You are here

Project #027: BLE Power Consumption Optimization | Cypress Semiconductor

Project #027: BLE Power Consumption Optimization

In today s project, we will learn how to optimize a PSoC 4 BLE design for lowest power consumption.

It is no secret that modern day electronics, especially products for the IoT, have increasing dependencies on battery packs. Due to the portable and untethered nature of these products, battery life and power consumption have become very critical metrics when choosing the right embedded solution.

A common method employed by MCUs and Radios to improve battery life is to offer low-power modes, during which the chip offers restricted performance or features, with the benefit of much lower power consumption while in those modes. This is great for IoT products that typically spend more time in these low-power or standby modes than in the full-power actives modes itself. For example, a fitness monitor could take heart rate measurements several times during a day, but that may only account to 60-mins of total active time over a 24-hour period.

PSoC 4 BLE shines in this regard by offering not just one, but five flexible low-power modes enabling you, the designer, with all the right tools to optimize your design for the lowest possible power consumption. The chip features low-power modes for both the CPU and peripherals in the system, but also independently for the BLE radio block. See the image below for more details on the low-power modes available on PSoC 4 BLE and the various peripherals that are available during each of those modes. In its Deep-Sleep mode, the CPU only consumes 1.3-µA while keeping the BLE Link-Layer active. This means that you do not have to disconnect from an active BLE connection when switching to the Deep-Sleep mode and can quickly switch back to the Active mode for short time intervals to process the BLE Stack and to transmit and receive data over the Radio. There are two modes that offer even lower power consumption the 150-nA Hibernate mode where a few analog peripherals are still available, and the 60-nA Stop mode for minimal current leakage when the device is on complete standby. You can learn more about PSoC s low-power modes in this application note: AN92584 Designing for Low Power and Estimating Battery Life for BLE Applications.

In this example, we implement basic power reduction technique by using these low-power modes. This project also acts as a good template project that you can use to measure real-time power consumption as you switch between the various low-power modes on the chip. The BLE Pioneer Kit has a dedicated power measurement jumper (J15) to which you can hook-up a digital multimeter or a pico-ammeter to measure the extremely low nA currents.

You can download this PSoC Creator project along with a detailed PDF of instructions, here from GitHub: https://github.com/cypresssemiconductorco/PSoC-4-BLE/tree/master/100_Projects_in_100_Days/Day027_BLE_Power_Measurement

 

   

ALL CONTENT AND MATERIALS ON THIS SITE ARE PROVIDED "AS IS". CYPRESS SEMICONDUCTOR AND ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THESE MATERIALS FOR ANY PURPOSE AND DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THESE MATERIALS, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT. NO LICENSE, EITHER EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, IS GRANTED BY CYPRESS SEMICONDUCTOR. USE OF THE INFORMATION ON THIS SITE MAY REQUIRE A LICENSE FROM A THIRD PARTY, OR A LICENSE FROM CYPRESS SEMICONDUCTOR.

Content on this site may contain or be subject to specific guidelines or limitations on use. All postings and use of the content on this site are subject to the Terms and Conditions of the site; third parties using this content agree to abide by any limitations or guidelines and to comply with the Terms and Conditions of this site. Cypress Semiconductor and its suppliers reserve the right to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and materials, its products, programs and services at any time or to move or discontinue any content, products, programs, or services without notice.