You are here

Percepio Tracealyzer - Analyzing the PSoC Tracealyzer Streamport | Cypress Semiconductor

Percepio Tracealyzer - Analyzing the PSoC Tracealyzer Streamport

[re-printed from https://iotexpert.com]

In the previous article I showed you how to make a PSoC Tracealyzer Streamport using the SCB based UART on a PSoC 4200M. It didn’t take long for me to realize that 115200 baud was not going to cut it. That realization lead me to figure out that the KitProg on the CY8CKIT-044 was limited to 115200, which I worked around by using the Cypress USB Serial Bridge that I got from the CY8CKIT-049.  But when I look at the CPU graph I found out that it took 50% of the CPU to support streaming the data.  So now what?  In this Article lets analyze the data, both old school with a logic analyzer, and new school with PSoC Tracealyzer.

Analyzing the PSoC Tracealyzer Data

While I was capturing the streaming data from PSoC Tracealyzer I could see that the CPU was burning about 50% of the time just running the TzCntrl and blinking LED thread.  That isn’t good.

PSoC Tracealyzer

 

When you look at the PSoC Tracealyzer trace viewing you can see the problem is the TzCtrl task.  This task is running for 83 milliseconds and using 57.6% of the CPU.

PSoC Tracealyzer - analyzing the CPU Usage

 

If you look at the data transmit function called “PSoC_Transmit”, there isn’t much going on.  Just a call to UART_SpiUartPutArray.  But if you look at the UART documentation you will find that SpiUartPutArray is a blocking function, meaning it doesn’t return until it is done.  If you calculate the time to transfer a block of 1024 bytes at 8bits/byte and 230400 baud you will find that just sending the data takes 35ms.

int32_t PSoC_Transmit(void* data, uint32_t size, int32_t *numOfBytesSent )
{
    timing_Write(1);
    UART_SpiUartPutArray((uint8_t *)data,size);
    *numOfBytesSent=size;
    timing_Write(0);
    return 0; // Doesnt matter what you return... i dont think that it is checked
}

I was not very sure why the task was taking 83 milliseconds to run when the data transfer was only taking 40ms. To figure this out I added a toggle pin to the data write routine, just to make sure. What I found is the data write routine is getting called about every 70ms takes ~30ms to run.

Old school with Salae Logic

 

How is that possible, the calculation says that it should take 35ms.  It turns out that I configured the UART to have a 64 byte buffer.

PSoC Creator SCB Configuration

 

When you remove the 64 bytes from the calculation you end up with 32ish milliseconds.  The other thing that this chart shows is that the TzCntrl task is calling the PSoC_Transmit function more frequently that I thought, at least twice per cycle.  You can also see from the plot that function is taking 30/70=42.8% of the CPU by itself.  Not good, but we are starting to understand what is going on.

As I typed this part of the Article I realized that toggling a GPIO probably wasn’t the best way to figure out what was happening.  In fact, that is the whole point of Tracealyzer, that is analyzing the performance of your program.  When I looked at the Tracealyzer documentation (I always hate doing that), I found a nice function called vTracePrintf.  I added a “toggle” aka printing a 0 and printing a 1 into trace channel 0.

int32_t PSoC_Transmit(void* data, uint32_t size, int32_t *numOfBytesSent )
{
    timing_Write(1);
    vTracePrintF(0,"1");
    UART_SpiUartPutArray((uint8_t *)data,size);
    vTracePrintF(0,"0");
    timing_Write(0);
    *numOfBytesSent=size;
    
    return 0; // Doesnt matter what you return... i dont think that it is checked
}

After running another trace, look what I get.  You can see the “1” printing at the start and the 0 printing at the end.

PSoC Tracealyzer - Analyzing the CPU usage with vTaskPrintF

 

Even better, when I double clicked on the “[Default Channel] 0” it took me to this nice screen which shows when the events occurred.  The one that I clicked on started at 8.136.039 and ended at 8.176.176, in other words it took about 40ms

PSoC Tracealyzer - User events from Tracealyzer

 

After hand calculating the time, I realized that once again I should have done something even more obvious, let the ARM calculate the time.  the vTracePrintf will let you specify the output format, in this case a %d

int32_t PSoC_Transmit(void* data, uint32_t size, int32_t *numOfBytesSent )
{
    TickType_t time;
    
    timing_Write(1);
    
    time = xTaskGetTickCount();
    UART_SpiUartPutArray((uint8_t *)data,size);
    time = xTaskGetTickCount() - time;
    vTracePrintF(0,"%d",time);
    timing_Write(0);
    *numOfBytesSent=size;
    
    return 0; // Doesnt matter what you return... i dont think that it is checked
}

When you look at the trace, you need to click on the “User Events” to see the print outs from the trace.

PSoC Tracealyzer - CPU Usage

 

Now that we have a pretty good feel for what is going on, how do we fix it?  Simple, use the PSoC DMA take the CPU mostly out of the UART transmission path, which is the topic of the next Article.

As always you can find all of these projects on the IotExpert GitHub site or git@github.com:iotexpert/PSoC-Tracelyzer.git

 

Comments

abigailbreslin02_2705736's picture

There have been heaps of thoughts put on the table for the new advancement of IOS PSOC 6 yet the arrangement incorporates and the execution requires some time. IDES have codes which are difficult to comprehend and take a shot at so the engineer would be requiring some outsource Cheap Custom Essay at EssayStar.co.UK from an alternate master who has involvement or have chip away at the same PSOC rendition. it will enable the things to complete quick and in an appropriate way.

randdurjohngar1978_2685546's picture

Hi,

Thank you for the really informative and interesting post!

I noticed that on this website I found a lot of interesting tricks.

You awesome posts help me to understand the process. Thanks for that!

Best Regards,

Rad

Colin Cooper's picture

This specific Cheap Christian Louboutin style of shoes, which as popular today as it was then, has actually been around for many centuries. Due to the fact that there are so many locations to shop for Christian Louboutin, discovering a wonderful set has never ever been simpler.

elianahermione3050_2746526's picture

New progression of IOS PSOC 6 yet the course of  Essay Time  action joins and the execution requires some time. IDES have codes which are hard to grasp and tackle so the specialist would be requiring some outsource  from an other ace who has contribution or have wear down the same PSOC version. it will empower the things to finish fast and in a proper way.

ALL CONTENT AND MATERIALS ON THIS SITE ARE PROVIDED "AS IS". CYPRESS SEMICONDUCTOR AND ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THESE MATERIALS FOR ANY PURPOSE AND DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THESE MATERIALS, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT. NO LICENSE, EITHER EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, IS GRANTED BY CYPRESS SEMICONDUCTOR. USE OF THE INFORMATION ON THIS SITE MAY REQUIRE A LICENSE FROM A THIRD PARTY, OR A LICENSE FROM CYPRESS SEMICONDUCTOR.

Content on this site may contain or be subject to specific guidelines or limitations on use. All postings and use of the content on this site are subject to the Terms and Conditions of the site; third parties using this content agree to abide by any limitations or guidelines and to comply with the Terms and Conditions of this site. Cypress Semiconductor and its suppliers reserve the right to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and materials, its products, programs and services at any time or to move or discontinue any content, products, programs, or services without notice.