
Internal Temperature Sensor Measurement Datasheet FlashTempV 2.40
001-13562 Rev. *IInternal Temperature Sensor Measurement

Copyright © 2002-2013 Cypress Semiconductor Corporation. All Rights Reserved.

For one or more fully configured, functional example projects that use this user module go to
www.cypress.com/psocexampleprojects

Features and Overview
Range of -40 °C to +85 °C
Accuracy of ± 20 °C with no calibration
Single PSoC block implementation
8-bit 2’s complement output in degrees Celsius

The FlashTemp User Module gives a coarse temperature measurement for the bFlashWriteBlock routine,
which varies its programming pulse width with temperature. A single switch capacitor analog block is used
and requires no calibration. The output of the FlashTemp User Module is the junction temperature of the
PSoC microcontroller in a 2’s complement format, with 1 count per °C.
Figure 1. FlashTemp Block Diagram

Resources

PSoC® Blocks API Memory (Bytes)
Pins (per

External I/O)Digital Analog CT Analog SC Flash RAM

CY8C29x66, CY8C27x43, CY8C24xx3, CY8C24x94, CY8C23x33, CY8CLED04/08/16, CY8CLED0xD,
CY8CLED0xG, CY8C28x45, CY8CPLC20, CY8CLED16P01, CY8C28xx3, CY8C28x52

0 0 1 74 3
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-13562 Rev. *I Revised May 15, 2013

http://www.cypress.com/psocexampleprojects

Internal Temperature Sensor Measurement
Functional Description
The bandgap temperature sensor built into the PSoC microcontroller has an output voltage proportional to
its absolute temperature. This output is approximately linear, with a nominal slope of 3 mV per °C. The
FlashTemp Application Programming Interface (API) translates the temperature sensor to 1 count per °C.
Since the output voltage is relative to absolute zero, -273 °C, a large offset voltage at room temperature
limits the overall dynamic range and limits the accuracy without calibration. There is a large offset voltage
from the temperature sensor, due to the fact that the operational temperature of the PSoC microcontroller
is about 300 °C above absolute zero. This offset voltage is the primary limit to accuracy without calibration.
Figure 2. Simplified Schematic of the FlashTemp

The FlashTemp User Module is related to the Incremental ADC User Module (ADCINC12) but is
configured to use differential inputs. The functions of the Timer and Counter digital blocks are replaced
with software functions in an Interrupt Service Routine (ISR). This enables the FlashTemp to use a single
analog switch capacitor PSoC block.

The analog block is configured as an integrator with differential inputs that can be reset. The inputs are the
anode and cathode of the bandgap temperature sensor. The anode is connected to the ACap of the
analog block. The cathode is connected to Vss and to the BCap of the analog block. Depending on the
output polarity of the integrator (as detected by the comparator), the reference voltage is either added to or
subtracted from the difference of the inputs. The resulting charge is placed in the integrating cap (FCap
with reset disabled). This mechanism attempts to pull the integrator voltage back toward AGND. The
differential input voltage can be determined by the number of times the comparator output is positive.

The FlashTemp API includes an ISR that performs data collection. This ISR is linked to an interrupt
generated by the falling edge of ø1 which allows the comparator output to be sampled immediately after
the ø1 cycle of the analog column clock. The sampling is repeated 255 times and the number of positive
outputs from the comparator is used to determine the temperature.
Document Number: 001-13562 Rev. *I Page 2 of 10

Internal Temperature Sensor Measurement
DC and AC Electrical Characteristics
Unless otherwise noted in the table below, VDD = 4.75 V to 5.25 V or 3.0 V to 3.6 V; temperature is -40 °C
to 85 °C.
Table 1. FlashTemp DC and AC Electrical Characteristics

Electrical Characteristics Notes

1. At 12 MHz CPU and 250 kHz column clock.
2. Required to meet interrupt routine latency timing.
3. Due to voltage decay from capacitor leakage.

Timing
For optimum accuracy, the output of the comparator should be read once per ø1 clock period. This read of
the comparator occurs within the FlashTemp ISR. Therefore, the interrupt latency plus the execution time
of the FlashTemp ISR should not take longer than one ø1 clock period. If it does take longer than one ø1
clock period, the accuracy will be degraded. The level of degradation is proportional to the number of
comparator reads missed.

When the ø1 interrupt is recognized, the worst-case time to complete the ISR is approximately 100 CPU
clocks. In a simplified example where there are no other interrupts and interrupts are not disabled at any
time while temperature is being collected, the relationship between the CPU clock and the analog column
clock should be as given in Equation 1:

Equation 1

When the CPU and analog column clocks are such that both the left and right side of Equation 1 are equal,
100 percent of the CPU bandwidth will be used.

Placement
The bandgap temperature sensor is only connected to one switch capacitor analog block in the PSoC
microcontroller. PSoC Designer only allows placement of the FlashTemp User Module in the block with the
temperature sensor.

Parameter Conditions and Notes Typical Limit Units

Resolution 3.3 °C

Accuracy 201 °C

Column Clock Fmax CPU Clock set to 24 MHz2 960 kHz

Column Clock Fmin See Note 3 125 kHz

Sample Rate At Fmax 900 sps

Conversion Time At Fmax 1100 µsec
Document Number: 001-13562 Rev. *I Page 3 of 10

Internal Temperature Sensor Measurement
The FlashTemp analog block drives the analog column comparator. Other blocks placed in this column
may not drive the comparator.

Parameters and Resources
Note Global Resources shall be used to configure the parameters of this user module.

Column Clock
The user must give a column clock for the FlashTemp User Module. The column clock is divided by
four to produce ø1. The sample rate is computed as given in Equation 2:

Equation 2

In Equation 2, 255 is the number of times the integrator cap is sampled per temperature conversion,
and 4 is the column clock divisor that generates ø1.

Vcc Power
Vcc operating range, in the global resources, can be set to 3.3 V or 5 V.

Analog Power
Analog power, in the global resources, must be set at high.

Reference Mux Setting
The RefMux setting, in the global resources, must be set to either:

(Vdd/2) ± BandGap

or

(BandGap) ± BandGap

Opamp Bias
The Opamp Bias setting, in the global resources, can be set to either LOW or HIGH.
Document Number: 001-13562 Rev. *I Page 4 of 10

Internal Temperature Sensor Measurement
Application Programming Interface
The Application Programming Interface (API) routines are given as part of the user module to allow the
designer to deal with the module at a higher level. This section specifies the interface to each function
together with related constants provided by the “include" files.
Note

In this, as in all user module APIs, the values of the A and X register may be altered by calling an API
function. It is the responsibility of the calling function to preserve the values of A and X before the call if
those values are required after the call. This “registers are volatile" policy was selected for efficiency
reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes
care of this requirement. Assembly language programmers must ensure their code observes the policy,
too. Though some user module API function may leave A and X unchanged, there is no guarantee they
will do so in the future.

For Large Memory Model devices, it is also the caller's responsibility to preserve any value in the
CUR_PP, IDX_PP, MVR_PP, and MVW_PP registers. Even though some of these registers may not be
modified now, there is no guarantee that will remain the case in future releases.

Entry points are given to start the data collection, poll to see if data collection has been completed, retrieve
the result, and turn off the analog block. The sequence of events should be:

1. Call FlashTemp_Start to begin the data collection.
2. Use FlashTemp_fIsData to determine when the data collection is complete. After data collection is com-

plete, the API will disable the interrupt and power down the FlashTemp User Module.
3. Call FlashTemp_cGetData to get the result.

FlashTemp_Start

Description:
This API sets the calibration data and temperature trimming values, turns on the Power of the analog
block, enables the analog column interrupt, initializes a data accumulation variable. It turns off the
auto reset option of the feedback cap (Fcap) so that this capacitor becomes an integrator for ADC;
initializes the count variable with the number of interrupts to be processed for one temperature
measurement.
This API provides only one sample processing and reading. After the one sample is read no
processing is provided next. To read the samples continuously, you have to call FlashTemp_Start API
every time before the next sample reading.

C Prototype:
void FlashTemp_Start(void)

Assembly:
lcall FlashTemp_Start

Parameters:
None

Return Value:
None
Document Number: 001-13562 Rev. *I Page 5 of 10

Internal Temperature Sensor Measurement
Side Effects:
You can modify the A and X registers by this or future implementations of this function. The same is
true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP, MVW_PP, MVR_PP, IDX_PP page pointer registers are modified.

FlashTemp_fIsData

Description:
Checks the status of the temperature ADC process. Returns zero flag if data sample is not complete.
Returns a non-zero value if the data sample is complete.

C Prototype:
CHAR FlashTemp_fIsData(void)

Assembly:
lcall FlashTemp_fIsData

Parameters:
None

Return Value:
The return value is non-zero if data sample is complete and the result has not been read. It is zero if
data sample is not complete or the result has been read.

Side Effects:
You can modify the A and X registers by this or future implementations of this function. The same is
true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

FlashTemp_cGetData

Description:
Returns the temperature ADC result (1°C/count). The value is the junction temperature of the PSoC
microcontroller as a 2’s complement number. This function clears the internal data ready flag to mark
the data as old.

C Prototype:
CHAR FlashTemp_cGetData(void)

Assembly:
lcall FlashTemp_cGetData

Parameters:
None

Return Value:
The temperature of the PSoC device.
Document Number: 001-13562 Rev. *I Page 6 of 10

Internal Temperature Sensor Measurement
Side Effects:
You can modify the A and X registers by this or future implementations of this function. The same is
true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

FlashTemp_Stop

Description:
Powers down the user module PSoC block and disables the interrupt.

C Prototype:
void FlashTemp_Stop(void)

Assembly:
lcall FlashTemp_Stop

Parameters:
None

Return Value:
None

Side Effects:
You can modify the A and X registers by this or future implementations of this function. The same is
true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

Sample Firmware Source Code
The following sample assembly code starts the FlashTemp User Module, collects data, and saves it in a
variable:
;;;
;
; Description:
; This sample code shows an example where the temperature is collected
; in the background while the main loop continues to run. This example
; collects the temperature once. Other code (e.g., an ISR) could call
; FlashTemp_Start to start collecting temperature data again. This
; could be keyed off of an event, such as the passage of a set amount
; of time or an external signal.
;
;;;

include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

area bss(RAM)
 cTemperature: BLK 1
area text(ROM,REL)

export _main
Document Number: 001-13562 Rev. *I Page 7 of 10

Internal Temperature Sensor Measurement
_main:
 ; initialize the m8c
 mov reg[INT_VC],0 ; clear any outstanding interrupts
 M8C_EnableGInt ; enable interrupts
 ; other initialization code could be placed here

 ; start the collection of temperature data
 call FlashTemp_Start ; start the analog block

MainLoop:
 ; The processor can do other important work here. When the FlashTemp
 ; ISR has finish collecting the temperature data it will be read once.

 call FlashTemp_fIsData
cmp A,0 ; test for zero
 jz NoTempYet ; data not ready

TempReady:
 call FlashTemp_cGetData ; get the temperature data
 mov [cTemperature],A ; save the data for use later

NoTempYet:
 ; More processing could be done here if wanted.
 jmp MainLoop ; keep doing the main loop

The same program in C is:
//***
//
// Description:
// This sample code shows an example where the temperature is collected
// in the background while the main loop continues to run. This example
// collects the temperature once. Other code (e.g., an ISR) could call
// FlashTemp_Start to start collecting temperature data again. This
// could be keyed off of an event, such as the passage of a set amount
// of time or an external signal.
//
//***

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

char cTemperature;

void main(void)
{
 // initialize the m8c
 M8C_EnableGInt;
 // other initialization code could be placed here

 // start the collection of temperature data
 FlashTemp_Start();

while(1)
Document Number: 001-13562 Rev. *I Page 8 of 10

Internal Temperature Sensor Measurement
{
 // The processor can do other important work here. When the FlashTemp
 // ISR has finished collecting data it will only be read once.

 if (FlashTemp_fIsData())
 {
 cTemperature = FlashTemp_cGetData();
 }
 }
}

Configuration Registers
TEMPERATURE is the switch capacitor block containing the bandgap temperature sensor. The block is
set up to have inputs to the ACap and the BCap, and use FCap as an integrator that can be reset.
Table 2. Block TEMPERATURE: Register CR0

Table 3. Block TEMPERATURE: Register CR1

Table 4. Block TEMPERATURE: Register CR2

Table 5. Block TEMPERATURE: Register CR3

Power sets the power level for the analog block.
Table 6. Register INT_MSK0

Acolumn1 enables the interrupt from Analog Column 1. This is set to occur on the rising edge of ø1.

Table 7. Register CMP_CR

COMP1 indicates the state of the analog comparator bus for column 1.

Bit 7 6 5 4 3 2 1 0

Value 1 0 0 1 0 0 0 0

Bit 7 6 5 4 3 2 1 0

Value 0 1 1 1 0 0 0 0

Bit 7 6 5 4 3 2 1 0

Value 0 1 1 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

Value 1 1 1 1 1 1 Power

Bit 7 6 5 4 3 2 1 0

Value Acolumn1

Bit 7 6 5 4 3 2 1 0

Value COMP1
Document Number: 001-13562 Rev. *I Page 9 of 10

Internal Temperature Sensor Measurement
Version History

Note PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section docu-
ments high level descriptions of the differences between the current and previous user module ver-
sions.

Version Originator Description

2.2 DHA Added Version History

2.30 DHA 1. Added SSCParamBlk RAM area for internal user module usage.

2. Added define `@INSTANCE_NAME`_TABLE_1.

2.30.b DHA Updated the "Parameters and Resources" section to notify the user that Global Resources
will be used to configure the parameters of the FlashTemp User Module.

2.40 MYKZ Corrected Start fuction to include FLS_PR1 register initilization. This eliminates cases
where incorrect temperature values were returned after flash write operations.
Document Number: 001-13562 Rev. *I Revised May 15, 2013 Page 10 of 10
Copyright © 2002-2013 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features and Overview
	Functional Description
	DC and AC Electrical Characteristics
	Timing
	Placement
	Parameters and Resources
	Application Programming Interface
	FlashTemp_Start
	FlashTemp_fIsData
	FlashTemp_cGetData
	FlashTemp_Stop

	Sample Firmware Source Code
	Configuration Registers
	Version History

