

 www.cypress.com Document No. 001-40409 Rev. *D 1

AN2034

PSoC® 1 – Reading Matrix and Common Bus Keypads

 Author: Dave Van Ess, Rajiv Badiger
 Associated Project: Yes
 Associated Part Family: CY8C27xxx, CY8C29xxx,

CY8C21x23, CY8C21x34,CY8C21x45, CY8C22x45,
CY8C24x23, CY8C24x94, CY8C28xxx

 Software Version: PSoC® Designer™ 5.1(SP2)
 Related Application Notes: None

Abstract
AN2034 shows how to use PSoC® 1 to read mechanical keypads. It covers matrix and common bus keypads, in both
polled and interrupt modes.

Contents
Introduction ... 1
Matrix Keypad ... 2

Algorithm .. 2
C Function .. 2
Decoding a Key Press .. 3
Debounce Mechanism .. 3
Making the Scanning Process Polled or Interrupt Driven
 ... 3
Example Project ... 4

Common Bus Keypad ... 4
PSoC 1 implementation .. 5
SAR ADC Input Voltages.. 6
Determining Resistor Values .. 6
Interrupt-Driven Keypad Reading 6
Debouncing .. 7
Example Project ... 7

Summary ... 8
Appendix A: ‘C’ Code for Matrix Keypad Scanning Using
Interrupt Method .. 9
Appendix B: ‘C’ Code for Common Bus Keypad Using
Polling Method .. 14

Introduction
Depending on how individual switches are connected,
mechanical keypads are commonly available in two
forms – matrix and common bus.

A typical matrix keypad – the telephone keypad - is shown
in Figure 1. In this keypad, each switch connects a unique
pair of row and column wires. The number of I/Os (pins)
required equals ROWS + COLUMNS. The number of
switches supported is ROWS x COLUMNS.

Figure 1. Matrix Keypad

In a common bus keypad, one terminal of each switch is
connected to a common bus wire as shown in Figure 2.

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 2

Figure 2. Common Bus Keypad

The number of I/Os required for a common bus keypad
appears to equal the number of switches plus 1, however,
a method exists that uses only one pin to read the
common bus keypads.

This application note shows how to use PSoC 1 to read
both the matrix and common bus keypads. The associated
projects are created using the PSoC Designer software
tool. If you are new to the PSoC 1 device or the
PSoC Designer development tool, it is recommended that
you review the online tutorials.

Matrix Keypad
This section focuses on a typical 4x4 matrix keypad, but
you can use the same technique with a matrix keypad of
any dimensions. A matrix keypad can be connected to the
PSoC 1 without using any external components as shown
in Figure 3.

Figure 3. Matrix Keypad Interface to PSoC 1

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,0] [2,1] [2,2] [2,3]

[3,0] [3,1] [3,2] [3,3]

0

1

2

3

4

5

6

7

CPU

Port Data
registerPSoC 1

4 x 4 Matrix Keypad

R0

R1

R2

R3

C0 C1 C2 C3

PSoC 1 pins are highly flexible and can be configured in
many different modes, such as strong drive, resistive
pull-up, resistive pull-down, open drain drive high/low, and
high impedance. To avoid a floating input when no key is
pressed, use the resistive pull-down mode for all row and
column pins.

Algorithm
The standard algorithm for reading a matrix keypad is to
drive each row high, one at a time, and sample the column
lines. This technique enables detection of multiple key
presses. However, scanning the entire keypad takes

significant CPU time. If only a single key press needs to
be detected, you can use the following algorithm instead:

 Drive all rows high simultaneously and read all
columns

 Drive all columns high simultaneously and read all
rows

 Combine the above data to determine which switch is
closed

To understand how the algorithm works, consider the
following example, where switch [1, 2] (row 1, column 2) is
pressed. The algorithm reads the keypad in six steps.

1. Output b00001111 to the port. This drives all the rows
high, leaving the columns passively pulled down.

2. Read the port. The driven pins 0 through 3 remain
high, and because the switch [1, 2] is closed pin 6 is
now high. The value read is b01001111.

3. Output b11110000 to the port. This drives all the
columns high, leaving the rows passively pulled down.

4. Read the port. The driven pins 4 through 7 remain
high, and because the switch [1, 2] is closed pin 1 is
now high. The value read is b11110010.

5. Do a logical AND of the results of steps 2 and 4 to get
the answer b01000010.

6. The upper 4 bits can be decoded as column 2 and the
lower 4 bits as row 1.

C Function
The above algorithm can be implemented as a function
keypad_scan(). It reads a 4x4 keypad connected to port 0
and returns the ANDed result, as shown in Code 1:

Code 1. Keypad Scan Function

/*
This is the port mapping for the keypad
ports.

p0.0 ---1----2----3----A
 | | | |
p0.1 ---4----5----6----B
 | | | |
p0.2 ---7----8----9----C
 | | | |
p0.3 ---*----0----#----D
 | | | |
 p0.4 p0.5 p0.6 p0.7
*/
unsigned char keypad_scan(void)
{
 unsigned char rows;
 unsigned char cols;

 /* Drive rows, read columns */
 PRT0DR = 0x0F;
 cols = PRT0DR;

http://www.cypress.com/
http://www.cypress.com/?id=2522
http://www.cypress.com/?id=2522&rtID=134&source=designerStartPage

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 3

 /* Drive columns, read rows*/
 PRT0DR = 0xF0;
 rows = PRT0DR;

 /* combine results */
 return (rows & cols);
}

Decoding a Key Press
The output of the keypad_scan() function is a single byte
that shows the row or column status of the keypad. It is
decoded as follows:

 No bits are set if no key is pressed

 A single bit in the upper nibble and a single bit in the
lower nibble are set for a single key press

 Any other condition is a multiple key closure and is
defined as not valid

You will usually need to translate the row or column bits
into a more useful form, for example an ASCII character
corresponding to the key press. The most speed efficient
way to do this is to use a lookup table (LUT) array. For a
size efficient implementation, use switch case statements.

In this project, the LUT method is used: the byte output of
the keypad_scan() function is used as an index to a
256-byte array. In the 4x4 keypad case, 16 elements in
the array contain codes corresponding to valid key
presses, and the remaining elements contain codes for
"no key press" or "undefined". See Appendix A: ‘C’ Code
for Matrix Keypad Scanning Using Interrupt Method for
details.

Debounce Mechanism
When any key is pressed or released, due to mechanical
structure, the contacts may make or break connection
multiple times. Due to this, an oscillating waveform can be
obtained at the row or column line as shown in Figure 4:

Figure 4. Key Bounce

Key is pressed Key is released

Stable state
time

Debounce
delay

A B C D

Debounce
delay

If the CPU reads the ports at a high rate, the bounce
oscillations may be wrongly detected as multiple key

presses. One way to handle this problem is to implement a
delay from when the first edge is detected (A or C) to
when the ports are read (B or D). This delay ensures that
the signal at the port pins is stable during the CPU read
operation. A delay of 10 ms is usually sufficient for most
types of switches.

A delay can be implemented using a firmware or a
hardware timer. The disadvantage of a firmware delay is
that it requires the CPU. In an application where the CPU
must do many tasks, it is better to generate the delay
using a hardware timer. PSoC 1’s configurable digital
blocks make it possible to create such a timer; it is
available in the form of a PSoC Designer user module
named Timer.

To add a debounce delay using a hardware timer, do the
following:

1. Place a Timer user module in the design, as shown in
Figure 5:

Figure 5. Timer User Module

2. Configure the timer clock input and period to generate
the required delay. As an example, a 16-bit timer is
configured with a 32 kHz internal low-speed oscillator
(ILO) input clock, with a period of 320 counts, to
generate a delay of 10 ms.
You can also use an 8-bit timer, which consumes one
less digital block, with a lower input clock frequency to
generate the same delay. The input clock to a timer
can be derived using internal clock dividers VC1, VC2,
and VC3.

3. The Timer user module can generate an interrupt, and
you can call the keypad scanning function from the
Timer interrupt service routine (ISR). This will cause
the CPU to read the ports after a debounce delay.

Making the Scanning Process Polled or
Interrupt Driven
The scanning algorithm in the keypad_scan() function can
be executed once the key press is detected. There are two
ways to call the function and detect key activity - polling
and interrupt.

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 4

With the polling method, the CPU periodically scans the
keypad to check if any key is pressed. The CPU can either
read the keypad in a while loop or can be interrupted at
regular intervals using a timer. The scan period must be
greater than the debounce delay and less than the
minimum key press time. The problem with this method is
that most of the time the keys are not pressed, and doing
a scan during those times is a waste of CPU cycles. A
better way is to do a scan only when a key press event is
detected.

With the interrupt method, the CPU can be interrupted on
a key press. The ISR then starts the timer for a debounce
delay and a keypad scan is done at the timer interrupt.

To configure PSoC for an interrupt-based method, do the
following:

 Configure the four lower (row) pins (see Figure 3) as
inputs, with resistive pull-down

 Drive the four upper (column) pins high

 Write a GPIO interrupt handler that enables the timer,
for a debounce delay

 Enable the GPIO interrupt
The row pins stay low when no key is pressed. On a key
press, the rising edge signal is produced on one of the row
lines which trigger an interrupt. The GPIO ISR enables the
timer for a debounce delay. After the delay, the Timer ISR
does the scan. See Figure 6 for more details.

Figure 6. Interrupt and Debounce Action

Key is pressed Key is released

Stable state
time

Debounce
delay

A B C D

Debounce
delay

A Key is pressed. Rising edge signal interrupts CPU. CPU
starts the timer for debounce delay

B Debounce delay elapsed. Timer triggers interrupt to the
CPU to read the ports to identify the key pressed.

C Key is released. Rising edge signal interrupts CPU once
again. CPU starts the timer for debounce delay

D Debounce delay elapsed. Timer triggers interrupt to the
CPU to read port once again. As key is released, no key
press will be detected.

* Note that switch may not bounce during switch release and C and
D events may not occur.

The interrupt method also helps to reduce the power
consumption by allowing the device to be put in sleep
mode. When any key is pressed, the resulting interrupt
can wake the device.

Note that the PSoC 1 interrupt system combines the
interrupt signals from all of the pins in the device to
generate a single interrupt. Thus, any key press will trigger
a common interrupt. However, any other external event
will also trigger the same interrupt. To handle this you may
need to have the ISR read other ports to determine the
cause of the interrupt.

Example Project
The PSoC Designer project “MatrixKeypad”, based on
PSoC 1 CY8C27443, is provided. The project uses the
interrupt method and is configured for the external
connections shown in Figure 7. In the project, the closed
key is displayed on a Hitachi-compatible 2x16 character
LCD. The number of times any key is pressed is also
displayed to evaluate the debounce logic. If the debounce
logic is working correctly, you will notice that the count
increments only once on each key press. See Appendix A:
‘C’ Code for Matrix Keypad Scanning Using Interrupt
Method for the application firmware.

Figure 7. External Connections for Testing "MatrixKeypad"
Project

1 2

4 5

3 A

6 B

7 8

* 0

9 C

D
PSoC 1

Hitachi compatible
2x16 character
LCD module

Character LCD

P2[0]

P2[1]

P2[2]

P2[3]

P2[4]

P2[5]

P2[6]

Vdd
GND

P0[0]

P0[1]

P0[2]

P0[3]

P0[4]

P0[5]

P0[6]

P0[7]

Contrast
control
voltage

D0

D1

D2

D3

EN

RS

R/W

+5V

Common Bus Keypad
This section shows how to read an 8-key common bus
keypad using only one PSoC pin. The logic behind the
single pin solution is to generate a distinct analog voltage
on a key press and to decode it using the ADC. The block
diagram of the solution is given in Figure 8.

A switch-resistor network forms a voltage divider
connected between the power supply (VDD) and the
ground (VSS). The PSoC 1 ADC is configured to read the
input voltage from VDD to VSS. The resistor values are
chosen so that when a particular switch is pressed, the

http://www.cypress.com/
http://www.cypress.com/?rID=3324

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 5

input voltage to the ADC is within a certain range. A
simple algorithm can be created that compares the ADC
result with the predetermined codes to identify the key
pressed.

When multiple keys are pressed, the one which is closer
to the pin takes priority; the resistor network beyond the
closed key is bypassed. In Figure 8, S0 has the highest
priority and S7 has the lowest priority.

Figure 8. Block Diagram - Common Bus Keypad Interface to PSoC

S3 S4

R4

S5

R5

S6

R6

S7

R7

S0 S1

R1

S2

R2 R3

R0

ADC

PSoC 1

VDD

VSS

Keypad

PSoC 1 Implementation
PSoC Designer provides different types of ADCs that are
implemented using generic analog blocks in PSoC 1.

The resolution of the ADC is an important parameter for
this application as it determines the number of switches
that can be interfaced. Ideally, with an N-bit ADC 2N
switches can be read. But due to the tolerances of the
resistors, it is significantly lower.

To read an 8-switch keypad, a 6-bit SAR ADC is sufficient.
The SAR ADC is available in the form of a user module in
PSoC Designer. This user module has the following
features:

 Consumes one PSoC 1 switched capacitor (SC)
analog block

 Produces a 1 byte 2’s complement output, ranging
from -32 to +31

Table 1. SAR ADC Input to Output Mapping

Input Voltage (VIN) Digital Output Comments

AGND (analog ground) 00h RefMux setting in
Global resources
tab of PSoC
Designer decides
VH and VL and
AGND.

AGND < VIN < VH 00h to 1Fh

VL < VIN < AGND E0 to FFh

The input impedance of the SAR ADC is in the kΩ range; it
depends on the frequency of the clock to the SC block. To
avoid errors due to low input impedance, place a
programmable gain amplifier (PGA) module between the
SAR ADC and the external network. The PGA uses a

PSoC 1 continuous time (CT) analog block which has high
input impedance.

Using PSoC Designer, configure the PSoC 1 as follows:

 Place the PGA and SAR ADC user modules on the
design

 Route the PGA input to a pin connected to the
external switch-resistor network, as shown in Figure 9.

Figure 9. User Modules Placement and Routing

 Route the PGA output to the SAR ADC input

 Set the PGA gain to 1 in the PGA module properties

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 6

 Set the analog column clock to VC2, with the
frequency between 128 kHz and 1.33 MHz in the
global resource settings. This clock controls the
switching frequency of the SC block.

 In the global resources tab, set the VC2 frequency to
1 MHz by setting the VC1 divider to 12 and the VC2
divider to 2, as shown in Figure 10. Note that the
system clock (SysClk) of the PSoC 1 device is
24 MHz.

 Also in the global resources tab, set the RefMux
option to (VDD/2) +/- (VDD/2). This sets the SAR ADC
measurement range as 0 to VDD, and the AGND
voltage to VDD/2.

Figure 10. Global Resource Settings

SAR ADC Input Voltages
When mapped uniformly for a VDD of 5.0 V, each switch
produces a nominal increase of 5.0 V / 8 = 0.625 V, or a
12.5 percent change in the ADC input voltage. Table 2
provides the input voltage range for the ADC for each
switch. The midpoint of each range is the theoretical ADC
input voltage neglecting all error sources such as resistor
tolerances, ADC error, noise, and so on.

Table 2. Mapping Switch Press to the Voltage Generated

Switch Voltage Range at
Input

Byte
Range

Resistor
Value

S0 0 V – 0.3125 V [E0 – E4] -

S1 0.3125 V – 0.9375 V [E4 – EC] R1 = 1.5 kΩ

S2 0.9375 V – 1.5625 V [EC – F4] R2 = 1.8 kΩ

S3 1.5625 V – 2.1875 V [F4 – FC] R3 = 2.7 kΩ

S4 2.1875 V – 2.8125 V [FC – 04] R4 = 4.3 kΩ

S5 2.8125 V – 3.4375 V [04 – 0C] R5 = 6.8 kΩ

S6 3.4375 V – 4.0625 V [0C – 14] R6 = 13 kΩ

S7 4.0625 V – 4.6875 V [14 – 1A] R7 = 33 kΩ

No
Switch

5.0 V 1F -

If none of the switches are closed, the input to the ADC is
equal to VDD. When S0 is closed, current flows from VDD to
VSS through R0 and S0. A value of 10 kΩ was chosen for
R0 to limit the maximum supply current to 0.5 mA. The
remaining resistors are calculated based on VDD = 5 V,
R0 = 10 kΩ, and a nominal step size of 0.625 V for each
switch. The following section explains how to select the
resistors.

Determining Resistor Values
Basic resistor voltage divider analysis can be used to
determine the resistor values. Consider the case when
switch S1 is pressed (see Figure 8)

Solving for R1 and inserting nominal values for VDD and
R0 gives

The closest ±5% standard value resistor is 1.5 kΩ. With
R1 = 1.5 kΩ and R0 = 10 kΩ, the typical ADC input
voltage with S1 closed is 0.652 V. This error is acceptable
since it falls within the allowed voltage range for SW1, that
is, 0.3125 V to 0.9375 V. Moreover, with the worst case
resistor tolerances (R0 = 10 kΩ – 5% and R1 = 1.5 kΩ +
5%, or R0 = 10 kΩ + 5% and R1 = 1.5 kΩ – 5%), the input
voltage deviates by just 0.059 V from the ideal value.

The same type of analysis can be used to determine the
remaining resistor values, which are provided in Table 2.

Interrupt Driven Keypad Reading
As seen in the section Making the Scanning Process
Polled or Interrupt Driven, it is better to read the ADC on

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 7

an interrupt when any key is pressed rather than reading
the ADC continuously. This saves CPU bandwidth as well
as device power consumption if sleep mode is used. To
make the process interrupt driven, one more pin must be
used for generating an interrupt signal. See Figure 11 for
external connections.

Figure 11. Interrupt Driven Scanning Process

Sn

Rn

S0 S1

R1

S2

R2

R0

ADC

PSoC1

Vdd

Vss

Keypad

R

Interrupt signal

The interrupt pin is pulled low using a resistor (R). When
any key is pressed, the rising edge signal is developed
across R causing an interrupt to the device. The value of
the resistor R must be high enough so that the voltage
developed across it, on any key press, is greater than the
VIH specification for a GPIO (minimum 2.1 V).

After an interrupt is generated, the interrupt pin is
grounded by writing a ‘0’ to the port data register. This

causes the resistor R to be bypassed while reading the
voltage using the ADC. Note that the lower end of the
switches is not exactly 0 V - it is lifted above the ground by
a few millivolts depending on the sink current value. Using
the higher value of resistor R0 limits the sink current and
thus the voltage lift. For this application, use R0 of 10 kΩ
or higher.

Debouncing
It is possible for a switch press or release to occur during
an ADC conversion, which would result in an erroneous
output. To avoid these errors, you can implement a
debounce mechanism similar to that for the matrix keypad:

 Configure the timer user module to generate a delay
of at least 10 ms

 If an interrupt method is used, start the timer when the
GPIO interrupt is detected. For the polling method,
start the timer when the ADC reads a value different
from the "no keys pressed" value.

 At the timer interrupt, read the ADC. If the ADC
reading is same as the previous reading, a key can be
assumed to be pressed and stable.

Example Project
The project "CommonBusKeypad", based on the
CY8C27443 PSoC 1 device, uses the polling method. The
complete code is also provided in Appendix B: ‘C’ Code
for Common Bus Keypad Using Polling Method. The
project can be tested with the external connections shown
in Figure 12. In the project, key presses are displayed on a
Hitachi-compatible 2x16 character LCD.

Figure 12. External Connections for Testing “CommonBusKeypad” Project

PSoC1

Hitachi compatible
2x16 character
LCD module

Character LCD

P2[0]

P2[1]

P2[2]

P2[3]

P2[4]

P2[5]

P2[6]

Vdd
GND

P0[2]

Contrast
control
voltage

D0

D1

D2

D3

EN

RS

R/W

+5V

S3 S4

R4

S5

R5

S6

R6

S7

R7

S0 S1

R1

S2

R2 R3

R

Keypad

Vdd=+5V

Use the resistor values R and R1 to R7 as shown in Table 2.

http://www.cypress.com/
http://www.cypress.com/?rID=3324

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 8

Summary
This application note shows easy methods to read matrix
type and a common bus type keypads using PSoC 1. It
also explains the polling and the interrupt mechanisms for
keypad scanning as well as debounce logic.

About the Author
Name: Rajiv Badiger

Title: Applications Engineer

Background: BE Electronics and Telecommunication

Contact: rjvb@cypress.com

http://www.cypress.com/
mailto:rjvb@cypress.com

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 9

Appendix A: ‘C’ Code for Matrix Keypad Scanning Using Interrupt Method

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

/*****************Variables***************************/
/* LUT for storing keys. The size of the LUT should be equal to 2 ^ (NUMBER OF ROWS +
COLUMNS). Row and column information from the scanning function is used as index to this LUT
for finding the key. Value 0x20 indicates invalid key. */

static const keypad_LUT[256] =
{/* 0 1 2 3 4 5 6 7
 8 9 A B C D E F */
/*0*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*1*/0x20, '1', '4', 0x20, '7', 0x20, 0x20, 0x20,
 '*', 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*2*/0x20, '2', '5', 0x20, '8', 0x20, 0x20, 0x20,
 '0', 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*3*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*4*/0x20, '3', '6', 0x20, '9', 0x20, 0x20, 0x20,
 '#', 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*5*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*6*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*7*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*8*/0x20, 'A', 'B', 0x20, 'C', 0x20, 0x20, 0x20,
 'D', 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*9*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*A*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*B*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*C*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*D*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*E*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
/*F*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20
};

/* These two variables are used to store the row number and the column number */
BYTE rows,cols;

/* This variable holds the count for number of key press */
BYTE InterruptCounter = 0;

/* This variable keeps the scanning process disabled till previously decoded key is read */
unsigned char processing = 0;

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 10

/* These variable stores the key number */
unsigned char key = 0x20;
/***/

/****************Functions****************************/

/* Handles keypad function- Checks the key pressed and debounces key */
void KeyPadHandler(void);

/* Keypad scanning routine */
unsigned char keypad_scan(void);

/* Initializes user modules used in the design */
void InitModules(void);

/* Interrupt handler for GPIO interrupt */
void GPIOInterrupt(void);
/**/

void main(void)
{
 /* Initialize variables and user modules */
 InitModules();

 /* Enable Global Interrupt */
 M8C_EnableGInt;

 while(1)
 {
 /* Check the Keypad status and update LCD on valid key press */

 if(key != 0x20)
 {
 /* Valid key- display the result on LCD */

 /* Set LCD cursor position */
 LCD_1_Position(0, 7);

 /* Display pressed keypad button */
 LCD_1_WriteData(key);

 /* Set LCD cursor position */
 LCD_1_Position(1, 12);

 /* Display nuymber of times key is pressed so far */
 LCD_1_PrHexByte(InterruptCounter);

 /* Reset key to default value */
 key = 0x20;

 /* Enable keypad scanning process */
 processing = 0;
 }

 /* Do other tasks */
 }
}

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 11

/* This function initializes all the user modules used in the design */
void InitModules(void)
{
 /* Initialize LCD */
 LCD_1_Start();
 LCD_1_Position(0,0);
 LCD_1_PrCString("Switch:");
 LCD_1_Position(1,0);
 LCD_1_PrCString("Interrupts:");

 /* Initilize timer- 10ms delay */
 Timer16_1_WritePeriod(320);
 Timer16_1_EnableInt();

 /* Enable GPIO interrupt */
 INT_MSK0 |= 0x20;

 /* Write 1's at column lines */
 PRT0DR |= 0xF0;
}

/*
This is the port mapping for the keypad ports.

 p0.4 p0.5 p0.6 p0.7
 | | | |
p0.0 ---1----2----3----A
 | | | |
p0.1 ---4----5----6----B
 | | | |
p0.2 ---7----8----9----C
 | | | |
p0.3 ---*----0----#----D

*/

/* This function scan the keypad and identifies the key pressed */
unsigned char keypad_scan(void)
{
 BYTE key_result;

 /* Drive rows */
 PRT0DR = 0x0F;

 /* Read columns */
 cols = PRT0DR;

 /* Drive columns */
 PRT0DR = 0xF0;

 /* Read rows */
 rows = PRT0DR;

 /* Combine results */
 key_result = rows & cols;

 /* Get the key number from LUT */
 return(keypad_LUT[key_result]);
}

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 12

/* This is the handler for GPIO interrupt. Debounce timer is started on GPIO interrupt */
#pragma interrupt_handler GPIOInterrupt
void GPIOInterrupt(void)
{

/* Check if previous key is read. If yes, start the timer for debounce delay */
 if(processing == 0)
 {
 /* Avoid enabling timer next time when previous key is not read */
 processing = 1;

 /* Disable GPIO interrupt */
 INT_MSK0 &=~ 0x20;

 /* Start Timer */
 Timer16_1_Start();
 }
}

/* This is the handler for the timer interrupt. This ISR calls the scanning algorithm */
void TimerInterrupt(void)
{
 /* Stop the timer */
 Timer16_1_Stop();

 /* Get the key */
 key = keypad_scan();

 /* Check for valid key press */
 if(key != 0x20)
 {
 /***/
 /* Add code here to take immediate action within the ISR */

 /**/

 /* Increment interrupt counter */
 InterruptCounter ++;
 }
 else
 {
 /* Enable starting the timer on GPIO interrupt */
 processing = 0;
 }

 /* Clear GPIO posted interrupt */
 INT_CLR0 &=~ 0x20;

 /* Enable GPIO interrupt */
 INT_MSK0 |= 0x20;

}

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 13

Add LJMP instruction in PSoC_GPIO_ISR function in PSoCGPIOINT.asm file as shown in the following code.

PSoC_GPIO_ISR:

 ;@PSoC_UserCode_BODY@ (Do not change this line.)
 ;---
 ; Insert your custom code below this banner
 ;---
 ljmp _GPIOInterrupt
 ;---
 ; Insert your custom code above this banner
 ;---
 ;@PSoC_UserCode_END@ (Do not change this line.)

 reti

Add LCALL instruction in Timer16_1_ISR function in Timer16_1NT.asm file as shown below.

_Timer16_1_ISR:

 ;@PSoC_UserCode_BODY@ (Do not change this line.)
 ;---
 ; Insert your custom assembly code below this banner
 ;---
 ; NOTE: interrupt service routines must preserve
 ; the values of the A and X CPU registers.

 ;---
 ; Insert your custom assembly code above this banner
 ;---

 ;---
 ; Insert a lcall to a C function below this banner
 ; and un-comment the lines between these banners
 ;---

 PRESERVE_CPU_CONTEXT
 lcall _TimerInterrupt
 RESTORE_CPU_CONTEXT

 ;---
 ; Insert a lcall to a C function above this banner
 ; and un-comment the lines between these banners
 ;---
 ;@PSoC_UserCode_END@ (Do not change this line.)

 reti

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 14

Appendix B: ‘C’ Code for Common Bus Keypad Using Polling Method
#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

/* Timer State */
#define ON 0x1
#define OFF 0x0

/* Invalid Key identifier */
#define INVALID_KEY 0x20

/* Functions */
char Get_ADC_Data(void);
void GetKeyNumber(void);

/* Variables */
BYTE Key = INVALID_KEY, TimerState = OFF;
char ADC_Data,New_ADC_Data;

void main(void)
{
 /* Enable Timer Interrupt */
 Timer16_1_EnableInt();

 /* Enable Global Interrupt */
 M8C_EnableGInt ;

 /* Start PGA operation in high power mode */
 PGA_1_Start(PGA_1_HIGHPOWER);

 /* Start ADC operation */
 SAR6_1_Start(SAR6_1_HIGHPOWER);

 /* Start LCD and Initialize Display */
 LCD_1_Start();
 LCD_1_Position(0,0);
 LCD_1_PrCString("Switch:");

 while(1)
 {
 /* If timer is OFF (debounce is not in process), check the "key" */
 if(TimerState == OFF)
 {
 /* If "Key" contains valid value, then display on LCD */
 if(Key != INVALID_KEY)
 {
 LCD_1_Position(0,7);
 LCD_1_PrHexByte(Key);

 /* Invalidate Key */
 Key = INVALID_KEY;
 }
 else /* No Key Pressed */
 {
 LCD_1_Position(0,7);
 LCD_1_PrCString("--");
 }

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 15

 /* Get ADC data */
 ADC_Data = SAR6_1_cGetSample();

 /* Check if any key is pressed */
 if(ADC_Data < 0x1C || ADC_Data > 0xE0)
 {
 /* Start Timer */
 Timer16_1_Start();
 TimerState = ON;
 }
 }

 /* Do other tasks */
 }
}

/* Interrupt Handler for Timer Interrupt */
void TimerInt(void)
{
 BYTE Delta = 0;

 /* Take a second sample, compare with the first to test
 data validity in the presence of possible switch bounce */
 New_ADC_Data = SAR6_1_cGetSample();

 /* Compare the ADC values and get the difference */
 if(ADC_Data > New_ADC_Data)
 {
 Delta = ADC_Data - New_ADC_Data;
 }
 else
 Delta = New_ADC_Data - ADC_Data;

 /* If difference in readings is less than 2, then decode the key */
 if(Delta < 2)
 {
 /* If closely matched, decode the key */
 GetKeyNumber();
 }

 /* Stop the timer */
 Timer16_1_Stop();
 TimerState = OFF;

}

/* This function decodes the key. See Table 2 of application note for ADC result to Key
mapping information */
void GetKeyNumber(void)
{
 if((New_ADC_Data > 0xE0) && (New_ADC_Data <= 0xE4))
 Key = 0;
 else if((New_ADC_Data > 0xE4) && (New_ADC_Data <= 0xEC))
 Key = 1;
 else if((New_ADC_Data > 0xEC) && (New_ADC_Data <= 0xF4))
 Key = 2;
 else if((New_ADC_Data > 0xF4) && (New_ADC_Data <= 0xFC))
 Key = 3;
 else if((New_ADC_Data > 0xFC) && (New_ADC_Data <= 0xFF))
 Key = 4;

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 16

 else if((New_ADC_Data >= 0x0) && (New_ADC_Data <= 0x04))
 Key = 4;
 else if((New_ADC_Data > 0x04) && (New_ADC_Data <= 0x0C))
 Key = 5;
 else if((New_ADC_Data > 0x0C) && (New_ADC_Data <= 0x14))
 Key = 6;
 else if((New_ADC_Data > 0x14) && (New_ADC_Data <= 0x1A))
 Key = 7;
 else
 Key = INVALID_KEY;
}

Add LCALL instruction in Timer16_1_ISR function in Timer16_1NT.asm file as shown in the following code.

_Timer16_1_ISR:

 ;@PSoC_UserCode_BODY@ (Do not change this line.)
 ;---
 ; Insert your custom assembly code below this banner
 ;---
 ; NOTE: interrupt service routines must preserve
 ; the values of the A and X CPU registers.

 ;---
 ; Insert your custom assembly code above this banner
 ;---

 ;---
 ; Insert a lcall to a C function below this banner
 ; and un-comment the lines between these banners
 ;---

 PRESERVE_CPU_CONTEXT
 lcall _TimerInt
 RESTORE_CPU_CONTEXT

 ;---
 ; Insert a lcall to a C function above this banner
 ; and un-comment the lines between these banners
 ;---
 ;@PSoC_UserCode_END@ (Do not change this line.)

 reti

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 17

Document History
Document Title: PSoC® 1 - Reading Matrix and Common Bus Keypads – AN2034

Document Number: 001-40409

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 1532004 OGNE 10/02/2007 New publication of existing application note.

*A 2640952 JVY 01/20/2009 Updated content.
Added part numbers CY8C20x34, CY8C21x23, CY8C21x34, CY8C23x33,
CY8C24x23A, CY8C24x94, CY8C27x43, and CY8C29x66.

*B 3312765 OWEN 07/19/2011 Added section about LED display, converted code to C from assembly, updated
associated project similarly.

*C 3416292 RJVB 10/24/2011 Added common bus keypad interface details, introduced debounce logic and
interrupt mechanism.
Updated template

*D 3433993 RJVB 11/09/2011 Modified title and updated project code in Appendix A and B

http://www.cypress.com/

PSoC® 1 - Reading Matrix and Common Bus Keypads

 www.cypress.com Document No. 001-40409 Rev. *D 18

Products
Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory
cypress.com/go/memory

Optical Navigation Sensors cypress.com/go/ons

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions
psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 5

Cypress Developer Community
Community | Forums | Blogs | Video | Training

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new documentation
number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all subsequent revisions.
PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," and PSoC Designer are trademarks of Cypress
Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2003-2011. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

http://www.cypress.com/
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=2308
http://www.cypress.com/?id=2308
http://www.cypress.com/go/plc
http://www.cypress.com/?id=64
http://www.cypress.com/?id=64
http://www.cypress.com/go/ons
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/products/?gid=14
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=1162
http://www.cypress.com/
http://www.cypress.com/go/locations

	Abstract
	Introduction
	Matrix Keypad
	Algorithm
	C Function
	Decoding a Key Press
	Debounce Mechanism
	Making the Scanning Process Polled or Interrupt Driven
	Example Project

	Common Bus Keypad
	PSoC 1 Implementation
	SAR ADC Input Voltages
	Determining Resistor Values
	Interrupt Driven Keypad Reading
	Debouncing
	Example Project

	Summary
	About the Author
	Appendix A: ‘C’ Code for Matrix Keypad Scanning Using Interrupt Method
	Appendix B: ‘C’ Code for Common Bus Keypad Using Polling Method
	Document History
	Products
	Memory
	PSoC® Solutions

