0x12345678 + 0x9ABCDEF1 + 0x23456789 + 0xABCDEF12+
0xDDCCBBAA +0x11223344)

Similarly, you can have N sections of an image stored using one boot image.

The following section shows the checksum sample code:

// Checksum sample code

DWORD dCheckSum, dExpectedCheckSum;

WORD wSignature, wLen;

DWORD dAddress, i;

DWORD dImageBuf[512*1024];

fread(&wSignature,1,2,input_file); // read signature bytes

if (wSignature != 0x5943) // check „CY‟ signature byte

{

 printf(“Invalid image”);

 return fail;

}

fread(&i, 2, 1, input_file); // skip 2 dummy bytes

dCheckSum = 0;

while (1)

{

 fread(&dLength,4,1,imput_file); // read dLength

 fread(&dAddress,4,1,input_file); // read dAddress

 if (dLength==0) break; // done

 // read sections

 fread(dImageBuf, 4, dLength, input_file);

 for (i=0; i<dLength; i++) dCheckSum += dImageBuf[i];

}

// read pre-computed checksum data

fread(&dExpectedChecksum, 4, 1, input_file);

if (dCheckSum != dExpectedCheckSum)

{

 printf(“Fail to boot due to checksum error\n”);

 return fail;

}

AN68914

April 24, 2013 Document No. 001-68914 Rev. *C 6

I2C EEPROM Boot with USB Fallback
PMODE Pins: 1FF

In all USB Fallback modes (“=>USB”), USB is enumerated
if 0xB2 boot is selected or an error occurs. After USB is
enumerated, the external USB host can boot FX3 using
USB Boot. I

2
C EEPROM boot with USB Fallback (I2C =>

USB) is also used to store Vendor Identification (VID) and
Product Identification (PID) for USB Boot.

I
2
C EEPROM boot fails under the following conditions:

 I
2
C address cycle or data cycle error.

 Invalid signature on FX3 firmware. Invalid image type.

 A special image type is used to denote that instead of
the FX3 firmware image, data on EEPROM is the VID
and PID for USB boot. This helps in having a new VID
and PID for USB Boot.

Notes

 On USB boot, the bootloader supports only USB High
Speed and USB Full Speed. USB30 Super speed is
not supported.

 In the 0xB2 boot option, the USB descriptor uses the
customer defined VID and PID as part of the 0xB2
image from I

2
C EEPROM.

 If USB falls back when any error occurs during I
2
C

Boot, the USB descriptor uses the VID=0x04B4 and
PID=0x00F3.

 The USB Device Descriptor is reported as BUS-
power, which consumes around 200 mA. The FX3
chip itself consumes around 100 mA.

Example Image for boot with VID and PID

Location1: 0xB2 0x1A ’Y’ ’C’ //CY Signature,32k EEPROM,400Khz,0xB2 Image

Location2: 0x04B40008 // VID = 0x04B4 | PID=0x0008

Summary
The details of the I

2
C boot option supported by the FX3 bootloader have been discussed in this application note. The

application note enables you to select an appropriate EEPROM device, store boot image in the EEPROM, and boot FX3 over
the I

2
C interface.

About the Author
Name: Shruti Maheshwari
Title: Systems Engineer Senior
Contact: svrm@cypress.com

AN68914

April 24, 2013 Document No. 001-68914 Rev. *C 7

Document History
Document Title: EZ-USB

®
 FX3 I

2
C Boot Option – AN68914

Document Number: 001-68914

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3220026 SVRM 04/07/2011 New application note.

*A 3284799 SVRM 06/14/2011 Removed FX3 system level diagram. Added second example of Boot Image.

*B 3358203 SVRM 08/30/2011 Added new point in Features section about multimaster support during booting.

*C 3980631 OSG 04/24/2013 Obsolete document.

EZ-USB is a registered trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are the
property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2011-2013. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/

