

www.cypress.com Document No. 002-13924 Rev. *D 1

AN213924

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

Author: Mark Ainsworth

Associated Part Family: All PSoC
®
 6 MCU parts

Associated Code Examples: see Related Documents

Related Application Notes: see Related Documents

More code examples? We heard you.

To access an ever-growing list of hundreds of PSoC code examples, please visit our code examples
web page. You can also explore the Cypress video training library here.

This guide provides comprehensive information on how to use the Bootloader Software Development Kit (SDK) to

develop bootload systems for Cypress PSoC 6 MCU products. A detailed description of the SDK application

programming interface (API), and build instructions for multiple bootloader code examples, are included.

Contents

1 Introduction .. 1
2 What Is a Bootloader? ... 2

2.1 Terms and Definitions ... 2
2.2 Using a Bootloader ... 3
2.3 Basic Bootloader Function Flow 3
2.4 Other Use Cases .. 3

3 Bootloader SDK Description .. 4
3.1 Bootloader SDK Files .. 4
3.2 Bootloading Ecosystem 6

4 How to Use the SDK .. 7
4.1 Determine the Applications in Your System 7
4.2 Locate Applications in Memory 8
4.3 Design the Applications 8
4.4 Build and Program the Applications 14

5 Bootloader Code Examples 15
5.1 How to Build the Bootloader Code Examples ... 16
5.2 PSoC 6 MCU Basic Bootloaders 16
5.3 PSoC 6 MCU BLE Bootloaders 22
5.4 PSoC 6 MCU Dual-Application Bootloader 27

6 Related Documents ... 30
Appendix A. Bootloader Host Program (BHP) 31
Appendix B. Host Command/Response Protocol 33

B.1 Command/Response Packet Structure 33
B.2 Commands ... 33

Appendix C. .cyacd2 File Format 40
Appendix D. Application Metadata 41

D.1 Metadata Structure ... 42
Appendix E. Post Build Batch File Listing 43

1 Introduction

This guide gives an overview of bootloader fundamentals, followed by a detailed description of the Cypress
Bootloader Software Development Kit (SDK) and how to use it with PSoC

®
 6 MCU.

Multiple development tools are covered, including Cypress PSoC CreatorÊ. PSoC Creator is a free Windows-based
integrated design environment (IDE) that enables concurrent hardware and firmware design of systems based on
Cypress PSoC MCUs. For more information on PSoC Creator, click here.

If you are new to bootloaders in general, basic concepts and design principles are explained in the next section,
What is a Bootloader?

If you are familiar with bootloaders and want to see how they are implemented in PSoC 6 MCU, see the sections
Bootloader SDK Description, How to Use the SDK, and Bootloader Code Examples. For a list of the bootloader code
examples, see Related Documents. For a complete list of PSoC 6 MCU code examples, click here.

Note: At this time, UART, I
2
C, SPI, and Bluetooth Low Energy (BLE) over the air (OTA) bootloaders are supported.

http://www.cypress.com/
http://www.cypress.com/training
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/documentation/code-examples/psoc-6-mcu-code-examples

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 2

2 What Is a Bootloader?

Bootloaders are a common part of MCU system design. A bootloader makes it possible for a product's firmware to be
updated in the field. In a typical product, firmware is stored in an MCUôs flash memory. The MCU is mounted on a
printed circuit board (PCB) and embedded in a product, as Figure 1 shows.

Figure 1. Bootloader Data Flow Block Diagram

Your Product

Circuit Board

MCU

Flash

Memory

CPU

Comm.

Channel

Hardware

connection to

outside world

Bootloader

data flow

At the factory, initial programming of firmware into a product is typically done at PCB assembly time, using the MCUôs
JTAG or SWD interface. However, these interfaces are not usually available in the field, and therefore are generally
not used for firmware updates.

A better way to update firmware in the field is to use an existing connection between the product and the outside
world. The connection may be a standard communication port such as I

2
C, USB, or UART, a wireless channel such

as BLE, or it may be a custom protocol.

2.1 Terms and Definitions

Figure 1 implies that the productôs embedded firmware must be able to use the communication port for two different
purposes: normal operation and updating flash. That portion of the embedded firmware that knows how to update the
flash is called a bootloader, as Figure 2 shows.

Figure 2. Bootloader System

Target

MCU

Flash

Memory

Bootloader

Application

HostCommunication

Channel

Application

File

Typically, the system that provides the data to update the flash is called the host, and the system being updated is
called the target. The host can be an external computer or another MCU on the same PCB as the target.

The act of transferring data from the host to the target flash is called bootloading, or a bootload operation, or just
bootload for short. The data that is placed in flash is called the application or firmware image.

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 3

2.2 Using a Bootloader

The bootloader and the application typically share a
communication port. The first step in using a
bootloader is to manipulate the product so that the
bootloader, and not the application, is executing. This
can be done in response to an event such as a button
press or a received command. The application
detects such an event and responds by transferring
control to the bootloader.

Once the bootloader is running, the host can send a
ñstart bootloadò command over the communication
channel. If the bootloader sends an ñOKò response,
bootloading can begin.

2.3 Basic Bootloader Function Flow

During bootloading, the host reads the file for the new
application, parses it into flash write commands, and
sends those commands to the bootloader. After the
entire file is received and installed in target flash, the
bootloader can pass control to the new application.

A bootloader typically executes first after device
reset.

1
It can then perform the following actions:

Á Check the new applicationôs validity before
transferring control to that application

Á Manage the timing to start host communication

Á Do the bootload / flash update operation

Á Pass control to the new application

Figure 3 is a flow diagram that shows how this works.

2.4 Other Use Cases

Other more complex bootloading use cases exist. A
common use case is for an application to be running
and have some event alert the application that an
update is available.

While the application continues to execute its normal
tasks, it also downloads the new application into a
temporary location. Once the new application is
verified, it is copied into the correct location in flash,
and control is transferred to it.

Figure 3. Bootloader Function Flow

Device reset and initialization

Bootloader

valid in flash?

Go to application

Application

valid in flash?

Wait for

new application

from host?

Wait forever?

Host comm.

start?

Timeout?

Receive new

application from

host,

install in flash,

overwriting

existing

application

Host comm.

start?

Halt execution
No

Yes

No

No

No

Yes

No

Yes

Yes

Yes

Yes

No

No

Yes

1
 In a typical MCU, several events may cause a device reset, for example device power up or a voltage level on a reset pin. In addition,
firmware can trigger a reset by writing to a device register. This is known as a ñsoftware resetò, or SRES. Using the SRES feature, an
application can reset the device, for example in response to an event such as a button press. This effectively transfers control to the
bootloader, because the bootloader executes first at device reset.

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 4

3 Bootloader SDK Description

The Cypress Bootloader SDK is an API consisting of a set of callable functions and other elements that enable rapid
bootloader development. The SDK is shipped as a part of the Cypress Peripheral Driver Library (PDL) 3.0.1. The
PDL is included as part of PSoC Creator 4.2; it is typically found in C:\Program Files (x86)\Cypress\PDL. The SDK
may be used by other IDEs as well as PSoC Creator. For more information on the PDL, go to here.

The SDK consists of the following:

Á Source code, typically .h and .c files as well as linker scripts, that implements the SDK API

Á Documentation, i.e., this guide. See also the Bootloader SDK API Reference Manual in the PDL doc folder.

Á Code examples

Note: You may modify the Bootloader SDK source code for custom purposes, for example to modify or add
commands to the host interface protocol (see Appendix B: Host Command/Response Protocol).

3.1 Bootloader SDK Files

Table 1 lists the the files in the SDK.

Note: PSoC 6 MCU has two Arm
®
 CPUs: a Cortex

®
-M4 (CM4) and the Cortex-M0+ (CM0+). Linker script files are

provided for each CPU, for multiple IDEs. For more information, see AN215656, PSoC 6 MCU Dual-CPU System
Design.

Note: Linker script files are provided for GCC, µVision MDK, and IAR Embedded Workbench linkers. Use the
appropriate linker script for your IDE.

Table 1. Bootloader SDK Files

File Description

cy_bootload.h, .c The bootloader software development kit (SDK) files

bootload_user.h Contains user-editable #define statements that control the operation and enabled features in the

SDK.

bootload_user.c Contains user functions required by the SDK:

¶ Five functions that control communications with the bootloader host. These are also called
ñtransport functionsò.

¶ Two functions ï ReadData() and WriteData() ï that control access to internal or external

memory

The functions provided are defaults, and may be modified by the user for specific applications.

transport_uart.h, .c
transport_... .h, .c

Contains bootloader transport functions for the host communication Component being used. These
functions are typically called by the transport functions in bootload_user.c.

bootload_common.ld GCC linker script. It is user-editable ï it controls the memory layout and the locations in memory for
each application, and the code and data for each CPU in each application. This file is included in
the custom GCC linker scripts described next. This file is common to all applications.

bootload_cm4.ld,
bootload_cm0p.ld

Custom GCC linker scripts. In each application, these files replace the auto-generated linker script
files. These files locate the code and data sections for each of the CPUs as well as the bootloader
and other regions. These files include the memory layout described in bootload_common.ld.

bootload_mdk_common.h
bootload_mdk_symbols.c

Similar in function to the GCC and IAR common linker scripts, for MDK. The MDK linker does not
support includes in .scat files, so these files exist to create the necessary defines.

These files are user-editable ï they control the memory layout and the locations in memory for each
application, and the code and data for each CPU in each application. These files are common to all
applications.

bootload_cm4.scat,
bootload_cm0p.scat

Custom MDK linker scripts. In each application, these files replace the auto-generated linker script
files. These files locate the code and data sections for each CPU as well as the bootloader and
other regions.

bootload_common.icf IAR linker script. It is user-editable ï it controls the memory layout and the locations in memory for
each application, and the code and data for each CPU in each application. This file is included in
the custom IAR linker scripts described below. This file is common to all applications.

http://www.cypress.com/
http://www.cypress.com/documentation/software-and-drivers/peripheral-driver-library-pdl
http://www.cypress.com/an215656

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 5

File Description

bootload_cm4.icf,
bootload_cm0p.icf

Custom IAR linker scripts. In each application, these files replace the auto-generated linker script
files. These files locate the code and data sections for each CPU as well as the bootloader and
other regions. These files include the memory layout described in bootload_common.icf.

The files are organized in the PDL bootloader folder as Figure 4 shows:

Figure 4. Bootloader SDK File Organization

\ --- bootloader

 | cy_bootload.h

 | cy_bootload.c

 | bootload_user.h

 | bootload_user.c

 | transport_uart.h

 | transport_uart.c

 | transport_... .h transport files for other

 | transport_... .c communication channels

 \ --- gcc_linker_scripts

 | bootload_common.ld

 | bootload_cm0p.ld

 | bootload_cm4.ld

 \ --- mdk_linker_scripts

 | bootload_mdk_common.h

 | bootload_mdk_symbol s.c

 | bootload_cm0p.scat

 | bootload_cm4.scat

 \ --- iar_linker_scripts

 bootload_common.icf

 bootload_cm0p.icf

 bootload_cm4.icf

3.1.1 User Cal lback Funct ions

The Bootloader SDK API functions call back to several user functions. This allows you to customize the following
bootloading operations:

Á Host communication, also called transport functions or communication interface functions

Á Reading and writing deviceôs internal flash as well as other non-volatile memory (NVM), for example external
flash

Table 2 lists the required user callback functions. The bootloader code examples show typical code for these
functions; see Bootloader Code Examples and Related Documents.

Table 2. User Callback Functions

Function Description

For Host Communication. Examples are in transport_xxx.h and .c files

Cy_Bootload_TransportStart() Opens and initializes the communication channel

Cy_Bootload_TransportStop() Closes the communication channel

Cy_Bootload_TransportReset() Re-initializes the channel, typically to bring it back to a known state

Cy_Bootload_TransportRead() Receives a packet from the host. See Host Packet Structure.

Cy_Bootload_TransportWrite() Sends a packet to the host. See Host Packet Structure.

For Non-Volatile Memory (NVM) Access. Examples are in bootload_user.c.

Cy_Bootload_ReadData() Reads data from the device flash or other NVM

Cy_Bootload_WriteData() Writes data to the device flash or other NVM

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 6

3.1.2 Linker Scripts

A system with a bootloader is by definition a system with multiple applications (at least two) in NVM. It is up to the
user to decide where in NVM each application resides. The Bootloader SDK includes template linker script files (see
Table 1 on page 4 and Figure 4 on page 5) that you can adapt to your application. The bootloader code examples
include example linker script files.

3.2 Bootloading Ecosystem

Other elements of the bootloading system are not included in the SDK. They are available in PSoC Creator or the
PDL, and can be used by other IDEs:

Á Bootloader Host Program (BHP). This is an example of the óhostô shown in Figure 2 on page 2. In PSoC Creator,
select Tools > Bootloader Host.... to launch this program. For more information, see Appendix A, Bootloader

Host Program.

Á CyMCUElfTool is a utility that is provided as part of the PDL. It is called as part of building an application, using
PSoC Creator or other IDEs, as Figure 5 shows. Its main purpose is to combine core and application image files
into output files. It is a command line program; its option syntax is documented in the Help command (- h /
-- help) output.

Á Other drivers ï for communication, flash, etc. ï are in the PDL drivers folder. They are called as needed by the
Bootloader SDK API functions.

Figure 5. Application Build and Bootload Process Diagram

PDL files

Application files, for

PSoC Creator or

other IDE

Bootloader SDK files

User customizable files

Linker script files

PSoC Creator or other IDE build process

CyMCUElfTool

.hex file for

manufacturing

.cyacd2 files for

field programming

PSoC Creator, PSoC Programmer,

or third-party device programmer

Bootloader Host Program, or

user-developed host program

Install bootloader and possibly other

apps through JTAG or SWD

Communicate with bootloader in target

to install or update applications

Customize

Target NVM

update

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 7

4 How to Use the SDK

This section describes the general process for using the Bootloader SDK. At a high level, the steps are:

1. Determine the Applications in Your System

2. Locate Applications in Memory

3. Design the Applications

4. Build and Program the Applications

For detailed instructions on how to build the Bootloader SDK code examples, go to How to Build the Bootloader Code
Examples.

4.1 Determine the Applications in Your System

The first step is to decide how many applications are to be in your design, and the purpose of each. How many of the
applications will have bootloader capability? Figure 6 shows some typical memory maps for multiple applications:

Á Map A shows a basic case, where Application #0 bootloads application #1.

Á Map B shows a more complex case. There are three applications. All applications can bootload any other

application. (In practice, Application #0 is usually not updated.) A data section is located outside all applications.

Á Map C shows the same case as map B except that one of the applications is located in external non-volatile

memory (NVM.

In each of the maps, the bootloader system uses a small amount of flash (typically one row) to store application
metadata. For information, see Appendix D, Application Metadata.

Figure 6. Example Memory Maps for Bootloading

External NVM

Application #0

Bootloader SDK filesStart of

user flash

0x1000 0000

Top of

user flash Application metadata

Application #1

0x1004 0000

0x1008 0000

Start of

user flash

0x1000 0000

Top of

user flash

0x1004 0000

Application #0

Bootloader SDK files

Application metadata

Application #1

Application #2

0x1008 0000

Bootloader SDK files

Bootloader SDK files

General data, e.g., log or

audio file

A B

C

Application #0

Bootloader SDK files

Application metadata

Application #1

Application #2

Bootloader SDK files

Bootloader SDK files

General data, e.g., log or

audio file

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 8

4.2 Locate Applications in Memory

The next step is to decide where each application is to be located in flash. There are several factors to consider:

Á A maximum of 63 applications are supported, depending on the metadata size. For more information on
Bootloader SDK metadata, see Appendix D, Application Metadata.

Á An application may have code and data for one or more CPUs, for example CM4 and CM0+ in a PSoC 6 MCU
device. For more information, see the application note AN215656, PSoC 6 MCU Dual-CPU System Design.

Á The first application, usually called ñApp0ò, must be located at the beginning of user flash, which in PSoC 6 MCU
is at address 0x1000 0000, as Figure 6 on page 7 shows. This is the first application to execute after device
reset.

1

Note: Another module, such as a Secure Image module in a secure system, may occupy address 0x1000 0000,
and App0 may be located elsewhere in flash. For more information, see AN221111, Creating a Secure System.

Á Any application may incorporate the Bootloader SDK, and thus have bootloader capability; that is, the ability to
download and install another application, and/or transfer control to another application. In most cases, App0
should have bootloader capability.

Á PSoC 6 MCU flash has a read-while-write (RWW) capability across 256-KB regions. That is, the bootloader code
may execute in one flash region while updating flash in another region. As an example, Figure 6 shows
applications in different 256-KB regions.

Note: When writing to flash in non-blocking mode, RWW regions are 512 KB in size. For more information, see
the PDL flash driver documentation and the device Technical Reference Manual (TRM).

Á Applications may reside in external memory as well as the deviceôs internal flash, as map C in Figure 6 shows.

External memory is located in a 128-MB sub-region from 0x1800 0000 to 0x1FFF FFFF.

Note: When executing out of external memory, the external memory device must be mapped into the PSoC 6
MCU using the QSPI block in XIP mode. For more information, see the device Technical Reference Manual
(TRM).

Á PSoC 6 MCU applications include validation bytes, which are saved in NVM, as part of the application. This
enables an application to be validated before transferring control to it.

Note: Depending on the security environment within which the applications exist, an application can be
structured for simple validation (with checksum or CRC data) as well as authorization (with encrypted signature
data). The bootloader can either directly implement validation, or call a function in the Flash Boot module to
check authorization. For more information, see AN221111, Creating a Secure System.

Á NVM data that may be updated during the normal workflow, for example an events log, should not be part of an
application, because it makes the application difficult to validate. Instead, designate a region of NVM that is
outside any applicationôs space and use it for data storage. Figure 6 shows two examples in maps B and C.

Á Reserve a few rows of flash (usually only one is needed) for application metadata, as Figure 6 shows.
Application metadata is managed by the Bootloader SDK, and is used by applications to transfer control to
another application. Application metadata space should be outside any application space.

4.3 Design the Applications

Note: This section contains only bootloader-specific instructions. For detailed step-by-step instructions for creating a
PSoC Creator project, see PSoC Creator Help; AN210781, Getting Started with PSoC 6 MCU with Bluetooth Low
Energy (BLE) Connectivity; or How to Build the Bootloader Code Examples in this document.

1
 The CM0+ CPU executes SROM and other system-level code first at device reset, then transfers control to the application residing at

0x1000 0000. For more information, see the device Technical Reference Manual (TRM).

http://www.cypress.com/
http://www.cypress.com/an215656
http://www.cypress.com/an221111
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=resource_meta_type%3A583&f%5b2%5d=field_related_products%3A114026
http://www.cypress.com/an221111
http://www.cypress.com/an210781

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 9

The next step is to design each of the applications identified in the previous steps. Each application is a single PSoC
Creator (or other IDE) project, independent from any other project. With PSoC Creator, you can have all projects in
one workspace (.cywrk file), or in separate workspaces as well as in separate locations on your computer. Before
getting started with PSoC 6 MCU, it is a good idea to develop a plan for workspaces and projects for your overall
system development needs.

Do the following for each PSoC Creator project that is to be a bootloader or an installable application:

1. If the application is to do bootloading, place a communication Component on the project schematic; i.e., the
TopDesign.cysch file. This Component implements the communication channel to the bootloader host. Connect
the Component terminals to the appropriate physical pins.

The Bootloader SDK includes support for many of the communication Components in the PSoC Creator
Component Catalog, including UART, SPI, I2C, and BLE. Code examples are available for each communication
Component; see Bootloader Code Examples and Related Documents.

Note: For compatibility with the default transport files in the SDK, name the Component as UART, I2C, SPI, or
BLE.

You can also create a custom communication channel. It must implement the transport functions described in
User Callback Functions.

2. Incorporate the Bootloader SDK into the project, as Figure 7 shows. Right-click the project in the Workspace
Explorer window, and select Build Settings.... In the Build Settings dialog, select Peripheral Driver Library.

Figure 7. Incorporate Bootloader SDK into a PSoC Creator Project

Check Core if the project is either a bootloader or a downloadable application. A downloadable application may

need to transfer control to another application; the code to do so is included in the Bootloader SDK core files.

If the project is a bootloader, also check App type Bootloader, and one of the Communication boxes to select

the host communication channel type.

Note: In most cases, only one Communication box is checked. However if you want to have a custom
communication channel, you can leave all Communication boxes unchecked, or even check multiple boxes.

Click OK when done.

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 10

3. Generate the project files. Click the project in
the Workspace Explorer window, and select
Build > Generate Application. The files

listed in Table 1 on page 4 are copied and
added to the project, as Figure 8 shows.

Note that PSoC 6 MCU has two Arm CPUs:
CM4 and CM0+. Each CPU has its own
folder, plus Generic folders and a shared
files folder. Linker script files to locate the
code for each CPU, for multiple IDEs, are
automatically copied and added to the
project. For more information, see
AN215656, PSoC 6 MCU Dual-CPU System
Design.

Note: Figure 8 shows bootloader files added
to the CM0p folder. Similar files are also
added to the CM4 folder, but are not shown.

4. Edit the files bootload_user.h and
bootload_user.c. Review the user callback
functions in bootload_user.c, and edit them
for any customization that is needed, for
example, to write and read external memory.
In many cases the functions can be left
unchanged.

Note: The bootload_user.c file that is added

contains the default code for UART. For
other communication channels such as I

2
C

and SPI, edit bootload_user.c as follows:

Á Change:
 #include "transport_uart.h"

to:
 #include "transport_i2c.h"

or:
 #include "transport_spi.h"

or:
 #include "transport_ ble .h"

.

Á Change five instances of Ƨ5!24ʍ5ÁÒÔƨ to

Ƨ)ʧ#ʍ)ʧÃƨ, Ƨ30)ʍ3ÐÉƨ, or ƧCyBLEƨ.

5. Depending on the compiler you are using,
edit the appropriate common linker script file,
to encode the decisions made in Locate
Applications in Memory. For an example,
see Section 5.3 Step 9.

Figure 8. Add Bootloader SDK Files to a Project

http://www.cypress.com/
http://www.cypress.com/an215656

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 11

6. Installed linker script files are by default set up for application #0 (app0). For other applications, edit the files by
changing the application number. The following example shows edits for app1, for the GCC linker, in
bootload_cm0p.ld and bootload_cm4.ld:

/*

* Bootloader SDK - specific: aliases regions, so the rest of the code does not

use

* application - specific memory region names

*/

REGION_ALIAS("flash_core0", flash_app 1_core0);

REGION_ALIAS("flash", flash_app 1_core1);

REGION_ALIAS("ram", ram_app 1_core1);

/* Bootloader SDK - specific: sets App I D */

__cy_app_id = 1;

The MDK linker is more complex. The following example shows edits for app1 in bootload_cm0p.scat and
bootload_cm4.scat:

; Flash

#define FLASH_START CY_APP 1_CORE0_FLASH_ADDR

#define FLASH_SIZE CY_APP 1_CORE0_FLASH_LENGTH

; Emulated EEPROM Flash area

#define EM_EEPROM_START CY_APP 1_CORE0_EM_EEPROM_ADDR

#define EM_EEPROM_SIZE CY_APP 1_CORE0_EM_EEPROM_LENGTH

; External memory

#define XIP_START CY_APP 1_CORE0_SMIF_ADDR

#define XIP_SIZE CY_APP 1_CORE0_SMIF_LENGTH

; RAM

#define RAM_START CY_APP 1_CORE0_RAM_ADDR

#define RAM_SIZE CY_APP 1_CORE0_RAM_LENGTH

And edits for App1 in bootload_mdk_symbols.c:

__cy_app_core1_start_addr EQU __cpp(CY_APP 1_CORE1_FLASH_ADDR)

/* Application number (ID) */

__cy_app_id EQU 1

/* CyMCUElfTool uses these to generate an application signature */

__cy_app_verify_start EQU __cpp(CY_APP 1_CORE0_FLASH_ADDR)

__cy_app_verify_length EQU __cpp(CY_APP 1_CORE0_FLASH_LENGTH +

 CY_APP1_CORE1_FLASH_LENGTH -

 __CY_BOOT_SIGNATURE_SIZE)

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 12

7. Change the Project Build settings to use the bootloader linker script files instead of the default linker script files.
Select the bootload_cm0p.ld file for the CM0+ CPU, as Figure 9 shows. Include the relative path to the file.
Select the bootload_cm4.ld file for the CM4 CPU (not shown in Figure 9).

Note: Linker script files are provided for GCC, µVision MDK, and IAR Embedded Workbench linkers. The
example shown is for GCC. Use the appropriate linker script for your IDE.

Note: This operation should be done for both Debug and Release configurations.

Figure 9. Project Build Settings for Custom Linker Scripts

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 13

8. For updateable application projects, add a post-build batch file to call the Cypress utility program
cymcuelftool.exe. cymcuelftool is included with your PSoC Creator installation. It generates a *.cyacd2 file, which

is downloaded by the bootloader host (see Figure 5 on page 6). The batch file is applied only to the CM4 binary.

Note: See a Bootloader SDK code example such as CE213903, PSoC 6 MCU Basic Bootloaders, for an
example of a batch file. It is usually found in folder CE213903\Bootloader_Basic_App1.cydsn. The batch file
contents are also available in Appendix E. For convenience, copy and paste the file into your PSoC Creator
project folder app1.cydsn.

Then in PSoC Creator, in the Workspace Explorer window, add the batch file to the projectôs Shared Files folder,
and add that file as a post-build command to the Cortex-M4 build, as Figure 10 shows.

Note: This operation must be done for both Debug and Release configurations.

Figure 10. Post-Build Command

Add code as needed to the two main_cmx.c and other source files. In your overall design, consider the following:

Á Which bootloader function(s) to call:

Ğ Cy_Bootload_DoBootload() : blocks while doing the entire bootload operation. Call this function if there

is no other task to do while bootloading.

Ğ Cy_Bootload_Init() followed by a series of calls to Cy_Bootload_Continue() :

Cy_Bootload_Continue() blocks while receiving, processing, and responding to one command packet

from the host. Call these functions if other tasks must be done while bootloading.

Á When each application shall pass control to another application. Add calls to Bootloader SDK API functions
ValidateApplication() and ExecuteApplication() as needed.

For more information, see the PDL Bootloader documentation.

Note: You can copy and paste code from the code examples listed in Bootloader Code Examples and Related
Documents.

http://www.cypress.com/
http://www.cypress.com/ce213903

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 14

4.4 Build and Program the Applications

Build all of the applications. Several output files are created (see also Figure 5 on page 6):

Á A .hex file for application #0 (App0). Use the .hex file for factory programming.

Note: Using cymcuelftool, it is possible to create a .hex file that incorporates multiple applications, for example
App0 and App1, for factory programming.

Á A .cyacd2 file for each installable application (see Step 8 in the previous section). Use these files for field

updates, that is, for bootloading.

Program the .hex file into the device, using either PSoC Creator or PSoC Programmer. For more information on
device programming, see the Help menus in these tools.

At a later time, you can use the bootloader in application #0, along with a bootloader host program, to download and
install application .cyacd2 files into the device. See Appendix A, Bootloader Host Program.

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 15

5 Bootloader Code Examples

There are several code examples associated with this application note. They demonstrate the different ways that
bootloading can be done.

A complete list of code examples and other documents, with download links on www.cypress.com, is available in
Related Documents.

Table 3 shows an overview-level list of the code examples:

Table 3. List of Bootloader Code Examples

CE # Title Description

CE213903 PSoC 6 MCU Basic Bootloaders A set of examples that demonstrate several basic bootloading operations;
see Figure 6 on page 7, memory map A:

¶ Downloading an application from a host, using various PSoC Creator
Components for host communication: UART, I2C, and SPI

¶ Installing the downloaded application into user flash

¶ Validating an application, and then transferring control to that
application

CE216767 PSoC 6 MCU with Bluetooth Low
Energy (BLE) Connectivity
Bootloader

Same as CE213903, but uses BLE as the communication channel

CE220959 PSoC 6 MCU BLE Bootloader
with External Memory

Same as CE216767, but saves the application temporarily in external
memory, then copies it to its final destination in user flash

CE221984 PSoC 6 MCU Dual-Application
Bootloader

Same as CE213903, but demonstrates bootloading two applications, with
a factory default (ñgolden imageò) mode.

The following code examples are planned or in development:

CE220960 PSoC 6 MCU BLE Bootloader
with Upgradeable Stack

Same as CE216767, plus the BLE stack can be upgraded

CE222802 Bootloader with Encryption and
Signing

Same as CE213903, but the application is encrypted and signed for
validation. The bootloader decrypts the application and validates its
signature.

CE2xxxxx USB HID Bootloader Same as CE231903, but uses USB HID as the communication channel

CE2xxxxx USB Mass Storage Bootloader Same as CE231903, but uses USB Mass Storage as the communication
channel

CE2xxxxx Bootloader with Multiple
Applications

Bootloads multiple applications; see Figure 6 on page 7, memory map B.
Each application can bootload another application.

CE2xxxxx PSoC 6 MCU Bootloader with
External Memory Source

Same as CE213903, but the bootload source is external memory

CE2xxxxx Embedded Host Program Similar to that described in AN60317, PSoC® 3 and PSoC 5LP I
2
C

Bootloader

Most of the code examples consist of multiple separate applications, called ñApp0ò and ñApp1ò. In some cases
additional applications, called ñApp2ò, ñApp3ò, and so on, are included. Each application is a separate project in PSoC
Creator.

Generally, all applications are in the same PSoC Creator workspace. As noted in Design the Applications, projects
can exist in separate workspaces as well as in separate locations on your computer.

Usually App0 does the bootloading; it downloads and installs the other applications.

The basic code example, CE213903, has multiple '_App0_ ... ' projects; each project has a different communication
channel. Advanced communication channels such as BLE and USB are demonstrated in other code examples.

Note: At this time, UART, I
2
C, SPI, and BLE are supported.

The code examples support the CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit. Applications typically blink a kit LED at
different rates or in different colors, making it easy to tell which application is currently running.

http://www.cypress.com/
http://www.cypress.com/
http://www.cypress.com/ce213903
http://www.cypress.com/ce216767
http://www.cypress.com/ce220959
http://www.cypress.com/ce221984
http://www.cypress.com/documentation/application-notes/an60317-psoc-3-and-psoc-5lp-i2c-bootloader
http://www.cypress.com/ce213903
http://www.cypress.com/cy8ckit-062-ble

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 16

In general, the applications are designed such that you can transfer control from one application to another, by
holding a kit button down for 0.5 second. The BLE bootloader code examples use the Immediate Alert Service (IAS)
to transfer control between applications.

5.1 How to Build the Bootloader Code Examples

The following are step-by-step instructions showing how to build each bootloader code example listed in Table 3 on
page 15, with optional adaptations for your application. For more information, see How to Use the SDK.

The instructions are based on PSoC Creator; they can be adapted for other IDEs.

5.2 PSoC 6 MCU Basic Bootloaders

This section shows how to build the basic bootloaders in code example CE213903. There are five general steps:

1. Create App0 and the workspace.

2. Configure App0 as a bootloader.

3. Add App1.

4. Configure App1 as an installable application.

5. Build and test the bootloader and the application.

1. Create App0 and the workspace.

You can create a PSoC Creator project and its containing workspace at the same time. In PSoC Creator, select
File > New > Project.... The Create Project, Select project type window appears, as Figure 11 shows.

A. Click Target device.

B. In the first drop-down menu, select PSoC 6.

C. In the next drop-down menu, select CY8C6347BZI-BLD53. This is the PSoC 6 MCU device that is installed

in the CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit.

D. Click Next.

Figure 11. Select the Target Device

A

B C

D

http://www.cypress.com/
http://www.cypress.com/ce213903
http://www.cypress.com/cy8ckit-062-ble

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 17

Click Next on the next two panels, Select project template and Set target IDE(s). The Create Project panel

appears, as Figure 12 shows.

Enter the Workspace name, and select its Location. Set Project name to ñapp0ò. Click Finish.

A new folder is created in the indicated location; the folder name is the same as the workspace name. A folder
app0.cydsn is created within the workspace folder; the .cydsn folder contains all project files.

Figure 12. Create the Project

The new workspace and project files are shown in the Workspace Explorer window; see Figure 8 on page 10.

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 18

2. Configure App0 as a bootloader.

To add bootloader capability to an application, you must:

Á Add a communication Component to the project schematic. Use this Component to communicate with your
bootloader host.

Á Add other Components to the project schematic as needed for your application

Á Add Bootloader SDK and template files to the project

2a. Add a communication Component. Open or double-click the project schematic (file TopDesign.cysch in

the Workspace Explorer window).

Open the Component Catalog, and navigate to your desired communication Component, for example UART, as
Figure 13 shows. Drag the Component onto the schematic.

Figure 13. Add a Communication Component to a Bootloader Project

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 19

Double-click the Component on the schematic to configure its parameters, such as baud rate, number of bits,
etc., as Figure 14 shows.

Figure 14 shows the changed parameter settings for this code example; note that Name is changed from

UART_1 to UART, I2C_1 to I2C, or SPI_1 to SPI. This is recommended to work with the default Bootloader SDK
files that are copied to your project later.

When done configuring the Component, click OK.

Figure 14. Configure the Communication Component: UART, I2C, or SPI

2b. Add other Components. Add other PSoC Creator Components such as LED and button pins to the project

schematic. The easiest way to do this is to copy and paste portions of the project schematic from the code
example CE213903, and then modify the schematic as needed for your application.

In the Design Wide Resources window, Pins tab, connect the UART, I2C, SPI and other Component pins to the

appropriate physical pins. Use CE213903 and the guide for your kit for guidance.

http://www.cypress.com/
http://www.cypress.com/ce213903

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 20

2c. Add bootloader code to the project. First, incorporate the Bootloader SDK into the project ï see Figure 7

on page 9.

Then select Build > Generate Application. When done, the project should look like Figure 8 on page 10, with

the addition of some startup and other non-bootloader files.

For I
2
C and SPI bootloaders, edit the file bootload_user.c, in the project Shared Files folder, as follows:

¶ Change #include "transport_ uart .h" to

#include "transport_i2c.h" or

#include "transport_ spi .h" .

¶ Change five instances of Ƨ5!24ʍ5ÁÒÔƨ to Ƨ)ʧ#ʍ)ʧÃƨ ÏÒ Ƨ30)ʍ3ÐÉƨ.

Add bootloader code to the main_cm0p.c and main_cm4.c files. The easiest way to do this is to copy and paste
the code from the code example CE213903, and then modify the code for your application.

2d. Build the project. Change the project build settings to use the template linker script files; see Figure 9 on
page 12. Then select Build > Build app0.

3. Add App1.

As noted previously, with PSoC Creator, you can add other projects ï applications ï to the same workspace as
the bootloader application, or they can be in separate workspaces and/or folders. These instructions show how to
add App1 to the same workspace as the bootloader App0.

Note: You can create any number of installable applications that work with the same bootloader. Before getting
started with developing applications, it is a good idea to develop a plan for bootloader and applications for your
overall system development needs. See Determine the Applications in Your System.

In the PSoC Creator Workspace Explorer window, right-click the Workspace, then select Add > New Project...,

as Figure 15 shows:

Figure 15. Add a New Project to a PSoC Creator Workspace

The Create Project, Select project type window appears; see Figure 11 on page 16. Make sure that the device
selected is the same as for App0. Click Next.

Click Next on the next two panels: Select project template and Set target IDE(s). The Create Project panel

appears.

http://www.cypress.com/
http://www.cypress.com/ce213903

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 21

Set Project name to ñapp1ò, as Figure 16 shows. The default Location is the workspace folder. Click Finish.

A new app1.cydsn folder is created within the workspace folder; the .cydsn folder contains all project files.

Figure 16. Create a Second Project

4. Configure App1 as an installable application.

Note: App1 should be built with the same toolchain (GCC or MDK) as App0, or application transfer may fail.

4a. Add other Components such as LED and button pins to the project schematic. The easiest way to do

this is to copy and paste portions of the project schematic from the code example CE213903, and then modify
the schematic for your application.

In the Design Wide Resources window, Pins tab, connect the Component pins to the appropriate physical pins.

Use CE213903 and the guide for your kit for guidance.

4b. Add Bootloader SDK and template files to the project. Incorporate the Bootloader SDK into the project;
see Figure 7 on page 9. Check only the Core box, because App1 is a downloadable application and does not

have bootloader capabilities.

Then, select Build > Generate Application. When done, the project should look like Figure 8 on page 10, with

the addition of some startup and other non-bootloader files. Change the project build settings to use the template
linker script files; see Figure 9 on page 12.

Add a post-build batch file to the Shared Files folder, as described in Section 4.3 Step 8. Then add a post-build
command to the Cortex-M4 build ï see Figure 10 on page 13.

4c. Edit files. Edit the linker script files as described in Section 4.3 Step 6.

Add bootloader code to the main_cm0p.c and main_cm4.c files. The easiest way to do this is to copy and paste
the code from the code example CE213903, and then modify the code for your application.

4d. Build the project. After all build setting changes and file edits are complete, select Build > Build app1.

http://www.cypress.com/
http://www.cypress.com/ce213903
http://www.cypress.com/ce213903

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 22

5. Test the bootloader and applications.

Program app0 into a CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit. Then use the Bootloader Host Program (BHP)
to bootload app1 to the kit; see BHP usage instructions in Appendix A.

You can test the bootloader and applications using the instructions in the CE213903 document, Operation
section.

5.3 PSoC 6 MCU BLE Bootloaders

This section shows how to build two different BLE bootloaders, in code examples CE216767, PSoC 6 MCU with
Bluetooth Low Energy (BLE) Connectivity Bootloader, and CE220959, BLE Bootloader with External Memory. These
code examples are similar to the basic bootloaders code example, with some additional features:

Á CE216767 downloads a new application
directly into flash, as Figure 17 shows.

Á CE220959 downloads a new application into
temporary storage in an external NVM (kit IC
U4, Cypress 512-Mbit serial NOR flash), and
then copies it to its final destination in the
PSoC 6 MCU device flash, as Figure 18
shows.

Á The bootloader (App0) and the application
(App1) each have their own separate copy of
the BLE stack code, as Figure 17 and Figure
18 show. Each copy occupies more than
128 KB of flash. A future Bootloader SDK
code example will show a single shared BLE
stack.

Figure 17. Data and Control Flow for CE216767

Bootloading

Utility
Bootloader

(App0)

Application

(App1)

BLE

BLEBLE

Applications

Figure 18. Data and Control Flow for CE220959

Bootloader

(App0)

Application

(App1)

BLE

BLE

Bootloading

Utility

BLE

Applications

External

NVM

Load

Copy

Á The BLE stack code can be executed by either CPU or by both CPUs; this is a selectable option in the BLE
Component configuration dialog. Both code examples demonstrate this feature; in App0 the CM4 CPU executes
the BLE stack, in App1 the CM0+ CPU executes the BLE stack.

Á App0 and App1 enable different services in their BLE Component configurations:

Ğ App0: Bootloader and Immediate Alert Service (IAS). The IAS service is implemented when the application is
not bootloading.

Ğ App1: Human Interface Device (HID) and Immediate Alert Service (IAS)

Both applications use the IAS to transfer control from one application to the other.

Á Both code examples make extensive use of CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit resources. All three
RGB LEDs, the user button SW2, the BLE subsystem, and the USB-UART bridge are all used by both
applications (App0 and App1).

http://www.cypress.com/
http://www.cypress.com/cy8ckit-062-ble
http://www.cypress.com/ce213903
http://www.cypress.com/ce216767
http://www.cypress.com/ce220959
http://www.cypress.com/cy8ckit-062-ble

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 23

To build either of the code examples, do the following. For more information on these steps, refer to PSoC 6 MCU
Basic Bootloaders or How to Use the SDK.

1. Create App0 and the workspace, as Figure 19 shows.

Figure 19. Create BLE Bootloader App0

2. Add a BLE Component to the App0 Top Design schematic, and configure the Component according to the
BLE Component Configuration section in either code example. Specifically, make the following changes from the
default configuration:

Á (optional, but recommended to work with default Bootloader SDK files) Change the Component name to

óBLEô.

Á General tab (see Figure 20): CPU core: Single core (Complete Component on CM4)

Figure 20. BLE Component, General Tab Configuration

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 24

Á GATT Settings tab (see Figure 21):

Ğ Generic Access, Peripheral Preferred Connection Parameters:

Ğ Minimum Connection Interval: 0x000C

Ğ Maximum Connection Interval: 0x000C

Ğ Connection Supervision Timeout Multiplier: 0x00C8

These intervals are selected to minimize the bootloading time. Adjust as needed for your application.

Ğ Right-click the Server node in the GATT tree, and add the Bootloader service. Optionally, add the

Immediate Alert service; the code examples use this service to transfer control between applications.

There is no need to edit either serviceôs characteristics.

Ğ Attribute MTU size (bytes): 512

Figure 21. BLE Component, GATT Settings Tab Configuration

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 25

Á GAP Settings tab:

Ğ Device Name: The code examples use ñBLE Bootloaderò; use different text as needed for your

application.

Ğ Peripheral Configuration 0, Advertisement packet: Local Name checked and set to Complete.

Ğ Security configuration 0 (see Figure 22), Security level: Unauthenticated pairing with encryption.

Ğ Security configuration 0, I/O capabilities: No Input No Output.

Ğ Security configuration 0, Bonding requirement: No Bonding.

Figure 22. BLE Component, GAP Settings Tab Configuration

Á Link Layer Settings tab:

Ğ Link layer max TX and RX payload size (bytes): 251, for faster bootloading

3. For CE220959, add an SMIF Component to the App0 schematic, and configure the Component according to the
SMIF Component Configuration section. Specifically, make the following changes from the default configuration:

Á (optional, but recommended to work with CE220959 files) Name: SMIF

Á Check SMIF Datalines [2:3]. The external memory IC has a quad-SPI (4 data lines) interface with the

PSoC 6 MCU device. The SMIF Datalines [0:1] box is checked as a default.

Á Uncheck Generate code from cy_smif.cysmif file. Files cy_smif_memconfig.h/.c and smif_mem.h/.c are

already provided with the code example.

4. As needed, copy other Components ï i.e., LEDs and button ï from either the CE216767 or CE220959 top
design schematic to your top design schematic.

5. In the Design Wide Resources window:

Á Pins tab: Connect the Component pins to the appropriate physical pins. Note that the BLE Component does

not use any pins.

Á Clocks tab: Set the FLL frequency to 50 MHz. Enable the WCO, and source Clk_LF and Clk_Bak from

WCO. For CE220959, enable Clk_HF2 and source it from Path 0 (50 MHz).

http://www.cypress.com/
http://www.cypress.com/ce220959
http://www.cypress.com/ce216767
http://www.cypress.com/ce220959
http://www.cypress.com/ce220959

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 26

6. Configure App0 as a bootloader in the project Build Settings ï see Figure 7 on page 9. Select BLE for the

communication channel.

7. Select Build > Generate Application. This creates the bootloader linker files, e.g., bootload_cm4.ld.

8. Go back to the project Build Settings and set the Custom Linker Script for CM0+ and CM4 to the respective

bootloader linker script files ï see Figure 9 on page 12.

9. Edit the flash and RAM memory region sizes in bootload_common.ld, as follows:

MEMORY

{

 flash_app0_core0 (rx) : ORIGIN = 0x10000000, LENGTH = 0x10000

 flash_app0_core1 (rx) : ORIGIN = 0x10010000, LENGTH = 0x30000

 flash_app1_core0 (rx) : ORIGIN = 0x10040000, LENGTH = 0x32000

 flash_app1_core1 (rx) : ORIGIN = 0x10072000, LENGTH = 0x02000

. . .

 ram_app0_core0 (rwx) : ORIGIN = 0x08000100, LENGTH = 0x1F00

 ram_app0_core1 (rwx) : ORIGIN = 0x08002000, LENGTH = 0x8000

. . .

 ram_app1_core0 (rwx) : ORIGIN = 0x08000100, LENGTH = 0x1FF00

 ram_app1_core1 (r wx) : ORIGIN = 0x08020000, LENGTH = 0x20000

. . .

The default bootload_common.ld allocates an equal amount of flash and RAM to each CPU in each application.
The allocations must be adjusted for these code examples because:

Á The BLE stack size is large

Á App1 size should be minimized to reduce bootloading time

Note that the same changes are done for App1 in the code examples. Similar memory layouts exist for the MDK
and IAR linker scripts.

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 27

10. Copy and paste files debug.h/.c, ias.h/.c, and

bootload_user.h/.c from your CE216767 or

CE220959 folder to your app0.cydsn folder.

Overwrite the existing default bootload_user.h/.c

files. In addition, for CE220959, copy and paste

cy_smif_memconfig.h/.c and smif_mem.h/.c files.

Á The debug and ias (Immediate Alert Service)
files are unique to the code examples, and may
be optional for your application.

Á The bootload_user files have already been
edited to call the BLE transport functions instead
of the default UART transport functions.

Á For CE220959, the SMIF files define the
external memory configuration and provide
functions to access external memory.

11. In the PSoC Creator Workspace Explorer window,
include or move the files from the previous step to
the project CM4 Header Files and Source Files
folders, as Figure 23 shows.

If these files are in the Shared Files folder, they may
be included in the CM0+ build and compile errors
may result.

12. Copy CM0+ and CM4 main code from CE216767 or
CE220959 to your main files. Update the main and
other source files as needed for your application.

13. Build app0, and program the kit with app0.

You can test your app0 by installing app1 from
CE216767 or CE220959. Follow the instructions in
the code example document, Operation section.

Figure 23. Source Files Included in CM4 Folders

14. If you build your own app1, remember to edit the following files:

Á Three linker script files as described in Step 9 and in Section 4.3 Step 6.

Á The batch file as described in Section 4.3 Step 8.

5.4 PSoC 6 MCU Dual-Application Bootloader

This section shows how to build the BLE bootloader in the code example CE221984. This code example is similar to
the basic bootloaders code example, except that there are two downloadable applications instead of one. There are a
total of three applications; App0 is the bootloader and App1 and App2 are the downloadable applications.

The bootloader transfers control to one of the applications in either a basic mode or a factory default (ñgolden imageò)
mode. In factory default mode, the bootloader (App0) does not overwrite an installed and valid App1; an attempt to do
so results in an error message. In basic mode, either application can be overwritten.

In this code example, the bootloader uses an I
2
C communication channel. It is easy to change to a different

communication channel; for more information, refer to one of the previous sections.

To build this code example, do the following steps. For more information on these steps, refer to PSoC 6 MCU Basic
Bootloaders or How to Use the SDK.

http://www.cypress.com/
http://www.cypress.com/ce216767
http://www.cypress.com/ce220959
http://www.cypress.com/ce221984

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 28

1. Create App0 and the workspace, as Figure 24 shows.

Figure 24. Create Dual-Application Bootloader App0

2. Configure App0 as a bootloader in the project Build Settings ï see Figure 7 on page 9. Select I2C for the

communication channel.

3. Select Build > Generate Application. This creates the bootloader linker files, e.g., bootload_cm4.ld.

4. Go back to the project Build Settings and set the Custom Linker Script for CM0+ and CM4 to the respective

bootloader linker script files ï see Figure 9 on page 12.

5. Add an I2C Component to the App0 schematic, and configure the Component according to Figure 14 on page
19. At this time, you can also add the Pin Components used by CE221984; the easiest way to do this is to copy
and paste the Components from the code example schematic.

6. In the Design-Wide Resources window, Pins tab, connect the Component pins to the appropriate physical pins.

7. Update the files listed in Table 4 with the content of the corresponding files in CE221984. Add code as needed
for your application.

Table 4. CE221984 App0 Files Modified from the Bootloader SDK Default

File Description of Modification from the Default

bootload_common.ld

bootload_mdk_common.h

Addition of memory regions for App2

bootload_user.h Set the CY_BOOTLOAD_GOLDEN_IMAGE_IDS macro to identify App1 as the factory default

image.

To change the code example mode, change the CY_BOOTLOAD_OPT_GOLDEN_IMAGE macro
to a nonzero value.

bootload_user.c Changed transport functions to I2C from UART.

Added code to Cy_Bootload_WriteData() to do the factory default (ñgolden imageò) check.

main_cm0p.c

main_cm4.c

Addition of code to do the code example functions

http://www.cypress.com/
http://www.cypress.com/ce221984
http://www.cypress.com/ce221984

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 29

8. Build the app0 project, and program it into the target kit. Test the application download (bootload) process. You
can use the test steps listed in the Operation section of the CE221984 document. Try changing the
CY_BOOTLOAD_OPT_GOLDEN_IMAGE macro to a nonzero value, and note the different behavior of the bootloader

when you download App1.

You can test the bootloader using the app1 and app2 projects already in the code example, or create your own
applications, as the following step shows:

9. Add an app1 project and an app2 project. You can configure both projects as installable applications. The
detailed steps required are presented in Section 5.2 Step 3 and Step 4. Significant tasks are:

Á Update the project build settings:

Ğ Peripheral Driver Library > Bootloader SDK. Check only the Core box. (Figure 7 on page 9.)

Ğ Linker custom scripts. (Figure 9 on page 12.)

Ğ Post-build batch file (Figure 10 on page 13.)

Á Add the post_build_core1.bat file to the project, in the Shared Files folder. See Appendix E for typical batch

file content.

Á Update the project schematic and design-wide resources files with the content of the corresponding files in
CE221984. Modify the design as needed for your application.

Á Update the files listed in Table 5 with the content of the corresponding files in CE221984. Add code as
needed for your application.

Table 5. CE221984 App1 and App2 Files Modified from the Bootloader SDK Default

File Description of Modification from the Default

bootload_common.ld

bootload_mdk_common.h

Addition of memory regions for App2

bootload_cmp0.ld

bootload_cm4.ld

bootload_cmp0.scat

bootload_cm4.scat

Specify the memory regions and App ID as being for app1 or app2

bootload_user.h Set the CY_BOOTLOAD_GOLDEN_IMAGE_IDS macro to identify App1 as the factory

default image. To change the code example mode, change the
CY_BOOTLOAD_OPT_GOLDEN_IMAGE macro to a nonzero value.

main_cm0p.c

main_cm4.c

Addition of code to do the code example functions

http://www.cypress.com/
http://www.cypress.com/ce221984
http://www.cypress.com/ce221984

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 30

6 Related Documents

Application Notes

AN210781 ï Getting Started with PSoC 6 MCU
with Bluetooth Low Energy (BLE) Connectivity

Describes PSoC 6 MCU with BLE Connectivity devices and how to build
your first PSoC Creator project

AN215656 ï PSoC 6 MCU: Dual-CPU system
Design

Describes the dual-CPU architecture in PSoC 6 MCU, and shows how to
build a simple dual-CPU design

AN219434 ï Importing PSoC Creator Code into
an IDE for a PSoC 6 MCU Project

Describes how to import the code generated by PSoC Creator into your
preferred IDE

Code Examples

CE213903 ï PSoC 6 MCU Basic Bootloaders
Describes UART, I

2
C, and SPI bootloaders for PSoC 6

MCU

CE216767 ï PSoC 6 MCU with Bluetooth Low Energy (BLE)
Connectivity Bootloader

Describes a BLE bootloader for PSoC 6 MCU

CE220959 ï PSoC 6 MCU BLE Bootloader with External Memory
Similar to the BLE bootloader; the downloaded
application is temporarily saved in external memory and
then copied to its final destination

CE221984 ï PSoC 6 MCU Dual-Application I2C Bootloader
Similar to the basic I

2
C bootloader; manages two

downloaded applications instead of one

PSoC Creator Component Datasheets

UART Supports UART-based communications

I2C Supports I
2
C-based communications

SPI Supports SPI-based communications

BLE Supports BLE communications

Device Documentation

PSoC 6 MCU: PSoC 63 with BLE Datasheet PSoC 6 MCU: PSoC 63 with BLE Architecture Technical Reference Manual

Development Kit Documentation

CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit

http://www.cypress.com/
http://www.cypress.com/AN210781
http://www.cypress.com/an215656
http://www.cypress.com/an219434
http://www.cypress.com/documentation/code-examples/ce213903-psoc-6-mcu-basic-bootloaders
http://www.cypress.com/ce216767
http://www.cypress.com/ce220959
http://www.cypress.com/ce221984
http://www.cypress.com/documentation/component-datasheets/uart-scbuartpdl
http://www.cypress.com/documentation/component-datasheets/i2c-scbi2cpdl
http://www.cypress.com/documentation/component-datasheets/spi-scbspipdl
http://www.cypress.com/documentation/component-datasheets/bluetooth-low-energy-blepdl
http://www.cypress.com/ds218787
http://www.cypress.com/trm218176
http://www.cypress.com/CY8CKIT-062-BLE

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 31

Appendix A. Bootloader Host Program (BHP)

The Bootloader Host Program (BHP) is a standalone graphical tool provided with PSoC Creator. This tool is used to
communicate with a PSoC device that has a bootloader installed. Using the Bootloader Host application, you can:

Á Download and install an application to a device

Á Verify an application that is already installed on a device

Á Erase an application from a device

Note: You cannot use BHP to install a bootloader into a device. Instead, you must program a bootloader into flash
through the device SWD/JTAG port, using other tools such as PSoC Creator or PSoC Programmer. After a
bootloader is installed, you can use BHP to install an application.

BHP supports communicating with Cypress MCU devices via UART, I
2
C, SPI, or USB, as Figure 25 shows. You can

see all devices available for connection. For UART or USB, communication can be done directly from your computer
by connecting an appropriate cable. For I

2
C and SPI, a special communication port is needed, such as a KitProg

module. The port configuration fields change depending on the selected port.

Note: At this time, only the UART, I
2
C, and SPI bootloaders are supported for PSoC 6 MCU.

Note: BHP does not support Bluetooth Low-Energy (BLE). Use Cypressô CySmartÊ product instead; see the
CySmart User Guide section ñUpdating Peripheral Device Firmwareò.

Figure 25. Bootloader Host Program Graphical User Interface (GUI)

http://www.cypress.com/
http://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 32

Note: The source code for the BHP is provided in <PSoC Creator install folder>\cybootloaderutils. It contains routines
to do file parsing and command construction. You can add a GUI and a communication protocol to build your own
host program.

To use the BHP, do the following:

1. Select the communication port that matches the communication Component in your bootloader. See Figure 13
on page 18.

2. Click the File icon, or select File > Open, and navigate to your applicationôs .cyacd2 file, as

Figure 26 shows. This file is created when an application project is built by PSoC Creator; for more information,
see Build and Program the Applications.

Figure 26. Select the .cyacd2 File

3. Make sure that the bootloader is running in your target device. Click the BHP Program icon, or select Actions >
Program. The selected application is downloaded and installed in the target device. Depending on your system-level

design (see Determine the Applications in Your System), control is transferred from the bootloader to the downloaded
application.

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 33

Appendix B. Host Command/Response Protocol

The bootloader communicates with a host using a simple command-response protocol, regardless of the
communication channel used. The bootloader receives commands from the communication channel, and responds to
each command by sending one or more bytes to the communication channel. See Figure 2 on page 2.

The commands and responses are in the form of a byte stream, packetized in a manner that ensures the integrity of
the data being transmitted. A packet validity check method is included, and consists of a 2's complement 16-bit
checksum.

B.1 Command/Response Packet Structure

Communication packets sent from the host to the bootloader have the structure shown in Figure 27:

Figure 27. Bootloader Command Packet Structure

Start of Packet

(0x01)

Command Data Length (N) N bytes of data Checksum End of Packet

(0x17)

1 Byte 1 Byte 2 Bytes N Bytes 2 Bytes 1 Byte

Response packets sent from the Bootloader to the host have the structure shown in Figure 28:

Figure 28. Bootloader Response Packet Structure

Start of Packet

(0x01)

Status Code Data Length (N) N bytes of data Checksum End of Packet

(0x17)

1 Byte 1 Byte 2 Bytes N Bytes 2 Bytes 1 Byte

All multi-byte fields are LSB first.

B.2 Commands

Table 6 shows a list of all commands supported by the Bootloader SDK. All commands except Exit Bootloader are
ignored until the Enter Bootloader command is received.

Table 6. Bootloader Commands List

Bootloader Commands

Enter/Exit Bootload Operation Miscellaneous

Enter Bootloader Send Data Verify Application

Sync Bootloader Send Data Without Response Set Application Metadata

Exit Bootloader Program Data Get Metadata

 Verify Data Set EIVector

 Erase Data

There is no specific requirement for command execution time.

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 34

Table 7 shows a list of all status and error codes supported by the Bootloader SDK.

Table 7. Bootloader Status and Error Codes List

Status/Error Code Value Description

CY_BOOTLOAD_SUCCESS 0x00 The command was successfully received and executed

CY_BOOTLOAD_ERROR_VERIFY 0x02 Verification of non-volatile memory (NVM) after write failed

CY_BOOTLOAD_ ERROR_LENGTH 0x03 The amount of data sent is greater than expected

CY_BOOTLOAD_ ERROR_DATA 0x04 Packet data is not of the proper form

CY_BOOTLOAD_ ERROR_CMD 0x05 The command is not recognized

CY_BOOTLOAD_ ERROR_CHECKSUM 0x08 Packet checksum or CRC does not match the expected value

CY_BOOTLOAD_ ERROR_ROW 0x0A The flash row number is not valid

CY_BOOTLOAD_ ERROR_ROW_ACCESS 0x0B The flash row number cannot be accessed, for example due to
MPU protection

CY_BOOTLOAD_ERROR_UNKNOWN 0x0F An unknown error occurred

B.2.1 Enter Bootloader

Begins a bootload operation. All other commands except Exit Bootloader are ignored until this command is received.
Responds with device information and Bootloader SDK version.

Á Input

Ğ Command Byte: 0x38

Ğ Data Bytes:

Á 4 bytes (optional): product ID. If these bytes are included, and they are not 00 00 00 00, they are
compared to device product ID data.

Á Output

Ğ Status/Error Codes:

Á Success

Á Error Command

Á Error Data, used for product ID mismatch

Á Error Length

Á Error Checksum

Ğ Data Bytes:

Á 4 bytes: Device JTAG ID

Á 1 byte: Device revision

Á 3 bytes: Bootloader SDK version

B.2.2 Sync Bootloader

Resets the bootloader to a known state, making it ready to accept a new command. Any data that was buffered is
discarded. This command is only needed if the bootloader and the host get out of sync with each other.

Á Input

Ğ Command Byte: 0x35

Ğ Data Bytes: N/A

Á Output: N/A ï this command is not acknowledged

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 35

B.2.3 Exit Bootloader

Exits from the bootloader. Ends the bootload operation.

Á Input

Ğ Command Byte: 0x3B

Ğ Data Bytes: N/A

Á Output: N/A ï This command is not acknowledged

B.2.4 Send Data

Transfers a block of data to the bootloader. This data is buffered in anticipation of a Program Data or Verify Data
command. If a sequence of multiple send data commands are sent, the data is appended to the previous block. This
command is used to break up large data transfers into smaller pieces, to prevent channel starvation in some
communication protocols.

Á Input

Ğ Command Byte: 0x37

Ğ Data Bytes:

Á n bytes: Data to write or verify

Á Output

Ğ Status/Error Codes:

Á Success

Á Error Command

Á Error Data

Á Error Length

Á Error Checksum

Ğ Data Bytes: N/A

B.2.5 Send Data Wi thout Response

Same as the Send Data command, except that no response is generated by the bootloader. This reduces bootload
time for some applications.

Á Input

Ğ Command Byte: 0x47

Ğ Data Bytes:

Á n bytes: Data to write or verify

Á Output: N/A

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 36

B.2.6 Program Data

Writes data to one row of the device internal flash or page of external non-volatile memory (NVM). May follow a
series of Send Data or Send Data Without Response commands.

Á Input

Ğ Command Byte: 0x49

Ğ Data Bytes:

Á 4 bytes: Address. Must be within the correct memory address space, and appropriately aligned. For
internal flash, it must be aligned to a flash row boundary. For external memory, it must conform to external
memory alignment requirements.

Á 4 bytes: CRC-32C of the entire data to be written. The data is verified both before and after programming.

Á n bytes: Data to write into the flash row or external NVM page.

Á Output

Ğ Status/Error Codes:

Á Success

Á Error Command

Á Error Data

Á Error Length

Á Error Checksum

Á Error Flash Row

Á Error Flash Row Access

Ğ Data Bytes: N/A

B.2.7 Veri fy Data

Compares data to one row of the device internal flash or page of SMIF. May follow a series of Send Data or Send
Data Without Response commands.

This command is optional; its presence depends on a user configuration macro in bootload_user.h.

Á Input

Ğ Command Byte: 0x4A

Ğ Data Bytes:

Á 4 bytes: Address. Must be within the correct memory address space, and appropriately aligned. For
internal flash, it must be aligned to a flash row boundary. For external memory, it must conform to external
memory alignment requirements.

Á 4 bytes: CRC-32C of the entire data to be verified.

Á n bytes: Data to compare with the flash row or SMIF page.

Á Output

Ğ Status/Error Codes:

Á Success

Á Error Verify

Á Error Command

Á Error Data

Á Error Length

Á Error Checksum

Á Error Flash Row

Á Error Flash Row Access

Ğ Data Bytes: N/A

Á Implementation details

Ğ The command returns the ñSuccessò status code if all data bytes match the bytes starting at the specified
flash address, otherwise ñError Verifyò.

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 37

B.2.8 Erase Data

Erases the contents of the specified internal flash row or SMIF page.

This command is optional; its presence depends on a user configuration macro in bootload_user.h.

Á Input

Ğ Command Byte: 0x44

Ğ Data Bytes:

Á 4 bytes: Address. Must be within the correct memory address space, and appropriately aligned. For
internal flash, it must be aligned to a flash row boundary. For external memory, it must conform to external
memory alignment requirements.

Á Output

Ğ Status/Error Codes:

Á Success

Á Error Command

Á Error Data

Á Error Length

Á Error Checksum

Á Error Flash Row

Á Error Flash Row Access

Ğ Data Bytes: N/A

B.2.9 Veri fy Appl icat ion

Reports whether the checksum for the application in flash or external NVM is valid.

Á Input

Ğ Command Byte: 0x31

Ğ Data Bytes:

Á 1 byte: Application number of the application to be verified. May range from 0 to the number of
applications minus one.

Á Output

Ğ Status/Error Codes:

Á Success

Á Error Command

Á Error Data

Á Error Length

Á Error Checksum

Á Error Flash Row Access

Ğ Data Bytes:

Á 1 byte: 1/0 for application is valid or not valid

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 38

B.2.10 Set Appl icat ion Metadata

This command is used to set a given applicationôs metadata. See Appendix D, Application Metadata.

Note: This command does not update the metadata if the user configures the Bootloader SDK to keep the metadata
unchanged.

Á Input

Ğ Command Byte: 0x4C

Ğ Data Bytes:

Á 1 byte: Application #

Á 8 bytes: metadata field format per Appendix D

Á Output

Ğ Status/Error Codes:

Á Success

Á Error Command

Á Error Length

Á Error Data

Á Error Checksum

Á Error Flash Row Access

Ğ Data Bytes: N/A

B.2.11 Get Metadata

Reports selected metadata bytes.

This command is optional; its presence depends on a user configuration macro in bootload_user.h.

Á Input

Ğ Command Byte: 0x3C

Ğ Data Bytes:

Á 2 bytes: from offset within row; 0 ï 511

Á 2 bytes: to offset within row; 0 ï 511 (inclusive)

Á Output

Ğ Status/Error Codes:

Á Success

Á Error Command

Á Error Length

Á Error Data

Á Error Checksum

Á Error Flash Row Access

Ğ Data Bytes:

Á N bytes ï per from and to offset bytes (inclusive)

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 39

B.2.12 Set EIVector

Sets an encryption initialization vector (EIV). This enables the bootloader to decrypt data before writing it to flash.

This command is optional; its presence depends on a user configuration macro in bootload_user.h.

Á Input

Ğ Command Byte: 0x4D

Ğ Data Bytes:

Á n bytes: the vector; 0, 8, or 16 bytes, little-endian raw data

Á Output

Ğ Status/Error Codes:

Á Success

Á Error Command

Á Error Length

Á Error Data

Á Error Checksum

Ğ Data Bytes: N/A

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 40

Appendix C. .cyacd2 File Format

The .cyacd2 file contains downloadable application data. It is created by CyMCUElfTool, and used by host programs

such as Cypressô Bootloader Host Program and CySmart to send applications to the target bootloader, as Figure 5 on
page 6 shows. The file data is in the form of ASCII hex numbers, similar to Intel hex format. Each byte of data is
represented by two characters. For example, a byte 0x1E is represented by the characters 0x31 (ASCII ó1ô) followed
0x45 (ASCII óEô).

All multi-byte fields are little-endian.

The file consists of a series of lines, or rows. Each row is terminated with ASCII CR, LF characters. A row is one of
the following types:

Á Encryption initial vector: An encryption initial vector row is of the format @EIV:<bytes> . The data in <bytes> is

used by the host program in the SetEIV command to the bootloader.

Á Application verification information: An application verification information row is of the format:

@APPINFO:[__cy_app_verify_start],[__cy_app_verify_length] .

The start and length data are used by the host program in the Set Application Metadata command to the
bootloader.

Á Header: A header row has the structure shown in Figure 29:

Figure 29. .cyacd2 Header Row Structure

File Version Silicon ID Silicon Revision Checksum Type App ID Product ID

1 byte 4 bytes 1 byte 1 byte 1 byte 4 Bytes

Ğ File Version: Numbered starting at 1.

Ğ Silicon ID, Silicon Revision, Product ID: Used to prevent the application from being downloaded to the wrong
device.

Ğ Checksum Type: The method used to verify a bootloader packet (see Appendix B, Command / Response
Packet Structure). 0 = checksum, 1 = CRC.

Ğ App ID: See Figure 6 on page 7. This also controls which portion of the application metadata is updated for
this application.

Á Data: A data row has the structure shown in Figure 30.

The value of N equals the total amount of data to be sent
with a series of Send Data or Send Data Without
Response commands followed by a Program Data or
Verify Data command.

The value of N typically, but not necessarily, equals the
length of an NVM row. For example, if bootloading into
RAM, then N may be an arbitrary value.

Figure 30. .cyacd2 Data Row Structure

Header Address Data

1 character: ñ: ò 4 bytes N bytes

http://www.cypress.com/
http://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 41

Appendix D. Application Metadata

The Bootloader SDK uses a designated region of NVM (or RAM in some cases) to store information about the
applications ï see Figure 6 on page 7. Metadata information is generally used for the following purposes:

Á Validate an application

Á Transfer control from one application to another

Á Copy an application image from a temporary location to its designated location

As noted in Figure 6, metadata typically occupies one flash row or NVM page. (In devices with small amounts of
flash, multiple rows or pages may be used.) Figure 6 also shows that metadata is located outside of any application.

Table 8 contains symbols that are used to define the location, size and usage of the bootloader metadata. The
symbols are defined in the SDK linker script files and C source files.

Note: All examples shown are for the GCC compiler and linker. Similar statements exist in source and linker script
files for the MDK and IAR compilers and linkers.

Table 8. Metadata-Related Symbols

Symbol Defined In Purpose

flash_boot_meta bootload_common.ld Defines the physical memory region that contains the
metadata

Example Usage: flash_boot_meta (rw) : ORIGIN = 0x100FFA00, LENGTH = 0x400

Defines a region in the last 1 KB of the 1-MB PSoC 6 MCU user flash (which starts at 0x1000 0000).

__cy_boot_metadata_addr
__cy_boot_metadata_length

bootload_common.ld These symbols define a compiler-independent memory
address range that is used to store the metadata. These
symbols are used in the Bootloader SDK code and may be
used in user code.

Example Usage: /* Bootloader SDK metadata limits */
/* Note that __cy_memory_0_row_size equals the row length in bytes of
 PSoC 6 user flash. */
__cy_boot_metadata_addr = ORIGIN(flash_boot_meta);
__cy_boot_metadata_length = __cy_memory_0_row_size;

.cy_boot_metadata bootload_cm0p.ld
bootload_cm4.ld

The bootloader metadata is stored in this section. At build
time, CyMCUElfTool calculates the checksum of this section
and places it in the last four bytes of the section. When a
checksum is not needed, rename the section to any other
name.

Example Usage: .cy_boot_metadata :
{
 KEEP(*(.cy_boot_metadata))
} > flash_boot_meta

CY_BOOTLOAD_MAX_APPS bootload_user.h Allows the user to control the maximum number of
applications supported in the bootloader metadata

Example Usage: /* The smallest metadata size is CY_BOOTLOAD_MAX_APPS * 8 bytes per app +
 an optional 4 bytes for metadata checksum */
#define CY_BOOTLOAD_MAX_APPS (2u)

http://www.cypress.com/
file:///C:/Documentation/CDT/272740/AN213924%20Bootloader%20SDK%20Guide_BENV1_MKEA.docx%23Figure6Text

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 42

Symbol Defined In Purpose

CY_BOOTLOAD_METADATA_WRITABLE bootload_user.h The bootloader does not necessarily write metadata ï it can
be done by the application or some other user code. Or
metadata may be set using a compile-time constant within
an application. An application can have metadata that is
smaller than an NVM row.
In all these cases, set this macro to 0 to prevent the
bootloader from writing metadata.
However, note that the bootloader requires that a metadata
region exist and be properly initialized. This may be done by
the bootloader itself, or by an application.

Example Usage: /* A non - zero value allows writing metadata with the SetAppMetadata command. */
#define CY_BOOTLOAD_METADATA_WRITABLE (1)

D.1 Metadata Structure

Application metadata has eight bytes of data per application, followed by four bytes for checksum, as Figure 31
shows:

Figure 31. Metadata Structure

Application 0 Application 1

. . .

Application N ï 1 Checksum

8 bytes 8 bytes 8 bytes 4 bytes

Application Start Address Application Length (bytes)

4 bytes 4 bytes

You can set the number of applications N in the bootload_user.h file:

#define BOOTLOAD_MAX_APPLICATIONS (N)

The default value of N is 2.

Each application start address must be aligned to a flash row or NVM page boundary. The application length must be
a multiple of the flash row or NVM page length.

The Checksum is calculated with the same algorithm that is used in the bootloader commands Program Data and
Verify Data. The default algorithm is CRC-32C.

http://www.cypress.com/

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 43

Appendix E. Post-Build Batch File Listing

The following is a listing of the post-build batch file for App1, from CE213903. The batch file is similar if not the same
in the other code examples. The same batch can be used with multiple downloadable applications, for example app2
in the dual-application bootloader.

@rem Usage:

@rem Call post_build_core1.bat <tool> <output_dir> <project_short_name>

@rem E.g. in PSoC Creator 4.2:

@rem post_build_core1.bat creator ${OutputDir} ${ProjectShortName}

@echo --

@echo Post - build commands for Cortex - M4 core

@echo --

@rem Set proper path to your PDL 3.x and above installation

@set PDL_PATH="C: \ Program Files (x86) \ Cypress \ PDL\ 3.0.1"

@set CY_MCU_ELF_TOOL=%PDL_PATH%"\ tools \ win \ elf \ cymcuelftool.exe"

@set IDE=%1

@if "%IDE%" == "creator" (

 @set OUTPUT_DIR=%2

 @set PRJ_NAME=%3

 @set ELF_EXT=.elf

)

@if "%IDE%" == "uvision" (

 @set OUTPUT_DIR=%2

 @set PRJ_NAME=%3

 @set ELF_EXT=.axf

)

@if "%IDE%" == "iar" (

 @set OUTPUT_DIR=%2

 @set PRJ_NAME=%3

 @set ELF_EXT=.out

)

@if "%IDE%" == "eclipse" (

 @set OUTPUT_DIR=%2

 @set PRJ_NAME=%3

 @set ELF_EXT=

)

%CY_MCU_ELF_TOOL% - S %OUTPUT_DIR%\ %PRJ_NAME%%ELF_EXT% CRC

%CY_MCU_ELF_TOOL% - P %OUTPUT_DIR%\ %PRJ_NAME%%ELF_EXT% -- output %OUTPUT_DIR%\ %PRJ_NAME%.cyacd2

http://www.cypress.com/
http://www.cypress.com/ce213903

PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

www.cypress.com Document No. 002-13924 Rev. *D 44

Document History

Document Title: AN213924 - PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide

Document Number: 002-13924

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 5653720 MKEA 03/08/2017 New application note

*A 5810045 MKEA 07/10/2017 Updated for release of PSoC Creator 4.1 and PDL 3.0.0. Removed an error code from
section B.2.12. Added Appendix E. Miscellaneous edits throughout.

*B 5866384 MKEA 08/25/2017 Updated for release of PSoC Creator 4.2 and PDL 3.0.1. Added support for I
2
C to

basic bootloaders instructions. Other edits. Ported to new application note document
template. Confidential tag removed.

*C 6013544 MKEA 01/04/2018 Updated for release of PSoC Creator 4.2 ES100. Added support for SPI to basic
bootloaders instructions. Added support for BLE bootloader and BLE bootloader with
external memory. Added Table 8 to Appendix D. Other edits. Ported to new application
note document template.

*D 6111255 MKEA 03/27/2018 Added support for code examples CE220959 and CE221984. Added figures 17 and
18. Miscellaneous minor updates and edits throughout the document. Ported to new
application note document template.

http://www.cypress.com/

