You are here

Pressure Sensing with PSoC3 – Part 4/4 | Cypress Semiconductor

Pressure Sensing with PSoC3 – Part 4/4

In this part, we ll see how to interface an amplified compensated pressure sensor with PSoC3 and evaluate the system performance. This type of pressure sensor is very expensive as it performs both amplification and temperature compensation. The Honeywell SSCDANN015PGAA5 will be used for interfacing with PSoC3. The important specifications of SSCDANN015PGAA5 are listed below

Important specifications:

Supply Voltage: 5V

Accuracy: +/-0.25%

Total error band: +/-2% FSS

Sensor Operation:

This sensor has an amplified and temperature compensated output and is driven by a voltage supply. The output curve and equation are shown below.

 

Design:

The design is very simple as both amplification and temperature compensation are done within PSoC.  Resolution should be 1/1000th of full scale, hence a 10-bit ADC is required. The sensor output voltage goes to 90% of the supply voltage, so the ADC range should be vssa vdda. The ADC should operate with the rail-rail buffer enabled. Sensor output is ratiometric and the ADC reference should be Vdda/4.

 

PSoC Top Design and ADC configuration:

 

List of all errors:

S.No

Parameter

Error at 10 psi (in psi)

Sensor

1

Total error

0.2

2

Non-linearity

0.022

Signal Chain

5

Offset

0

6

Gain error

0.02

7

Offset drift (at 50°C)

0

8

Gain drift (at 50°C)

negligible

9

INL

negligible

 

PSoC Value:

Although not as many analog resources are required when interfacing a pressure sensor with an amplified output, integrating a sensor with other PSoC features such as capsense, segment LCD drive and communication protocols, etc, will lower overall system costs.

Conclusion:

PSoC3 and PSoC 5LP can sense pressure accurately while reducing BOM cost and board space by integrating the analog front-end, ADC, reference and MCU. PSoC ADC inputs can be multiplexed with many inputs (limited only by the GPIO count) allowing interfacing to multiple pressure sensors or other analog sensors. The PSoC Creator design environment makes it easier for you to design and debug, reducing the design time and your time to market.

By Praveen Sekar

ALL CONTENT AND MATERIALS ON THIS SITE ARE PROVIDED "AS IS". CYPRESS SEMICONDUCTOR AND ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THESE MATERIALS FOR ANY PURPOSE AND DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THESE MATERIALS, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT. NO LICENSE, EITHER EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, IS GRANTED BY CYPRESS SEMICONDUCTOR. USE OF THE INFORMATION ON THIS SITE MAY REQUIRE A LICENSE FROM A THIRD PARTY, OR A LICENSE FROM CYPRESS SEMICONDUCTOR.

Content on this site may contain or be subject to specific guidelines or limitations on use. All postings and use of the content on this site are subject to the Terms and Conditions of the site; third parties using this content agree to abide by any limitations or guidelines and to comply with the Terms and Conditions of this site. Cypress Semiconductor and its suppliers reserve the right to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and materials, its products, programs and services at any time or to move or discontinue any content, products, programs, or services without notice.